// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Histogram is an object that aggregates statistics, and can summarize them in // various forms, including ASCII graphical, HTML, and numerically (as a // vector of numbers corresponding to each of the aggregating buckets). // See header file for details and examples. #include "base/metrics/histogram.h" #include #include #include #include "base/logging.h" #include "base/pickle.h" #include "base/stringprintf.h" #include "base/synchronization/lock.h" namespace base { // Static table of checksums for all possible 8 bit bytes. const uint32 Histogram::kCrcTable[256] = {0x0, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x76dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0xedb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x9b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x1db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x6b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0xf00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x86d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x3b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x4db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0xd6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0xa00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x26d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x5005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0xcb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0xbdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL, }; typedef Histogram::Count Count; // static const size_t Histogram::kBucketCount_MAX = 16384u; scoped_refptr Histogram::FactoryGet(const std::string& name, Sample minimum, Sample maximum, size_t bucket_count, Flags flags) { scoped_refptr histogram(NULL); // Defensive code. if (minimum < 1) minimum = 1; if (maximum > kSampleType_MAX - 1) maximum = kSampleType_MAX - 1; if (!StatisticsRecorder::FindHistogram(name, &histogram)) { histogram = new Histogram(name, minimum, maximum, bucket_count); histogram->InitializeBucketRange(); StatisticsRecorder::RegisterOrDiscardDuplicate(&histogram); } DCHECK_EQ(HISTOGRAM, histogram->histogram_type()); DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count)); histogram->SetFlags(flags); return histogram; } scoped_refptr Histogram::FactoryTimeGet(const std::string& name, TimeDelta minimum, TimeDelta maximum, size_t bucket_count, Flags flags) { return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(), bucket_count, flags); } void Histogram::Add(int value) { if (value > kSampleType_MAX - 1) value = kSampleType_MAX - 1; if (value < 0) value = 0; size_t index = BucketIndex(value); DCHECK_GE(value, ranges(index)); DCHECK_LT(value, ranges(index + 1)); Accumulate(value, 1, index); } void Histogram::AddBoolean(bool value) { DCHECK(false); } void Histogram::AddSampleSet(const SampleSet& sample) { sample_.Add(sample); } void Histogram::SetRangeDescriptions(const DescriptionPair descriptions[]) { DCHECK(false); } // The following methods provide a graphical histogram display. void Histogram::WriteHTMLGraph(std::string* output) const { // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc. output->append("
");
  WriteAscii(true, "
", output); output->append("
"); } void Histogram::WriteAscii(bool graph_it, const std::string& newline, std::string* output) const { // Get local (stack) copies of all effectively volatile class data so that we // are consistent across our output activities. SampleSet snapshot; SnapshotSample(&snapshot); Count sample_count = snapshot.TotalCount(); WriteAsciiHeader(snapshot, sample_count, output); output->append(newline); // Prepare to normalize graphical rendering of bucket contents. double max_size = 0; if (graph_it) max_size = GetPeakBucketSize(snapshot); // Calculate space needed to print bucket range numbers. Leave room to print // nearly the largest bucket range without sliding over the histogram. size_t largest_non_empty_bucket = bucket_count() - 1; while (0 == snapshot.counts(largest_non_empty_bucket)) { if (0 == largest_non_empty_bucket) break; // All buckets are empty. --largest_non_empty_bucket; } // Calculate largest print