// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process_util.h" #include #include #include #include #include #include #include #include #include #include #include "base/file_util.h" #include "base/logging.h" #include "base/string_tokenizer.h" #include "base/string_util.h" namespace { enum ParsingState { KEY_NAME, KEY_VALUE }; // Reads /proc//stat and populates |proc_stats| with the values split by // spaces. void GetProcStats(pid_t pid, std::vector* proc_stats) { FilePath stat_file("/proc"); stat_file = stat_file.Append(IntToString(pid)); stat_file = stat_file.Append("stat"); std::string mem_stats; if (!file_util::ReadFileToString(stat_file, &mem_stats)) return; SplitString(mem_stats, ' ', proc_stats); } } // namespace namespace base { ProcessId GetParentProcessId(ProcessHandle process) { FilePath stat_file("/proc"); stat_file = stat_file.Append(IntToString(process)); stat_file = stat_file.Append("status"); std::string status; if (!file_util::ReadFileToString(stat_file, &status)) return -1; StringTokenizer tokenizer(status, ":\n"); ParsingState state = KEY_NAME; std::string last_key_name; while (tokenizer.GetNext()) { switch (state) { case KEY_NAME: last_key_name = tokenizer.token(); state = KEY_VALUE; break; case KEY_VALUE: DCHECK(!last_key_name.empty()); if (last_key_name == "PPid") { pid_t ppid = StringToInt(tokenizer.token()); return ppid; } state = KEY_NAME; break; } } NOTREACHED(); return -1; } FilePath GetProcessExecutablePath(ProcessHandle process) { FilePath stat_file("/proc"); stat_file = stat_file.Append(IntToString(process)); stat_file = stat_file.Append("exe"); char exename[2048]; ssize_t len = readlink(stat_file.value().c_str(), exename, sizeof(exename)); if (len < 1) { // No such process. Happens frequently in e.g. TerminateAllChromeProcesses return FilePath(); } return FilePath(std::string(exename, len)); } NamedProcessIterator::NamedProcessIterator(const std::wstring& executable_name, const ProcessFilter* filter) : executable_name_(executable_name), filter_(filter) { procfs_dir_ = opendir("/proc"); } NamedProcessIterator::~NamedProcessIterator() { if (procfs_dir_) { closedir(procfs_dir_); procfs_dir_ = NULL; } } const ProcessEntry* NamedProcessIterator::NextProcessEntry() { bool result = false; do { result = CheckForNextProcess(); } while (result && !IncludeEntry()); if (result) return &entry_; return NULL; } bool NamedProcessIterator::CheckForNextProcess() { // TODO(port): skip processes owned by different UID dirent* slot = 0; const char* openparen; const char* closeparen; // Arbitrarily guess that there will never be more than 200 non-process // files in /proc. Hardy has 53. int skipped = 0; const int kSkipLimit = 200; while (skipped < kSkipLimit) { slot = readdir(procfs_dir_); // all done looking through /proc? if (!slot) return false; // If not a process, keep looking for one. bool notprocess = false; int i; for (i = 0; i < NAME_MAX && slot->d_name[i]; ++i) { if (!isdigit(slot->d_name[i])) { notprocess = true; break; } } if (i == NAME_MAX || notprocess) { skipped++; continue; } // Read the process's status. char buf[NAME_MAX + 12]; sprintf(buf, "/proc/%s/stat", slot->d_name); FILE *fp = fopen(buf, "r"); if (!fp) return false; const char* result = fgets(buf, sizeof(buf), fp); fclose(fp); if (!result) return false; // Parse the status. It is formatted like this: // %d (%s) %c %d ... // pid (name) runstate ppid // To avoid being fooled by names containing a closing paren, scan // backwards. openparen = strchr(buf, '('); closeparen = strrchr(buf, ')'); if (!openparen || !closeparen) return false; char runstate = closeparen[2]; // Is the process in 'Zombie' state, i.e. dead but waiting to be reaped? // Allowed values: D R S T Z if (runstate != 'Z') break; // Nope, it's a zombie; somebody isn't cleaning up after their children. // (e.g. WaitForProcessesToExit doesn't clean up after dead children yet.) // There could be a lot of zombies, can't really decrement i here. } if (skipped >= kSkipLimit) { NOTREACHED(); return false; } entry_.pid = atoi(slot->d_name); entry_.ppid = atoi(closeparen + 3); // TODO(port): read pid's commandline's $0, like killall does. Using the // short name between openparen and closeparen won't work for long names! int len = closeparen - openparen - 1; if (len > NAME_MAX) len = NAME_MAX; memcpy(entry_.szExeFile, openparen + 1, len); entry_.szExeFile[len] = 0; return true; } bool NamedProcessIterator::IncludeEntry() { // TODO(port): make this also work for non-ASCII filenames if (WideToASCII(executable_name_) != entry_.szExeFile) return false; if (!filter_) return true; return filter_->Includes(entry_.pid, entry_.ppid); } // On linux, we return vsize. size_t ProcessMetrics::GetPagefileUsage() const { std::vector proc_stats; GetProcStats(process_, &proc_stats); const size_t kVmSize = 22; if (proc_stats.size() > kVmSize) return static_cast(StringToInt(proc_stats[kVmSize])); return 0; } // On linux, we return the high water mark of vsize. size_t ProcessMetrics::GetPeakPagefileUsage() const { std::vector proc_stats; GetProcStats(process_, &proc_stats); const size_t kVmPeak = 21; if (proc_stats.size() > kVmPeak) return static_cast(StringToInt(proc_stats[kVmPeak])); return 0; } // On linux, we return RSS. size_t ProcessMetrics::GetWorkingSetSize() const { std::vector proc_stats; GetProcStats(process_, &proc_stats); const size_t kVmRss = 23; if (proc_stats.size() > kVmRss) { size_t num_pages = static_cast(StringToInt(proc_stats[kVmRss])); return num_pages * getpagesize(); } return 0; } // On linux, we return the high water mark of RSS. size_t ProcessMetrics::GetPeakWorkingSetSize() const { std::vector proc_stats; GetProcStats(process_, &proc_stats); const size_t kVmHwm = 23; if (proc_stats.size() > kVmHwm) { size_t num_pages = static_cast(StringToInt(proc_stats[kVmHwm])); return num_pages * getpagesize(); } return 0; } size_t ProcessMetrics::GetPrivateBytes() const { WorkingSetKBytes ws_usage; GetWorkingSetKBytes(&ws_usage); return ws_usage.priv << 10; } // Private and Shared working set sizes are obtained from /proc//smaps. // When that's not available, use the values from /proc/statm as a // close approximation. // See http://www.pixelbeat.org/scripts/ps_mem.py bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const { FilePath stat_file = FilePath("/proc").Append(IntToString(process_)).Append("smaps"); std::string smaps; int private_kb = 0; int pss_kb = 0; bool have_pss = false; if (file_util::ReadFileToString(stat_file, &smaps) && smaps.length() > 0) { StringTokenizer tokenizer(smaps, ":\n"); ParsingState state = KEY_NAME; std::string last_key_name; while (tokenizer.GetNext()) { switch (state) { case KEY_NAME: last_key_name = tokenizer.token(); state = KEY_VALUE; break; case KEY_VALUE: if (last_key_name.empty()) { NOTREACHED(); return false; } if (StartsWithASCII(last_key_name, "Private_", 1)) { private_kb += StringToInt(tokenizer.token()); } else if (StartsWithASCII(last_key_name, "Pss", 1)) { have_pss = true; pss_kb += StringToInt(tokenizer.token()); } state = KEY_NAME; break; } } } else { // Try statm if smaps is empty because of the SUID sandbox. // First we need to get the page size though. int page_size_kb = sysconf(_SC_PAGE_SIZE) / 1024; if (page_size_kb <= 0) return false; stat_file = FilePath("/proc").Append(IntToString(process_)).Append("statm"); std::string statm; if (!file_util::ReadFileToString(stat_file, &statm) || statm.length() == 0) return false; std::vector statm_vec; SplitString(statm, ' ', &statm_vec); if (statm_vec.size() != 7) return false; // Not the format we expect. private_kb = StringToInt(statm_vec[1]) - StringToInt(statm_vec[2]); private_kb *= page_size_kb; } ws_usage->priv = private_kb; // Sharable is not calculated, as it does not provide interesting data. ws_usage->shareable = 0; ws_usage->shared = 0; if (have_pss) ws_usage->shared = pss_kb; return true; } // To have /proc/self/io file you must enable