// Copyright 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process/process.h" #include #include #include #include #include "base/files/scoped_file.h" #include "base/logging.h" #include "base/posix/eintr_wrapper.h" #include "base/process/kill.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "build/build_config.h" #if defined(OS_MACOSX) #include #endif namespace { #if !defined(OS_NACL_NONSFI) bool WaitpidWithTimeout(base::ProcessHandle handle, int* status, base::TimeDelta wait) { // This POSIX version of this function only guarantees that we wait no less // than |wait| for the process to exit. The child process may // exit sometime before the timeout has ended but we may still block for up // to 256 milliseconds after the fact. // // waitpid() has no direct support on POSIX for specifying a timeout, you can // either ask it to block indefinitely or return immediately (WNOHANG). // When a child process terminates a SIGCHLD signal is sent to the parent. // Catching this signal would involve installing a signal handler which may // affect other parts of the application and would be difficult to debug. // // Our strategy is to call waitpid() once up front to check if the process // has already exited, otherwise to loop for |wait|, sleeping for // at most 256 milliseconds each time using usleep() and then calling // waitpid(). The amount of time we sleep starts out at 1 milliseconds, and // we double it every 4 sleep cycles. // // usleep() is speced to exit if a signal is received for which a handler // has been installed. This means that when a SIGCHLD is sent, it will exit // depending on behavior external to this function. // // This function is used primarily for unit tests, if we want to use it in // the application itself it would probably be best to examine other routes. if (wait == base::TimeDelta::Max()) { return HANDLE_EINTR(waitpid(handle, status, 0)) > 0; } pid_t ret_pid = HANDLE_EINTR(waitpid(handle, status, WNOHANG)); static const int64_t kMaxSleepInMicroseconds = 1 << 18; // ~256 milliseconds. int64_t max_sleep_time_usecs = 1 << 10; // ~1 milliseconds. int64_t double_sleep_time = 0; // If the process hasn't exited yet, then sleep and try again. base::TimeTicks wakeup_time = base::TimeTicks::Now() + wait; while (ret_pid == 0) { base::TimeTicks now = base::TimeTicks::Now(); if (now > wakeup_time) break; // Guaranteed to be non-negative! int64_t sleep_time_usecs = (wakeup_time - now).InMicroseconds(); // Sleep for a bit while we wait for the process to finish. if (sleep_time_usecs > max_sleep_time_usecs) sleep_time_usecs = max_sleep_time_usecs; // usleep() will return 0 and set errno to EINTR on receipt of a signal // such as SIGCHLD. usleep(sleep_time_usecs); ret_pid = HANDLE_EINTR(waitpid(handle, status, WNOHANG)); if ((max_sleep_time_usecs < kMaxSleepInMicroseconds) && (double_sleep_time++ % 4 == 0)) { max_sleep_time_usecs *= 2; } } return ret_pid > 0; } #if defined(OS_MACOSX) // Using kqueue on Mac so that we can wait on non-child processes. // We can't use kqueues on child processes because we need to reap // our own children using wait. static bool WaitForSingleNonChildProcess(base::ProcessHandle handle, base::TimeDelta wait) { DCHECK_GT(handle, 0); DCHECK_GT(wait, base::TimeDelta()); base::ScopedFD kq(kqueue()); if (!kq.is_valid()) { DPLOG(ERROR) << "kqueue"; return false; } struct kevent change = {0}; EV_SET(&change, handle, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL); int result = HANDLE_EINTR(kevent(kq.get(), &change, 1, NULL, 0, NULL)); if (result == -1) { if (errno == ESRCH) { // If the process wasn't found, it must be dead. return true; } DPLOG(ERROR) << "kevent (setup " << handle << ")"; return false; } // Keep track of the elapsed time to be able to restart kevent if it's // interrupted. bool wait_forever = (wait == base::TimeDelta::Max()); base::TimeDelta remaining_delta; base::TimeTicks deadline; if (!wait_forever) { remaining_delta = wait; deadline = base::TimeTicks::Now() + remaining_delta; } result = -1; struct kevent event = {0}; while (wait_forever || remaining_delta > base::TimeDelta()) { struct timespec remaining_timespec; struct timespec* remaining_timespec_ptr; if (wait_forever) { remaining_timespec_ptr = NULL; } else { remaining_timespec = remaining_delta.ToTimeSpec(); remaining_timespec_ptr = &remaining_timespec; } result = kevent(kq.get(), NULL, 0, &event, 1, remaining_timespec_ptr); if (result == -1 && errno == EINTR) { if (!wait_forever) { remaining_delta = deadline - base::TimeTicks::Now(); } result = 0; } else { break; } } if (result < 0) { DPLOG(ERROR) << "kevent (wait " << handle << ")"; return false; } else if (result > 1) { DLOG(ERROR) << "kevent (wait " << handle << "): unexpected result " << result; return false; } else if (result == 0) { // Timed