width needed for any of our bucket range displays. size_t print_width = 1; for (size_t i = 0; i < bucket_count(); ++i) { if (snapshot.counts(i)) { size_t width = GetAsciiBucketRange(i).size() + 1; if (width > print_width) print_width = width; } } int64 remaining = sample_count; int64 past = 0; // Output the actual histogram graph. for (size_t i = 0; i < bucket_count(); ++i) { Count current = snapshot.counts(i); if (!current && !PrintEmptyBucket(i)) continue; remaining -= current; std::string range = GetAsciiBucketRange(i); output->append(range); for (size_t j = 0; range.size() + j < print_width + 1; ++j) output->push_back(' '); if (0 == current && i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) { while (i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) ++i; output->append("... "); output->append(newline); continue; // No reason to plot emptiness. } double current_size = GetBucketSize(current, i); if (graph_it) WriteAsciiBucketGraph(current_size, max_size, output); WriteAsciiBucketContext(past, current, remaining, i, output); output->append(newline); past += current; } DCHECK_EQ(sample_count, past); } // static std::string Histogram::SerializeHistogramInfo(const Histogram& histogram, const SampleSet& snapshot) { DCHECK_NE(NOT_VALID_IN_RENDERER, histogram.histogram_type()); Pickle pickle; pickle.WriteString(histogram.histogram_name()); pickle.WriteInt(histogram.declared_min()); pickle.WriteInt(histogram.declared_max()); pickle.WriteSize(histogram.bucket_count()); pickle.WriteUInt32(histogram.range_checksum()); pickle.WriteInt(histogram.histogram_type()); pickle.WriteInt(histogram.flags()); snapshot.Serialize(&pickle); return std::string(static_cast(pickle.data()), pickle.size()); } // static bool Histogram::DeserializeHistogramInfo(const std::string& histogram_info) { if (histogram_info.empty()) { return false; } Pickle pickle(histogram_info.data(), static_cast(histogram_info.size())); std::string histogram_name; int declared_min; int declared_max; size_t bucket_count; uint32 range_checksum; int histogram_type; int pickle_flags; SampleSet sample; void* iter = NULL; if (!pickle.ReadString(&iter, &histogram_name) || !pickle.ReadInt(&iter, &declared_min) || !pickle.ReadInt(&iter, &declared_max) || !pickle.ReadSize(&iter, &bucket_count) || !pickle.ReadUInt32(&iter, &range_checksum) || !pickle.ReadInt(&iter, &histogram_type) || !pickle.ReadInt(&iter, &pickle_flags) || !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) { LOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name; return false; } DCHECK(pickle_flags & kIPCSerializationSourceFlag); // Since these fields may have come from an untrusted renderer, do additional // checks above and beyond those in Histogram::Initialize() if (declared_max <= 0 || declared_min <= 0 || declared_max < declared_min || INT_MAX / sizeof(Count) <= bucket_count || bucket_count < 2) { LOG(ERROR) << "Values error decoding Histogram: " << histogram_name; return false; } Flags flags = static_cast(pickle_flags & ~kIPCSerializationSourceFlag); DCHECK_NE(NOT_VALID_IN_RENDERER, histogram_type); scoped_refptr render_histogram(NULL); if (histogram_type == HISTOGRAM) { render_histogram = Histogram::FactoryGet( histogram_name, declared_min, declared_max, bucket_count, flags); } else if (histogram_type == LINEAR_HISTOGRAM) { render_histogram = LinearHistogram::FactoryGet( histogram_name, declared_min, declared_max, bucket_count, flags); } else if (histogram_type == BOOLEAN_HISTOGRAM) { render_histogram = BooleanHistogram::FactoryGet(histogram_name, flags); } else { LOG(ERROR) << "Error Deserializing Histogram Unknown histogram_type: " << histogram_type; return false; } DCHECK_EQ(render_histogram->declared_min(), declared_min); DCHECK_EQ(render_histogram->declared_max(), declared_max); DCHECK_EQ(render_histogram->bucket_count(), bucket_count); DCHECK_EQ(render_histogram->range_checksum(), range_checksum); DCHECK_EQ(render_histogram->histogram_type(), histogram_type); if (render_histogram->flags() & kIPCSerializationSourceFlag) { DVLOG(1) << "Single process mode, histogram observed and not copied: " << histogram_name; } else { DCHECK_EQ(flags & render_histogram->flags(), flags); render_histogram->AddSampleSet(sample); } return true; } //------------------------------------------------------------------------------ // Methods for the validating a sample and a related histogram. //------------------------------------------------------------------------------ Histogram::Inconsistencies Histogram::FindCorruption( const SampleSet& snapshot) const { int inconsistencies = NO_INCONSISTENCIES; Sample previous_range = -1; // Bottom range is always 0. int64 count = 0; for (size_t index = 0; index < bucket_count(); ++index) { count += snapshot.counts(index); int new_range = ranges(index); if (previous_range >= new_range) inconsistencies |= BUCKET_ORDER_ERROR; previous_range = new_range; } if (!HasValidRangeChecksum()) inconsistencies |= RANGE_CHECKSUM_ERROR; int64 delta64 = snapshot.redundant_count() - count; if (delta64 != 0) { int delta = static_cast(delta64); if (delta != delta64) delta = INT_MAX; // Flag all giant errors as INT_MAX. // Since snapshots of histograms are taken asynchronously relative to // sampling (and snapped from different threads), it is pretty likely that // we'll catch a redundant count that doesn't match the sample count. We // allow for a certain amount of slop before flagging this as an // inconsistency. Even with an inconsistency, we'll snapshot it again (for // UMA in about a half hour, so we'll eventually get the data, if it was // not the result of a corruption. If histograms show that 1 is "too tight" // then we may try to use 2 or 3 for this slop value. const int kCommonRaceBasedCountMismatch = 1; if (delta > 0) { UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountHigh", delta); if (delta > kCommonRaceBasedCountMismatch) inconsistencies |= COUNT_HIGH_ERROR; } else { DCHECK_GT(0, delta); UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountLow", -delta); if (-delta > kCommonRaceBasedCountMismatch) inconsistencies |= COUNT_LOW_ERROR; } } return static_cast(inconsistencies); } Histogram::ClassType Histogram::histogram_type() const { return HISTOGRAM; } Histogram::Sample Histogram::ranges(size_t i) const { return ranges_[i]; } size_t Histogram::bucket_count() const { return bucket_count_; } // Do a safe atomic snapshot of sample data. // This implementation assumes we are on a safe single thread. void Histogram::SnapshotSample(SampleSet* sample) const { // Note locking not done in this version!!! *sample = sample_; } bool Histogram::HasConstructorArguments(Sample minimum, Sample maximum, size_t bucket_count) { return ((minimum == declared_min_) && (maximum == declared_max_) && (bucket_count == bucket_count_)); } bool Histogram::HasConstructorTimeDeltaArguments(TimeDelta minimum, TimeDelta maximum, size_t bucket_count) { return ((minimum.InMilliseconds() == declared_min_) && (maximum.InMilliseconds() == declared_max_) && (bucket_count == bucket_count_)); } bool Histogram::HasValidRangeChecksum() const { return CalculateRangeChecksum() == range_checksum_; } Histogram::Histogram(const std::string& name, Sample minimum, Sample maximum, size_t bucket_count) : histogram_name_(name), declared_min_(minimum), declared_max_(maximum), bucket_count_(bucket_count), flags_(kNoFlags), ranges_(bucket_count + 1, 0), range_checksum_(0), sample_() { Initialize(); } Histogram::Histogram(const std::string& name, TimeDelta minimum, TimeDelta maximum, size_t bucket_count) : histogram_name_(name), declared_min_(static_cast (minimum.InMilliseconds())), declared_max_(static_cast (maximum.InMilliseconds())), bucket_count_(bucket_count), flags_(kNoFlags), ranges_(bucket_count + 1, 0), range_checksum_(0), sample_() { Initialize(); } Histogram::~Histogram() { if (StatisticsRecorder::dump_on_exit()) { std::string output; WriteAscii(true, "\n", &output); LOG(INFO) << output; } // Just to make sure most derived class did this properly... DCHECK(ValidateBucketRanges()); } // Calculate what range of values are held in each bucket. // We have to be careful that we don't pick a ratio between starting points in // consecutive buckets that is sooo small, that the integer bounds are the same // (effectively making one bucket get no values). We need to avoid: // ranges_[i] == ranges_[i + 1] // To avoid that, we just do a fine-grained bucket width as far as we need to // until we get a ratio that moves us along at least 2 units at a time. From // that bucket onward we do use the exponential growth of buckets. void Histogram::InitializeBucketRange() { double log_max = log(static_cast(declared_max())); double log_ratio; double log_next; size_t bucket_index = 1; Sample current = declared_min(); SetBucketRange(bucket_index, current); while (bucket_count() > ++bucket_index) { double log_current; log_current = log(static_cast(current)); // Calculate the count'th root of the range. log_ratio = (log_max - log_current) / (bucket_count() - bucket_index); // See where the next bucket would start. log_next = log_current + log_ratio; int next; next = static_cast(floor(exp(log_next) + 0.5)); if (next > current) current = next; else ++current; // Just do a narrow bucket, and keep trying. SetBucketRange(bucket_index, current); } ResetRangeChecksum(); DCHECK_EQ(bucket_count(), bucket_index); } bool Histogram::PrintEmptyBucket(size_t index) const { return true; } size_t Histogram::BucketIndex(Sample value) const { // Use simple binary search. This is very general, but there are better // approaches if we knew that the buckets were linearly distributed. DCHECK_LE(ranges(0), value); DCHECK_GT(ranges(bucket_count()), value); size_t under = 0; size_t over = bucket_count(); size_t mid; do { DCHECK_GE(over, under); mid = under + (over - under)/2; if (mid == under) break; if (ranges(mid) <= value) under = mid; else over = mid; } while (true); DCHECK_LE(ranges(mid), value); CHECK_GT(ranges(mid+1), value); return mid; } // Use the actual bucket widths (like a linear histogram) until the widths get // over some transition value, and then use that transition width. Exponentials // get so big so fast (and we don't expect to see a lot of entries in the large // buckets), so we need this to make it possible to see what is going on and // not have 0-graphical-height buckets. double Histogram::GetBucketSize(Count current, size_t i) const { DCHECK_GT(ranges(i + 1), ranges(i)); static const double kTransitionWidth = 5; double denominator = ranges(i + 1) - ranges(i); if (denominator > kTransitionWidth) denominator = kTransitionWidth; // Stop trying to normalize. return current/denominator; } void Histogram::ResetRangeChecksum() { range_checksum_ = CalculateRangeChecksum(); } const std::string Histogram::GetAsciiBucketRange(size_t i) const { std::string result; if (kHexRangePrintingFlag & flags_) StringAppendF(&result, "%#x", ranges(i)); else StringAppendF(&result, "%d", ranges(i)); return result; } // Update histogram data with new sample. void Histogram::Accumulate(Sample value, Count count, size_t index) { // Note locking not done in this version!!! sample_.Accumulate(value, count, index); } void Histogram::SetBucketRange(size_t i, Sample value) { DCHECK_GT(bucket_count_, i); ranges_[i] = value; } bool Histogram::ValidateBucketRanges() const { // Standard assertions that all bucket ranges should satisfy. DCHECK_EQ(bucket_count_ + 1, ranges_.size()); DCHECK_EQ(0, ranges_[0]); DCHECK_EQ(declared_min(), ranges_[1]); DCHECK_EQ(declared_max(), ranges_[bucket_count_ - 1]); DCHECK_EQ(kSampleType_MAX, ranges_[bucket_count_]); return true; } uint32 Histogram::CalculateRangeChecksum() const { DCHECK_EQ(ranges_.size(), bucket_count() + 1); uint32 checksum = static_cast(ranges_.size()); // Seed checksum. for (size_t index = 0; index < bucket_count(); ++index) checksum = Crc32(checksum, ranges(index)); return checksum; } void Histogram::Initialize() { sample_.Resize(*this); if (declared_min_ < 1) declared_min_ = 1; if (declared_max_ > kSampleType_MAX - 1) declared_max_ = kSampleType_MAX - 1; DCHECK_LE(declared_min_, declared_max_); DCHECK_GT(bucket_count_, 1u); CHECK_LT(bucket_count_, kBucketCount_MAX); size_t maximal_bucket_count = declared_max_ - declared_min_ + 2; DCHECK_LE(bucket_count_, maximal_bucket_count); DCHECK_EQ(0, ranges_[0]); ranges_[bucket_count_] = kSampleType_MAX; } // We generate the CRC-32 using the low order bits to select whether to XOR in // the reversed polynomial 0xedb88320L. This is nice and simple, and