// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #define _CRT_SECURE_NO_WARNINGS #include "base/process/memory.h" #include #include "base/compiler_specific.h" #include "base/debug/alias.h" #include "base/strings/stringprintf.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_WIN) #include #endif #if defined(OS_POSIX) #include #endif #if defined(OS_MACOSX) #include #include "base/process/memory_unittest_mac.h" #endif #if defined(OS_LINUX) #include #endif #if defined(OS_WIN) // HeapQueryInformation function pointer. typedef BOOL (WINAPI* HeapQueryFn) \ (HANDLE, HEAP_INFORMATION_CLASS, PVOID, SIZE_T, PSIZE_T); const int kConstantInModule = 42; TEST(ProcessMemoryTest, GetModuleFromAddress) { // Since the unit tests are their own EXE, this should be // equivalent to the EXE's HINSTANCE. // // kConstantInModule is a constant in this file and // therefore within the unit test EXE. EXPECT_EQ(::GetModuleHandle(NULL), base::GetModuleFromAddress( const_cast(&kConstantInModule))); // Any address within the kernel32 module should return // kernel32's HMODULE. Our only assumption here is that // kernel32 is larger than 4 bytes. HMODULE kernel32 = ::GetModuleHandle(L"kernel32.dll"); HMODULE kernel32_from_address = base::GetModuleFromAddress(reinterpret_cast(kernel32) + 1); EXPECT_EQ(kernel32, kernel32_from_address); } TEST(ProcessMemoryTest, EnableLFH) { ASSERT_TRUE(base::EnableLowFragmentationHeap()); if (IsDebuggerPresent()) { // Under these conditions, LFH can't be enabled. There's no point to test // anything. const char* no_debug_env = getenv("_NO_DEBUG_HEAP"); if (!no_debug_env || strcmp(no_debug_env, "1")) return; } HMODULE kernel32 = GetModuleHandle(L"kernel32.dll"); ASSERT_TRUE(kernel32 != NULL); HeapQueryFn heap_query = reinterpret_cast(GetProcAddress( kernel32, "HeapQueryInformation")); // On Windows 2000, the function is not exported. This is not a reason to // fail but we won't be able to retrieves information about the heap, so we // should stop here. if (heap_query == NULL) return; HANDLE heaps[1024] = { 0 }; unsigned number_heaps = GetProcessHeaps(1024, heaps); EXPECT_GT(number_heaps, 0u); for (unsigned i = 0; i < number_heaps; ++i) { ULONG flag = 0; SIZE_T length; ASSERT_NE(0, heap_query(heaps[i], HeapCompatibilityInformation, &flag, sizeof(flag), &length)); // If flag is 0, the heap is a standard heap that does not support // look-asides. If flag is 1, the heap supports look-asides. If flag is 2, // the heap is a low-fragmentation heap (LFH). Note that look-asides are not // supported on the LFH. // We don't have any documented way of querying the HEAP_NO_SERIALIZE flag. EXPECT_LE(flag, 2u); EXPECT_NE(flag, 1u); } } #endif // defined(OS_WIN) #if defined(OS_MACOSX) // For the following Mac tests: // Note that base::EnableTerminationOnHeapCorruption() is called as part of // test suite setup and does not need to be done again, else mach_override // will fail. #if !defined(ADDRESS_SANITIZER) // The following code tests the system implementation of malloc() thus no need // to test it under AddressSanitizer. TEST(ProcessMemoryTest, MacMallocFailureDoesNotTerminate) { // Test that ENOMEM doesn't crash via CrMallocErrorBreak two ways: the exit // code and lack of the error string. The number of bytes is one less than // MALLOC_ABSOLUTE_MAX_SIZE, more than which the system early-returns NULL and // does not call through malloc_error_break(). See the comment at // EnableTerminationOnOutOfMemory() for more information. void* buf = NULL; ASSERT_EXIT( { base::EnableTerminationOnOutOfMemory(); buf = malloc(std::numeric_limits::max() - (2 * PAGE_SIZE) - 1); }, testing::KilledBySignal(SIGTRAP), "\\*\\*\\* error: can't allocate region.*\\n?.