out. return false; } DCHECK_EQ(result, 1); if (event.filter != EVFILT_PROC || (event.fflags & NOTE_EXIT) == 0 || event.ident != static_cast(handle)) { DLOG(ERROR) << "kevent (wait " << handle << "): unexpected event: filter=" << event.filter << ", fflags=" << event.fflags << ", ident=" << event.ident; return false; } return true; } #endif // OS_MACOSX bool WaitForExitWithTimeoutImpl(base::ProcessHandle handle, int* exit_code, base::TimeDelta timeout) { base::ProcessHandle parent_pid = base::GetParentProcessId(handle); base::ProcessHandle our_pid = base::GetCurrentProcessHandle(); if (parent_pid != our_pid) { #if defined(OS_MACOSX) // On Mac we can wait on non child processes. return WaitForSingleNonChildProcess(handle, timeout); #else // Currently on Linux we can't handle non child processes. NOTIMPLEMENTED(); #endif // OS_MACOSX } int status; if (!WaitpidWithTimeout(handle, &status, timeout)) return false; if (WIFSIGNALED(status)) { if (exit_code) *exit_code = -1; return true; } if (WIFEXITED(status)) { if (exit_code) *exit_code = WEXITSTATUS(status); return true; } return false; } #endif // !defined(OS_NACL_NONSFI) } // namespace namespace base { Process::Process(ProcessHandle handle) : process_(handle) { } Process::~Process() { } Process::Process(Process&& other) : process_(other.process_) { other.Close(); } Process& Process::operator=(Process&& other) { DCHECK_NE(this, &other); process_ = other.process_; other.Close(); return *this; } // static Process Process::Current() { return Process(GetCurrentProcessHandle()); } // static Process Process::Open(ProcessId pid) { if (pid == GetCurrentProcId()) return Current(); // On POSIX process handles are the same as PIDs. return Process(pid); } // static Process Process::OpenWithExtraPrivileges(ProcessId pid) { // On POSIX there are no privileges to set. return Open(pid); } // static Process Process::DeprecatedGetProcessFromHandle(ProcessHandle handle) { DCHECK_NE(handle, GetCurrentProcessHandle()); return Process(handle); } #if !defined(OS_LINUX) // static bool Process::CanBackgroundProcesses() { return false; } #endif // !defined(OS_LINUX) bool Process::IsValid() const { return process_ != kNullProcessHandle; } ProcessHandle Process::Handle() const { return process_; } Process Process::Duplicate() const { if (is_current()) return Current(); return Process(process_); } ProcessId Process::Pid() const { DCHECK(IsValid()); return GetProcId(process_); } bool Process::is_current() const { return process_ == GetCurrentProcessHandle(); } void Process::Close() { process_ = kNullProcessHandle; // if the process wasn't terminated (so we waited) or the state // wasn't already collected w/ a wait from process_utils, we're gonna // end up w/ a zombie when it does finally exit. } #if !defined(OS_NACL_NONSFI) bool Process::Terminate(int exit_code, bool wait) const { // exit_code isn't supportable. DCHECK(IsValid()); CHECK_GT(process_, 0); bool result = kill(process_, SIGTERM) == 0; if (result && wait) { int tries = 60; if (RunningOnValgrind()) { // Wait for some extra time when running under Valgrind since the child // processes may take some time doing leak checking. tries *= 2; } unsigned sleep_ms = 4; // The process may not end immediately due to pending I/O bool exited = false; while (tries-- > 0) { pid_t pid = HANDLE_EINTR(waitpid(process_, NULL, WNOHANG)); if (pid == process_) { exited = true; break; } if (pid == -1) { if (errno == ECHILD) { // The wait may fail with ECHILD if another process also waited for // the same pid, causing the process state to get cleaned up. exited = true; break; } DPLOG(ERROR) << "Error waiting for process " << process_; } usleep(sleep_ms * 1000); const unsigned kMaxSleepMs = 1000; if (sleep_ms < kMaxSleepMs) sleep_ms *= 2; } // If we're waiting and the child hasn't died by now, force it // with a SIGKILL. if (!exited) result = kill(process_, SIGKILL) == 0; } if (!result) DPLOG(ERROR) << "Unable to terminate process " << process_; return result; } #endif // !defined(OS_NACL_NONSFI) bool Process::WaitForExit(int* exit_code) { return WaitForExitWithTimeout(TimeDelta::Max(), exit_code); } bool Process::WaitForExitWithTimeout(TimeDelta timeout, int* exit_code) { return WaitForExitWithTimeoutImpl(Handle(), exit_code, timeout); } #if !defined(OS_LINUX) bool Process::IsProcessBackgrounded() const { // See SetProcessBackgrounded(). DCHECK(IsValid()); return false; } bool Process::SetProcessBackgrounded(bool value) { // Not implemented for POSIX systems other than Linux. With POSIX, if we were // to lower the process priority we wouldn't be able to raise it back to its // initial priority. NOTIMPLEMENTED(); return false; } #endif // !defined(OS_LINUX) int Process::GetPriority() const { DCHECK(IsValid()); return getpriority(PRIO_PROCESS, process_); } } // namespace base