allows us // to keep the quotient in a uint32. Since we're not concerned about the nature // of corruptions (i.e., we don't care about bit sequencing, since we are // handling memory changes, which are more grotesque) so we don't bother to // get the CRC correct for big-endian vs little-ending calculations. All we // need is a nice hash, that tends to depend on all the bits of the sample, with // very little chance of changes in one place impacting changes in another // place. uint32 Histogram::Crc32(uint32 sum, Histogram::Sample range) { const bool kUseRealCrc = true; // TODO(jar): Switch to false and watch stats. if (kUseRealCrc) { union { Histogram::Sample range; unsigned char bytes[sizeof(Histogram::Sample)]; } converter; converter.range = range; for (size_t i = 0; i < sizeof(converter); ++i) sum = kCrcTable[(sum & 0xff) ^ converter.bytes[i]] ^ (sum >> 8); } else { // Use hash techniques provided in ReallyFastHash, except we don't care // about "avalanching" (which would worsten the hash, and add collisions), // and we don't care about edge cases since we have an even number of bytes. union { Histogram::Sample range; uint16 ints[sizeof(Histogram::Sample) / 2]; } converter; DCHECK_EQ(sizeof(Histogram::Sample), sizeof(converter)); converter.range = range; sum += converter.ints[0]; sum = (sum << 16) ^ sum ^ (static_cast(converter.ints[1]) << 11); sum += sum >> 11; } return sum; } //------------------------------------------------------------------------------ // Private methods double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const { double max = 0; for (size_t i = 0; i < bucket_count() ; ++i) { double current_size = GetBucketSize(snapshot.counts(i), i); if (current_size > max) max = current_size; } return max; } void Histogram::WriteAsciiHeader(const SampleSet& snapshot, Count sample_count, std::string* output) const { StringAppendF(output, "Histogram: %s recorded %d samples", histogram_name().c_str(), sample_count); if (0 == sample_count) { DCHECK_EQ(snapshot.sum(), 0); } else { double average = static_cast(snapshot.sum()) / sample_count; StringAppendF(output, ", average = %.1f", average); } if (flags_ & ~kHexRangePrintingFlag) StringAppendF(output, " (flags = 0x%x)", flags_ & ~kHexRangePrintingFlag); } void Histogram::WriteAsciiBucketContext(const int64 past, const Count current, const int64 remaining, const size_t i, std::string* output) const { double scaled_sum = (past + current + remaining) / 100.0; WriteAsciiBucketValue(current, scaled_sum, output); if (0 < i) { double percentage = past / scaled_sum; StringAppendF(output, " {%3.1f%%}", percentage); } } void Histogram::WriteAsciiBucketValue(Count current, double scaled_sum, std::string* output) const { StringAppendF(output, " (%d = %3.1f%%)", current, current/scaled_sum); } void Histogram::WriteAsciiBucketGraph(double current_size, double max_size, std::string* output) const { const int k_line_length = 72; // Maximal horizontal width of graph. int x_count = static_cast(k_line_length * (current_size / max_size) + 0.5); int x_remainder = k_line_length - x_count; while (0 < x_count--) output->append("-"); output->append("O"); while (0 < x_remainder--) output->append(" "); } //------------------------------------------------------------------------------ // Methods for the Histogram::SampleSet class //------------------------------------------------------------------------------ Histogram::SampleSet::SampleSet() : counts_(), sum_(0), redundant_count_(0) { } Histogram::SampleSet::~SampleSet() { } void Histogram::SampleSet::Resize(const Histogram& histogram) { counts_.resize(histogram.bucket_count(), 0); } void Histogram::SampleSet::CheckSize(const Histogram& histogram) const { DCHECK_EQ(histogram.bucket_count(), counts_.size()); } void Histogram::SampleSet::Accumulate(Sample value, Count count, size_t index) { DCHECK(count == 1 || count == -1); counts_[index] += count; sum_ += count * value; redundant_count_ += count; DCHECK_GE(counts_[index], 0); DCHECK_GE(sum_, 0); DCHECK_GE(redundant_count_, 0); } Count Histogram::SampleSet::TotalCount() const { Count total = 0; for (Counts::const_iterator it = counts_.begin(); it != counts_.end(); ++it) { total += *it; } return total; } void Histogram::SampleSet::Add(const SampleSet& other) { DCHECK_EQ(counts_.size(), other.counts_.size()); sum_ += other.sum_; redundant_count_ += other.redundant_count_; for (size_t index = 0; index < counts_.size(); ++index) counts_[index] += other.counts_[index]; } void Histogram::SampleSet::Subtract(const SampleSet& other) { DCHECK_EQ(counts_.size(), other.counts_.size()); // Note: Race conditions in snapshotting a sum may lead to (temporary) // negative values when snapshots are later combined (and deltas calculated). // As a result, we don't currently CHCEK() for positive values. sum_ -= other.sum_; redundant_count_ -= other.redundant_count_; for (size_t index = 0; index < counts_.size(); ++index) { counts_[index] -= other.counts_[index]; DCHECK_GE(counts_[index], 0); } } bool Histogram::SampleSet::Serialize(Pickle* pickle) const { pickle->WriteInt64(sum_); pickle->WriteInt64(redundant_count_); pickle->WriteSize(counts_.size()); for (size_t index = 0; index < counts_.size(); ++index) { pickle->WriteInt(counts_[index]); } return true; } bool Histogram::SampleSet::Deserialize(void** iter, const Pickle& pickle) { DCHECK_EQ(counts_.size(), 0u); DCHECK_EQ(sum_, 0); DCHECK_EQ(redundant_count_, 0); size_t counts_size; if (!pickle.ReadInt64(iter, &sum_) || !pickle.ReadInt64(iter, &redundant_count_) || !pickle.ReadSize(iter, &counts_size)) { return false; } if (counts_size == 0) return false; int count = 0; for (size_t index = 0; index < counts_size; ++index) { int i; if (!pickle.ReadInt(iter, &i)) return false; counts_.push_back(i); count += i; } DCHECK_EQ(count, redundant_count_); return count == redundant_count_; } //------------------------------------------------------------------------------ // LinearHistogram: This histogram uses a traditional set of evenly spaced // buckets. //------------------------------------------------------------------------------ LinearHistogram::~LinearHistogram() { } scoped_refptr LinearHistogram::FactoryGet(const std::string& name, Sample minimum, Sample maximum, size_t bucket_count, Flags flags) { scoped_refptr histogram(NULL); if (minimum < 1) minimum = 1; if (maximum > kSampleType_MAX - 1) maximum = kSampleType_MAX - 1; if (!StatisticsRecorder::FindHistogram(name, &histogram)) { LinearHistogram* linear_histogram = new LinearHistogram(name, minimum, maximum, bucket_count); linear_histogram->InitializeBucketRange(); histogram = linear_histogram; StatisticsRecorder::RegisterOrDiscardDuplicate(&histogram); } DCHECK_EQ(LINEAR_HISTOGRAM, histogram->histogram_type()); DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count)); histogram->SetFlags(flags); return histogram; } scoped_refptr LinearHistogram::FactoryTimeGet( const std::string& name, TimeDelta minimum, TimeDelta maximum, size_t bucket_count, Flags flags) { return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(), bucket_count, flags); } Histogram::ClassType LinearHistogram::histogram_type() const { return LINEAR_HISTOGRAM; } void LinearHistogram::SetRangeDescriptions( const DescriptionPair descriptions[]) { for (int i =0; descriptions[i].description; ++i) { bucket_description_[descriptions[i].sample] = descriptions[i].description; } } LinearHistogram::LinearHistogram(const std::string& name, Sample minimum, Sample maximum, size_t bucket_count) : Histogram(name, minimum >= 1 ? minimum : 1, maximum, bucket_count) { } LinearHistogram::LinearHistogram(const std::string& name, TimeDelta minimum, TimeDelta maximum, size_t bucket_count) : Histogram(name, minimum >= TimeDelta::FromMilliseconds(1) ? minimum : TimeDelta::FromMilliseconds(1), maximum, bucket_count) { } void LinearHistogram::InitializeBucketRange() { DCHECK_GT(declared_min(), 0); // 0 is the underflow bucket here. double min = declared_min(); double max = declared_max(); size_t i; for (i = 1; i < bucket_count(); ++i) { double linear_range = (min * (bucket_count() -1 - i) + max * (i - 1)) / (bucket_count() - 2); SetBucketRange(i, static_cast (linear_range + 0.5)); } ResetRangeChecksum(); } double LinearHistogram::GetBucketSize(Count current, size_t i) const { DCHECK_GT(ranges(i + 1), ranges(i)); // Adjacent buckets