// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "base/basictypes.h" #include "base/pickle.h" #include "base/scoped_ptr.h" #include "base/string16.h" #include "testing/gtest/include/gtest/gtest.h" namespace { const int testint = 2093847192; const std::string teststr("Hello world"); // note non-aligned string length const std::wstring testwstr(L"Hello, world"); const char testdata[] = "AAA\0BBB\0"; const int testdatalen = arraysize(testdata) - 1; const bool testbool1 = false; const bool testbool2 = true; // checks that the result void VerifyResult(const Pickle& pickle) { void* iter = NULL; int outint; EXPECT_TRUE(pickle.ReadInt(&iter, &outint)); EXPECT_EQ(testint, outint); std::string outstr; EXPECT_TRUE(pickle.ReadString(&iter, &outstr)); EXPECT_EQ(teststr, outstr); std::wstring outwstr; EXPECT_TRUE(pickle.ReadWString(&iter, &outwstr)); EXPECT_EQ(testwstr, outwstr); bool outbool; EXPECT_TRUE(pickle.ReadBool(&iter, &outbool)); EXPECT_EQ(testbool1, outbool); EXPECT_TRUE(pickle.ReadBool(&iter, &outbool)); EXPECT_EQ(testbool2, outbool); const char* outdata; int outdatalen; EXPECT_TRUE(pickle.ReadData(&iter, &outdata, &outdatalen)); EXPECT_EQ(testdatalen, outdatalen); EXPECT_EQ(memcmp(testdata, outdata, outdatalen), 0); EXPECT_TRUE(pickle.ReadData(&iter, &outdata, &outdatalen)); EXPECT_EQ(testdatalen, outdatalen); EXPECT_EQ(memcmp(testdata, outdata, outdatalen), 0); // reads past the end should fail EXPECT_FALSE(pickle.ReadInt(&iter, &outint)); } } // namespace TEST(PickleTest, EncodeDecode) { Pickle pickle; EXPECT_TRUE(pickle.WriteInt(testint)); EXPECT_TRUE(pickle.WriteString(teststr)); EXPECT_TRUE(pickle.WriteWString(testwstr)); EXPECT_TRUE(pickle.WriteBool(testbool1)); EXPECT_TRUE(pickle.WriteBool(testbool2)); EXPECT_TRUE(pickle.WriteData(testdata, testdatalen)); // Over allocate BeginWriteData so we can test TrimWriteData. char* dest = pickle.BeginWriteData(testdatalen + 100); EXPECT_TRUE(dest); memcpy(dest, testdata, testdatalen); pickle.TrimWriteData(testdatalen); VerifyResult(pickle); // test copy constructor Pickle pickle2(pickle); VerifyResult(pickle2); // test operator= Pickle pickle3; pickle3 = pickle; VerifyResult(pickle3); } // Tests that we can handle really small buffers. TEST(PickleTest, SmallBuffer) { scoped_array buffer(new char[1]); // We should not touch the buffer. Pickle pickle(buffer.get(), 1); void* iter = NULL; int data; EXPECT_FALSE(pickle.ReadInt(&iter, &data)); } // Tests that we can handle improper headers. TEST(PickleTest, BigSize) { int buffer[] = { 0x56035200, 25, 40, 50 }; Pickle pickle(reinterpret_cast(buffer), sizeof(buffer)); void* iter = NULL; int data; EXPECT_FALSE(pickle.ReadInt(&iter, &data)); } TEST(PickleTest, UnalignedSize) { int buffer[] = { 10, 25, 40, 50 }; Pickle pickle(reinterpret_cast(buffer), sizeof(buffer)); void* iter = NULL; int data; EXPECT_FALSE(pickle.ReadInt(&iter, &data)); } TEST(PickleTest, ZeroLenStr) { Pickle pickle; EXPECT_TRUE(pickle.WriteString("")); void* iter = NULL; std::string outstr; EXPECT_TRUE(pickle.ReadString(&iter, &outstr)); EXPECT_EQ("", outstr); } TEST(PickleTest, ZeroLenWStr) { Pickle pickle; EXPECT_TRUE(pickle.WriteWString(L"")); void* iter = NULL; std::string outstr; EXPECT_TRUE(pickle.ReadString(&iter, &outstr)); EXPECT_EQ("", outstr); } TEST(PickleTest, BadLenStr) { Pickle pickle; EXPECT_TRUE(pickle.WriteInt(-2)); void* iter = NULL; std::string outstr; EXPECT_FALSE(pickle.ReadString(&iter, &outstr)); } TEST(PickleTest, BadLenWStr) { Pickle pickle; EXPECT_TRUE(pickle.WriteInt(-1)); void* iter = NULL; std::wstring woutstr; EXPECT_FALSE(pickle.ReadWString(&iter, &woutstr)); } TEST(PickleTest, FindNext) { Pickle pickle; EXPECT_TRUE(pickle.WriteInt(1)); EXPECT_TRUE(pickle.WriteString("Domo")); const char* start = reinterpret_cast(pickle.data()); const char* end = start + pickle.size(); EXPECT_TRUE(end == Pickle::FindNext(pickle.header_size_, start, end)); EXPECT_TRUE(NULL == Pickle::FindNext(pickle.header_size_, start, end - 1)); EXPECT_TRUE(end == Pickle::FindNext(pickle.header_size_, start, end + 1)); } TEST(PickleTest, IteratorHasRoom) { Pickle pickle; EXPECT_TRUE(pickle.WriteInt(1)); EXPECT_TRUE(pickle.WriteInt(2)); const void* iter = 0; EXPECT_FALSE(pickle.IteratorHasRoomFor(iter, 1)); iter = pickle.payload(); EXPECT_TRUE(pickle.IteratorHasRoomFor(iter, 0)); EXPECT_TRUE(pickle.IteratorHasRoomFor(iter, 1)); EXPECT_FALSE(pickle.IteratorHasRoomFor(iter, -1)); EXPECT_TRUE(pickle.IteratorHasRoomFor(iter, sizeof(int) * 2)); EXPECT_FALSE(pickle.IteratorHasRoomFor(iter, (sizeof(int) * 2) + 1)); } TEST(PickleTest, Resize) { size_t unit = Pickle::kPayloadUnit; scoped_array data(new char[unit]); char* data_ptr = data.get(); for (size_t i = 0; i < unit; i++) data_ptr[i] = 'G'; // construct a message that will be exactly the size of one payload unit, // note that any data will have a 4-byte header indicating the size const size_t payload_size_after_header = unit - sizeof(uint32); Pickle pickle; pickle.WriteData(data_ptr, static_cast(payload_size_after_header - sizeof(uint32))); size_t cur_payload = payload_size_after_header; // note: we assume 'unit' is a power of 2 EXPECT_EQ(unit, pickle.capacity()); EXPECT_EQ(pickle.payload_size(), payload_size_after_header); // fill out a full page (noting data header) pickle.WriteData(data_ptr, static_cast(unit - sizeof(uint32))); cur_payload += unit; EXPECT_EQ(unit * 2, pickle.capacity()); EXPECT_EQ(cur_payload, pickle.payload_size()); // one more byte should double the capacity pickle.WriteData(data_ptr, 1); cur_payload += 5; EXPECT_EQ(unit * 4, pickle.capacity()); EXPECT_EQ(cur_payload, pickle.payload_size()); } namespace { struct CustomHeader : Pickle::Header { int blah; }; } // namespace TEST(PickleTest, HeaderPadding) { const uint32 kMagic = 0x12345678; Pickle pickle(sizeof(CustomHeader)); pickle.WriteInt(kMagic); // this should not overwrite the 'int' payload pickle.headerT()->blah = 10; void* iter = NULL; int result; ASSERT_TRUE(pickle.ReadInt(&iter, &result)); EXPECT_EQ(static_cast(result), kMagic); } TEST(PickleTest, EqualsOperator) { Pickle source; source.WriteInt(1); Pickle copy_refs_source_buffer(static_cast(source.data()), source.size()); Pickle copy; copy = copy_refs_source_buffer; ASSERT_EQ(source.size(), copy.size()); } TEST(PickleTest, EvilLengths) { Pickle source; std::string str(100000, 'A'); source.WriteData(str.c_str(), 100000); // ReadString16 used to have its read buffer length calculation wrong leading // to out-of-bounds reading. void* iter = NULL; string16 str16; EXPECT_FALSE(source.ReadString16(&iter, &str16)); // And check we didn't break ReadString16. str16 = (wchar_t) 'A'; Pickle str16_pickle; str16_pickle.WriteString16(str16); iter = NULL; EXPECT_TRUE(str16_pickle.ReadString16(&iter, &str16)); EXPECT_EQ(1U, str16.length()); // Check we don't fail in a length check with large WStrings. Pickle big_len; big_len.WriteInt(1 << 30); iter = NULL; std::wstring wstr; EXPECT_FALSE(big_len.ReadWString(&iter, &wstr)); } // Check we can write zero bytes of data and 'data' can be NULL. TEST(PickleTest, ZeroLength) { Pickle pickle; EXPECT_TRUE(pickle.WriteData(NULL, 0)); void* iter = NULL; const char* outdata; int outdatalen; EXPECT_TRUE(pickle.ReadData(&iter, &outdata, &outdatalen)); EXPECT_EQ(0, outdatalen); // We can't assert that outdata is NULL. } // Check that ReadBytes works properly with an iterator initialized to NULL. TEST(PickleTest, ReadBytes) { Pickle pickle; int data = 0x7abcd; EXPECT_TRUE(pickle.WriteBytes(&data, sizeof(data))); void* iter = NULL; const char* outdata_char; EXPECT_TRUE(pickle.ReadBytes(&iter, &outdata_char, sizeof(data))); int outdata; memcpy(&outdata, outdata_char, sizeof(outdata)); EXPECT_EQ(data, outdata); }