CONFIG_TASK_IO_ACCOUNTING // in your kernel configuration. bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const { std::string proc_io_contents; FilePath io_file("/proc"); io_file = io_file.Append(IntToString(process_)); io_file = io_file.Append("io"); if (!file_util::ReadFileToString(io_file, &proc_io_contents)) return false; (*io_counters).OtherOperationCount = 0; (*io_counters).OtherTransferCount = 0; StringTokenizer tokenizer(proc_io_contents, ": \n"); ParsingState state = KEY_NAME; std::string last_key_name; while (tokenizer.GetNext()) { switch (state) { case KEY_NAME: last_key_name = tokenizer.token(); state = KEY_VALUE; break; case KEY_VALUE: DCHECK(!last_key_name.empty()); if (last_key_name == "syscr") { (*io_counters).ReadOperationCount = StringToInt64(tokenizer.token()); } else if (last_key_name == "syscw") { (*io_counters).WriteOperationCount = StringToInt64(tokenizer.token()); } else if (last_key_name == "rchar") { (*io_counters).ReadTransferCount = StringToInt64(tokenizer.token()); } else if (last_key_name == "wchar") { (*io_counters).WriteTransferCount = StringToInt64(tokenizer.token()); } state = KEY_NAME; break; } } return true; } // Exposed for testing. int ParseProcStatCPU(const std::string& input) { // /proc//stat contains the process name in parens. In case the // process name itself contains parens, skip past them. std::string::size_type rparen = input.rfind(')'); if (rparen == std::string::npos) return -1; // From here, we expect a bunch of space-separated fields, where the // 0-indexed 11th and 12th are utime and stime. On two different machines // I found 42 and 39 fields, so let's just expect the ones we need. std::vector fields; SplitString(input.substr(rparen + 2), ' ', &fields); if (fields.size() < 13) return -1; // Output not in the format we expect. return StringToInt(fields[11]) + StringToInt(fields[12]); } // Get the total CPU of a single process. Return value is number of jiffies // on success or -1 on error. static int GetProcessCPU(pid_t pid) { // Use /proc//task to find all threads and parse their /stat file. FilePath path = FilePath(StringPrintf("/proc/%d/task/", pid)); DIR* dir = opendir(path.value().c_str()); if (!dir) { PLOG(ERROR) << "opendir(" << path.value() << ")"; return -1; } int total_cpu = 0; while (struct dirent* ent = readdir(dir)) { if (ent->d_name[0] == '.') continue; FilePath stat_path = path.AppendASCII(ent->d_name).AppendASCII("stat"); std::string stat; if (file_util::ReadFileToString(stat_path, &stat)) { int cpu = ParseProcStatCPU(stat); if (cpu > 0) total_cpu += cpu; } } closedir(dir); return total_cpu; } int ProcessMetrics::GetCPUUsage() { // This queries the /proc-specific scaling factor which is // conceptually the system hertz. To dump this value on another // system, try // od -t dL /proc/self/auxv // and look for the number after 17 in the output; mine is // 0000040 17 100 3 134512692 // which means the answer is 100. // It may be the case that this value is always 100. static const int kHertz = sysconf(_SC_CLK_TCK); struct timeval now; int retval = gettimeofday(&now, NULL); if (retval) return 0; int64 time = TimeValToMicroseconds(now); if (last_time_ == 0) { // First call, just set the last values. last_time_ = time; last_cpu_ = GetProcessCPU(process_); return 0; } int64 time_delta = time - last_time_; DCHECK_NE(time_delta, 0); if (time_delta == 0) return 0; int cpu = GetProcessCPU(process_); // We have the number of jiffies in the time period. Convert to percentage. // Note this means we will go *over* 100 in the case where multiple threads // are together adding to more than one CPU's worth. int percentage = 100 * (cpu - last_cpu_) / (kHertz * TimeDelta::FromMicroseconds(time_delta).InSecondsF()); last_time_ = time; last_cpu_ = cpu; return percentage; } namespace { // The format of /proc/meminfo is: // // MemTotal: 8235324 kB // MemFree: 1628304 kB // Buffers: 429596 kB // Cached: 4728232 kB // ... const size_t kMemTotalIndex = 1; const size_t kMemFreeIndex = 4; const size_t kMemBuffersIndex = 7; const size_t kMemCacheIndex = 10; } // namespace size_t GetSystemCommitCharge() { // Used memory is: total - free - buffers - caches FilePath meminfo_file("/proc/meminfo"); std::string meminfo_data; if (!file_util::ReadFileToString(meminfo_file, &meminfo_data)) { LOG(WARNING) << "Failed to open /proc/meminfo."; return 0; } std::vector meminfo_fields; SplitStringAlongWhitespace(meminfo_data, &meminfo_fields); if (meminfo_fields.size() < kMemCacheIndex) { LOG(WARNING) << "Failed to parse /proc/meminfo. Only found " << meminfo_fields.size() << " fields."; return 0; } DCHECK_EQ(meminfo_fields[kMemTotalIndex-1], "MemTotal:"); DCHECK_EQ(meminfo_fields[kMemFreeIndex-1], "MemFree:"); DCHECK_EQ(meminfo_fields[kMemBuffersIndex-1], "Buffers:"); DCHECK_EQ(meminfo_fields[kMemCacheIndex-1], "Cached:"); size_t result_in_kb; result_in_kb = StringToInt(meminfo_fields[kMemTotalIndex]); result_in_kb -= StringToInt(meminfo_fields[kMemFreeIndex]); result_in_kb -= StringToInt(meminfo_fields[kMemBuffersIndex]); result_in_kb -= StringToInt(meminfo_fields[kMemCacheIndex]); return result_in_kb; } namespace { void OnNoMemorySize(size_t size) { if (size != 0) CHECK(false) << "Out of memory, size = " << size; CHECK(false) << "Out of memory."; } void OnNoMemory() { OnNoMemorySize(0); } } // namespace extern "C" { #if defined(LINUX_USE_TCMALLOC) int tc_set_new_mode(int mode); #else // defined(LINUX_USE_TCMALLOC) typedef void* (*malloc_type)(size_t size); typedef void* (*valloc_type)(size_t size); typedef void* (*pvalloc_type)(size_t size); typedef void* (*calloc_type)(size_t nmemb, size_t size); typedef void* (*realloc_type)(void *ptr, size_t size); typedef void* (*memalign_type)(size_t boundary, size_t size); typedef int (*posix_memalign_type)(void **memptr, size_t alignment, size_t size); // Override the __libc_FOO name too. #define DIE_ON_OOM_1(function_name) \ _DIE_ON_OOM_1(function_name##_type, function_name) \ _DIE_ON_OOM_1(function_name##_type, __libc_##function_name) #define DIE_ON_OOM_2(function_name, arg1_type) \ _DIE_ON_OOM_2(function_name##_type, function_name, arg1_type) \ _DIE_ON_OOM_2(function_name##_type, __libc_##function_name, arg1_type) // posix_memalign doesn't have a __libc_ variant. #define DIE_ON_OOM_3INT(function_name) \ _DIE_ON_OOM_3INT(function_name##_type, function_name) #define _DIE_ON_OOM_1(function_type, function_name) \ void* function_name(size_t size) { \ static function_type original_function = \ reinterpret_cast(dlsym(RTLD_NEXT, #function_name)); \ void* ret = original_function(size); \ if (ret == NULL && size != 0) \ OnNoMemorySize(size); \ return ret; \ } #define _DIE_ON_OOM_2(function_type, function_name, arg1_type) \ void* function_name(arg1_type arg1, size_t size) { \ static function_type original_function = \ reinterpret_cast(dlsym(RTLD_NEXT, #function_name)); \ void* ret = original_function(arg1, size); \ if (ret == NULL && size != 0) \ OnNoMemorySize(size); \ return ret; \ } #define _DIE_ON_OOM_3INT(function_type, function_name) \ int function_name(void** ptr, size_t alignment, size_t size) { \ static function_type original_function = \ reinterpret_cast(dlsym(RTLD_NEXT, #function_name)); \ int ret = original_function(ptr, alignment, size); \ if (ret == ENOMEM) \ OnNoMemorySize(size); \ return ret; \ } DIE_ON_OOM_1(malloc) DIE_ON_OOM_1(valloc) DIE_ON_OOM_1(pvalloc) DIE_ON_OOM_2(calloc, size_t) DIE_ON_OOM_2(realloc, void*) DIE_ON_OOM_2(memalign, size_t) DIE_ON_OOM_3INT(posix_memalign) #endif // defined(LINUX_USE_TCMALLOC) } // extern C void EnableTerminationOnOutOfMemory() { // Set the new-out of memory handler. std::set_new_handler(&OnNoMemory); // If we're using glibc's allocator, the above functions will override // malloc and friends and make them die on out of memory. #if defined(LINUX_USE_TCMALLOC) // For tcmalloc, we just need to tell it to behave like new. tc_set_new_mode(1); #endif } } // namespace base