with different widths would have "surprisingly" many (few) // samples in a histogram if we didn't normalize this way. double denominator = ranges(i + 1) - ranges(i); return current/denominator; } const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const { int range = ranges(i); BucketDescriptionMap::const_iterator it = bucket_description_.find(range); if (it == bucket_description_.end()) return Histogram::GetAsciiBucketRange(i); return it->second; } bool LinearHistogram::PrintEmptyBucket(size_t index) const { return bucket_description_.find(ranges(index)) == bucket_description_.end(); } //------------------------------------------------------------------------------ // This section provides implementation for BooleanHistogram. //------------------------------------------------------------------------------ scoped_refptr BooleanHistogram::FactoryGet(const std::string& name, Flags flags) { scoped_refptr histogram(NULL); if (!StatisticsRecorder::FindHistogram(name, &histogram)) { BooleanHistogram* boolean_histogram = new BooleanHistogram(name); boolean_histogram->InitializeBucketRange(); histogram = boolean_histogram; StatisticsRecorder::RegisterOrDiscardDuplicate(&histogram); } DCHECK_EQ(BOOLEAN_HISTOGRAM, histogram->histogram_type()); histogram->SetFlags(flags); return histogram; } Histogram::ClassType BooleanHistogram::histogram_type() const { return BOOLEAN_HISTOGRAM; } void BooleanHistogram::AddBoolean(bool value) { Add(value ? 1 : 0); } BooleanHistogram::BooleanHistogram(const std::string& name) : LinearHistogram(name, 1, 2, 3) { } //------------------------------------------------------------------------------ // CustomHistogram: //------------------------------------------------------------------------------ scoped_refptr CustomHistogram::FactoryGet( const std::string& name, const std::vector& custom_ranges, Flags flags) { scoped_refptr histogram(NULL); // Remove the duplicates in the custom ranges array. std::vector ranges = custom_ranges; ranges.push_back(0); // Ensure we have a zero value. std::sort(ranges.begin(), ranges.end()); ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end()); if (ranges.size() <= 1) { DCHECK(false); // Note that we pushed a 0 in above, so for defensive code.... ranges.push_back(1); // Put in some data so we can index to [1]. } DCHECK_LT(ranges.back(), kSampleType_MAX); if (!StatisticsRecorder::FindHistogram(name, &histogram)) { CustomHistogram* custom_histogram = new CustomHistogram(name, ranges); custom_histogram->InitializedCustomBucketRange(ranges); histogram = custom_histogram; StatisticsRecorder::RegisterOrDiscardDuplicate(&histogram); } DCHECK_EQ(histogram->histogram_type(), CUSTOM_HISTOGRAM); DCHECK(histogram->HasConstructorArguments(ranges[1], ranges.back(), ranges.size())); histogram->SetFlags(flags); return histogram; } Histogram::ClassType CustomHistogram::histogram_type() const { return CUSTOM_HISTOGRAM; } CustomHistogram::CustomHistogram(const std::string& name, const std::vector& custom_ranges) : Histogram(name, custom_ranges[1], custom_ranges.back(), custom_ranges.size()) { DCHECK_GT(custom_ranges.size(), 1u); DCHECK_EQ(custom_ranges[0], 0); } void CustomHistogram::InitializedCustomBucketRange( const std::vector& custom_ranges) { DCHECK_GT(custom_ranges.size(), 1u); DCHECK_EQ(custom_ranges[0], 0); DCHECK_LE(custom_ranges.size(), bucket_count()); for (size_t index = 0; index < custom_ranges.size(); ++index) SetBucketRange(index, custom_ranges[index]); ResetRangeChecksum(); } double CustomHistogram::GetBucketSize(Count current, size_t i) const { return 1; } //------------------------------------------------------------------------------ // The next section handles global (central) support for all histograms, as well // as startup/teardown of this service. //------------------------------------------------------------------------------ // This singleton instance should be started during the single threaded portion // of main(), and hence it is not thread safe. It initializes globals to // provide support for all future calls. StatisticsRecorder::StatisticsRecorder() { DCHECK(!histograms_); if (lock_ == NULL) { // This will leak on purpose. It's the