*"); base::debug::Alias(buf); } #endif // !defined(ADDRESS_SANITIZER) TEST(ProcessMemoryTest, MacTerminateOnHeapCorruption) { // Assert that freeing an unallocated pointer will crash the process. char buf[9]; asm("" : "=r" (buf)); // Prevent clang from being too smart. #if ARCH_CPU_64_BITS // On 64 bit Macs, the malloc system automatically abort()s on heap corruption // but does not output anything. ASSERT_DEATH(free(buf), ""); #elif defined(ADDRESS_SANITIZER) // AddressSanitizer replaces malloc() and prints a different error message on // heap corruption. ASSERT_DEATH(free(buf), "attempting free on address which " "was not malloc\\(\\)-ed"); #else ASSERT_DEATH(free(buf), "being freed.*\\n?\\.*" "\\*\\*\\* set a breakpoint in malloc_error_break to debug.*\\n?.*" "Terminating process due to a potential for future heap corruption"); #endif // ARCH_CPU_64_BITS || defined(ADDRESS_SANITIZER) } #endif // defined(OS_MACOSX) // Android doesn't implement set_new_handler, so we can't use the // OutOfMemoryTest cases. // OpenBSD does not support these tests either. // TODO(vandebo) make this work on Windows too. #if !defined(OS_ANDROID) && !defined(OS_OPENBSD) && \ !defined(OS_WIN) #if defined(USE_TCMALLOC) extern "C" { int tc_set_new_mode(int mode); } #endif // defined(USE_TCMALLOC) class OutOfMemoryTest : public testing::Test { public: OutOfMemoryTest() : value_(NULL), // Make test size as large as possible minus a few pages so // that alignment or other rounding doesn't make it wrap. test_size_(std::numeric_limits::max() - 12 * 1024), signed_test_size_(std::numeric_limits::max()) { } #if defined(USE_TCMALLOC) virtual void SetUp() OVERRIDE { tc_set_new_mode(1); } virtual void TearDown() OVERRIDE { tc_set_new_mode(0); } #endif // defined(USE_TCMALLOC) protected: void* value_; size_t test_size_; ssize_t signed_test_size_; }; class OutOfMemoryDeathTest : public OutOfMemoryTest { public: void SetUpInDeathAssert() { // Must call EnableTerminationOnOutOfMemory() because that is called from // chrome's main function and therefore hasn't been called yet. // Since this call may result in another thread being created and death // tests shouldn't be started in a multithread environment, this call // should be done inside of the ASSERT_DEATH. base::EnableTerminationOnOutOfMemory(); } }; TEST_F(OutOfMemoryDeathTest, New) { ASSERT_DEATH({ SetUpInDeathAssert(); value_ = operator new(test_size_); }, ""); } TEST_F(OutOfMemoryDeathTest, NewArray) { ASSERT_DEATH({ SetUpInDeathAssert(); value_ = new char[test_size_]; }, ""); } TEST_F(OutOfMemoryDeathTest, Malloc) { ASSERT_DEATH({ SetUpInDeathAssert(); value_ = malloc(test_size_); }, ""); } TEST_F(OutOfMemoryDeathTest, Realloc) { ASSERT_DEATH({ SetUpInDeathAssert(); value_ = realloc(NULL, test_size_); }, ""); } TEST_F(OutOfMemoryDeathTest, Calloc) { ASSERT_DEATH({ SetUpInDeathAssert(); value_ = calloc(1024, test_size_ / 1024L); }, ""); } TEST_F(OutOfMemoryDeathTest, Valloc) { ASSERT_DEATH({ SetUpInDeathAssert(); value_ = valloc(test_size_); }, ""); } #if defined(OS_LINUX) #if PVALLOC_AVAILABLE == 1 TEST_F(OutOfMemoryDeathTest, Pvalloc) { ASSERT_DEATH({ SetUpInDeathAssert(); value_ = pvalloc(test_size_); }, ""); } #endif // PVALLOC_AVAILABLE == 1 TEST_F(OutOfMemoryDeathTest, Memalign) { ASSERT_DEATH({ SetUpInDeathAssert(); value_ = memalign(4, test_size_); }, ""); } TEST_F(OutOfMemoryDeathTest, ViaSharedLibraries) { // This tests that the run-time symbol resolution is overriding malloc for // shared libraries (including libc itself) as well as for our code. std::string format = base::StringPrintf("%%%zud", test_size_); char *value = NULL; ASSERT_DEATH({ SetUpInDeathAssert(); EXPECT_EQ(-1, asprintf(&value, format.c_str(), 0)); }, ""); } #endif // OS_LINUX // Android doesn't implement posix_memalign(). #if defined(OS_POSIX) && !defined(OS_ANDROID) TEST_F(OutOfMemoryDeathTest, Posix_memalign) { // Grab the return value of posix_memalign to silence a compiler warning // about unused return values. We don't actually care about the return // value, since we're asserting death. ASSERT_DEATH({ SetUpInDeathAssert(); EXPECT_EQ(ENOMEM, posix_memalign(&value_, 8, test_size_)); }, ""); } #endif // defined(OS_POSIX) && !defined(OS_ANDROID) #if defined(OS_MACOSX) // Purgeable zone tests