only way to make sure we won't race // against the static uninitialization of the module while one of our // static methods relying on the lock get called at an inappropriate time // during the termination phase. Since it's a static data member, we will // leak one per process, which would be similar to the instance allocated // during static initialization and released only on process termination. lock_ = new base::Lock; } base::AutoLock auto_lock(*lock_); histograms_ = new HistogramMap; } StatisticsRecorder::~StatisticsRecorder() { DCHECK(histograms_ && lock_); if (dump_on_exit_) { std::string output; WriteGraph("", &output); LOG(INFO) << output; } // Clean up. HistogramMap* histograms = NULL; { base::AutoLock auto_lock(*lock_); histograms = histograms_; histograms_ = NULL; } delete histograms; // We don't delete lock_ on purpose to avoid having to properly protect // against it going away after we checked for NULL in the static methods. } // static bool StatisticsRecorder::IsActive() { if (lock_ == NULL) return false; base::AutoLock auto_lock(*lock_); return NULL != histograms_; } // Note: We can't accept a ref_ptr to |histogram| because we *might* not keep a // reference, and we are called while in the Histogram constructor. In that // scenario, a ref_ptr would have incremented the ref count when the histogram // was passed to us, decremented it when we returned, and the instance would be // destroyed before assignment (when value was returned by new). // static void StatisticsRecorder::RegisterOrDiscardDuplicate( scoped_refptr* histogram) { DCHECK((*histogram)->HasValidRangeChecksum()); if (lock_ == NULL) return; base::AutoLock auto_lock(*lock_); if (!histograms_) return; const std::string name = (*histogram)->histogram_name(); HistogramMap::iterator it = histograms_->find(name); // Avoid overwriting a previous registration. if (histograms_->end() == it) (*histograms_)[name] = *histogram; else *histogram = it->second; } // static void StatisticsRecorder::WriteHTMLGraph(const std::string& query, std::string* output) { if (!IsActive()) return; output->append("About Histograms"); if (!query.empty()) output->append(" - " + query); output->append("" // We'd like the following no-cache... but it doesn't work. // "" ""); Histograms snapshot; GetSnapshot(query, &snapshot); for (Histograms::iterator it = snapshot.begin(); it != snapshot.end(); ++it) { (*it)->WriteHTMLGraph(output); output->append("


"); } output->append(""); } // static void StatisticsRecorder::WriteGraph(const std::string& query, std::string* output) { if (!IsActive()) return; if (query.length()) StringAppendF(output, "Collections of histograms for %s\n", query.c_str()); else output->append("Collections of all histograms\n"); Histograms snapshot; GetSnapshot(query, &snapshot); for (Histograms::iterator it = snapshot.begin(); it != snapshot.end(); ++it) { (*it)->WriteAscii(true, "\n", output); output->append("\n"); } } // static void StatisticsRecorder::GetHistograms(Histograms* output) { if (lock_ == NULL) return; base::AutoLock auto_lock(*lock_); if (!histograms_) return; for (HistogramMap::iterator it = histograms_->begin(); histograms_->end() != it; ++it) { DCHECK_EQ(it->first, it->second->histogram_name()); output->push_back(it->second); } } bool StatisticsRecorder::FindHistogram(const std::string& name, scoped_refptr* histogram) { if (lock_ == NULL) return false; base::AutoLock auto_lock(*lock_); if (!histograms_) return false; HistogramMap::iterator it = histograms_->find(name); if (histograms_->end() == it) return false; *histogram = it->second; return true; } // private static void StatisticsRecorder::GetSnapshot(const std::string& query, Histograms* snapshot) { if (lock_ == NULL) return; base::AutoLock auto_lock(*lock_); if (!histograms_) return; for (HistogramMap::iterator it = histograms_->begin(); histograms_->end() != it; ++it) { if (it->first.find(query) != std::string::npos) snapshot->push_back(it->second); } } // static StatisticsRecorder::HistogramMap* StatisticsRecorder::histograms_ = NULL; // static base::Lock* StatisticsRecorder::lock_ = NULL; // static bool StatisticsRecorder::dump_on_exit_ = false; } // namespace base