TEST_F(OutOfMemoryDeathTest, MallocPurgeable) { malloc_zone_t* zone = malloc_default_purgeable_zone(); ASSERT_DEATH({ SetUpInDeathAssert(); value_ = malloc_zone_malloc(zone, test_size_); }, ""); } TEST_F(OutOfMemoryDeathTest, ReallocPurgeable) { malloc_zone_t* zone = malloc_default_purgeable_zone(); ASSERT_DEATH({ SetUpInDeathAssert(); value_ = malloc_zone_realloc(zone, NULL, test_size_); }, ""); } TEST_F(OutOfMemoryDeathTest, CallocPurgeable) { malloc_zone_t* zone = malloc_default_purgeable_zone(); ASSERT_DEATH({ SetUpInDeathAssert(); value_ = malloc_zone_calloc(zone, 1024, test_size_ / 1024L); }, ""); } TEST_F(OutOfMemoryDeathTest, VallocPurgeable) { malloc_zone_t* zone = malloc_default_purgeable_zone(); ASSERT_DEATH({ SetUpInDeathAssert(); value_ = malloc_zone_valloc(zone, test_size_); }, ""); } TEST_F(OutOfMemoryDeathTest, PosixMemalignPurgeable) { malloc_zone_t* zone = malloc_default_purgeable_zone(); ASSERT_DEATH({ SetUpInDeathAssert(); value_ = malloc_zone_memalign(zone, 8, test_size_); }, ""); } // Since these allocation functions take a signed size, it's possible that // calling them just once won't be enough to exhaust memory. In the 32-bit // environment, it's likely that these allocation attempts will fail because // not enough contiguous address space is available. In the 64-bit environment, // it's likely that they'll fail because they would require a preposterous // amount of (virtual) memory. TEST_F(OutOfMemoryDeathTest, CFAllocatorSystemDefault) { ASSERT_DEATH({ SetUpInDeathAssert(); while ((value_ = base::AllocateViaCFAllocatorSystemDefault(signed_test_size_))) {} }, ""); } TEST_F(OutOfMemoryDeathTest, CFAllocatorMalloc) { ASSERT_DEATH({ SetUpInDeathAssert(); while ((value_ = base::AllocateViaCFAllocatorMalloc(signed_test_size_))) {} }, ""); } TEST_F(OutOfMemoryDeathTest, CFAllocatorMallocZone) { ASSERT_DEATH({ SetUpInDeathAssert(); while ((value_ = base::AllocateViaCFAllocatorMallocZone(signed_test_size_))) {} }, ""); } #if !defined(ARCH_CPU_64_BITS) // See process_util_unittest_mac.mm for an explanation of why this test isn't // run in the 64-bit environment. TEST_F(OutOfMemoryDeathTest, PsychoticallyBigObjCObject) { ASSERT_DEATH({ SetUpInDeathAssert(); while ((value_ = base::AllocatePsychoticallyBigObjCObject())) {} }, ""); } #endif // !ARCH_CPU_64_BITS #endif // OS_MACOSX class OutOfMemoryHandledTest : public OutOfMemoryTest { public: static const size_t kSafeMallocSize = 512; static const size_t kSafeCallocSize = 128; static const size_t kSafeCallocItems = 4; virtual void SetUp() { OutOfMemoryTest::SetUp(); // We enable termination on OOM - just as Chrome does at early // initialization - and test that UncheckedMalloc and UncheckedCalloc // properly by-pass this in order to allow the caller to handle OOM. base::EnableTerminationOnOutOfMemory(); } }; // TODO(b.kelemen): make UncheckedMalloc and UncheckedCalloc work // on Windows as well. // UncheckedMalloc() and UncheckedCalloc() work as regular malloc()/calloc() // under sanitizer tools. #if !defined(MEMORY_TOOL_REPLACES_ALLOCATOR) TEST_F(OutOfMemoryHandledTest, UncheckedMalloc) { EXPECT_TRUE(base::UncheckedMalloc(kSafeMallocSize, &value_)); EXPECT_TRUE(value_ != NULL); free(value_); EXPECT_FALSE(base::UncheckedMalloc(test_size_, &value_)); EXPECT_TRUE(value_ == NULL); } TEST_F(OutOfMemoryHandledTest, UncheckedCalloc) { EXPECT_TRUE(base::UncheckedCalloc(1, kSafeMallocSize, &value_)); EXPECT_TRUE(value_ != NULL); const char* bytes = static_cast(value_); for (size_t i = 0; i < kSafeMallocSize; ++i) EXPECT_EQ(0, bytes[i]); free(value_); EXPECT_TRUE( base::UncheckedCalloc(kSafeCallocItems, kSafeCallocSize, &value_)); EXPECT_TRUE(value_ != NULL); bytes = static_cast(value_); for (size_t i = 0; i < (kSafeCallocItems * kSafeCallocSize); ++i) EXPECT_EQ(0, bytes[i]); free(value_); EXPECT_FALSE(base::UncheckedCalloc(1, test_size_, &value_)); EXPECT_TRUE(value_ == NULL); } #endif // !defined(MEMORY_TOOL_REPLACES_ALLOCATOR) #endif // !defined(OS_ANDROID) && !defined(OS_OPENBSD) && !defined(OS_WIN)