// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process_util.h" #import #include #include #include #include #include #include #include #include #include #include #import #include #include #include #include #include #include #include #include #include #include "base/debug/debugger.h" #include "base/eintr_wrapper.h" #include "base/file_util.h" #include "base/hash_tables.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/mac/mac_util.h" #include "base/string_util.h" #include "base/sys_info.h" #include "base/threading/thread_local.h" #include "third_party/apple_apsl/CFBase.h" #include "third_party/apple_apsl/malloc.h" #include "third_party/mach_override/mach_override.h" namespace base { void RestoreDefaultExceptionHandler() { // This function is tailored to remove the Breakpad exception handler. // exception_mask matches s_exception_mask in // breakpad/src/client/mac/handler/exception_handler.cc const exception_mask_t exception_mask = EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION | EXC_MASK_ARITHMETIC | EXC_MASK_BREAKPOINT; // Setting the exception port to MACH_PORT_NULL may not be entirely // kosher to restore the default exception handler, but in practice, // it results in the exception port being set to Apple Crash Reporter, // the desired behavior. task_set_exception_ports(mach_task_self(), exception_mask, MACH_PORT_NULL, EXCEPTION_DEFAULT, THREAD_STATE_NONE); } ProcessIterator::ProcessIterator(const ProcessFilter* filter) : index_of_kinfo_proc_(0), filter_(filter) { // Get a snapshot of all of my processes (yes, as we loop it can go stale, but // but trying to find where we were in a constantly changing list is basically // impossible. int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_UID, geteuid() }; // Since more processes could start between when we get the size and when // we get the list, we do a loop to keep trying until we get it. bool done = false; int try_num = 1; const int max_tries = 10; do { // Get the size of the buffer size_t len = 0; if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) < 0) { DLOG(ERROR) << "failed to get the size needed for the process list"; kinfo_procs_.resize(0); done = true; } else { size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc); // Leave some spare room for process table growth (more could show up // between when we check and now) num_of_kinfo_proc += 16; kinfo_procs_.resize(num_of_kinfo_proc); len = num_of_kinfo_proc * sizeof(struct kinfo_proc); // Load the list of processes if (sysctl(mib, arraysize(mib), &kinfo_procs_[0], &len, NULL, 0) < 0) { // If we get a mem error, it just means we need a bigger buffer, so // loop around again. Anything else is a real error and give up. if (errno != ENOMEM) { DLOG(ERROR) << "failed to get the process list"; kinfo_procs_.resize(0); done = true; } } else { // Got the list, just make sure we're sized exactly right size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc); kinfo_procs_.resize(num_of_kinfo_proc); done = true; } } } while (!done && (try_num++ < max_tries)); if (!done) { DLOG(ERROR) << "failed to collect the process list in a few tries"; kinfo_procs_.resize(0); } } ProcessIterator::~ProcessIterator() { } bool ProcessIterator::CheckForNextProcess() { std::string data; for (; index_of_kinfo_proc_ < kinfo_procs_.size(); ++index_of_kinfo_proc_) { kinfo_proc& kinfo = kinfo_procs_[index_of_kinfo_proc_]; // Skip processes just awaiting collection if ((kinfo.kp_proc.p_pid > 0) && (kinfo.kp_proc.p_stat == SZOMB)) continue; int mib[] = { CTL_KERN, KERN_PROCARGS, kinfo.kp_proc.p_pid }; // Find out what size buffer we need. size_t data_len = 0; if (sysctl(mib, arraysize(mib), NULL, &data_len, NULL, 0) < 0) { DVPLOG(1) << "failed to figure out the buffer size for a commandline"; continue; } data.resize(data_len); if (sysctl(mib, arraysize(mib), &data[0], &data_len, NULL, 0) < 0) { DVPLOG(1) << "failed to fetch a commandline"; continue; } // |data| contains all the command line parameters of the process, separated // by blocks of one or more null characters. We tokenize |data| into a // vector of strings using '\0' as a delimiter and populate // |entry_.cmd_line_args_|. std::string delimiters; delimiters.push_back('\0'); Tokenize(data, delimiters, &entry_.cmd_line_args_); // |data| starts with the full executable path followed by a null character. // We search for the first instance of '\0' and extract everything before it // to populate |entry_.exe_file_|. size_t exec_name_end = data.find('\0'); if (exec_name_end == std::string::npos) { DLOG(ERROR) << "command line data didn't match expected format"; continue; } entry_.pid_ = kinfo.kp_proc.p_pid; entry_.ppid_ = kinfo.kp_eproc.e_ppid; entry_.gid_ = kinfo.kp_eproc.e_pgid; size_t last_slash = data.rfind('/', exec_name_end); if (last_slash == std::string::npos) entry_.exe_file_.assign(data, 0, exec_name_end); else entry_.exe_file_.assign(data, last_slash + 1, exec_name_end - last_slash - 1); // Start w/ the next entry next time through ++index_of_kinfo_proc_; // Done return true; } return false; } bool NamedProcessIterator::IncludeEntry() { return (executable_name_ == entry().exe_file() && ProcessIterator::IncludeEntry()); } // ------------------------------------------------------------------------ // NOTE: about ProcessMetrics // // Getting a mach task from a pid for another process requires permissions in // general, so there doesn't really seem to be a way to do these (and spinning // up ps to fetch each stats seems dangerous to put in a base api for anyone to // call). Child processes ipc their port, so return something if available, // otherwise return 0. // ProcessMetrics::ProcessMetrics(ProcessHandle process, ProcessMetrics::PortProvider* port_provider) : process_(process), last_time_(0), last_system_time_(0), port_provider_(port_provider) { processor_count_ = SysInfo::NumberOfProcessors(); } // static ProcessMetrics* ProcessMetrics::CreateProcessMetrics( ProcessHandle process, ProcessMetrics::PortProvider* port_provider) { return new ProcessMetrics(process, port_provider); } bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const { return false; } static bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) { if (task == MACH_PORT_NULL) return false; mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT; kern_return_t kr = task_info(task, TASK_BASIC_INFO_64, reinterpret_cast(task_info_data), &count); // Most likely cause for failure: |task| is a zombie. return kr == KERN_SUCCESS; } size_t ProcessMetrics::GetPagefileUsage() const { task_basic_info_64 task_info_data; if (!GetTaskInfo(TaskForPid(process_), &task_info_data)) return 0; return task_info_data.virtual_size; } size_t ProcessMetrics::GetPeakPagefileUsage() const { return 0; } size_t ProcessMetrics::GetWorkingSetSize() const { task_basic_info_64 task_info_data; if (!GetTaskInfo(TaskForPid(process_), &task_info_data)) return 0; return task_info_data.resident_size; } size_t ProcessMetrics::GetPeakWorkingSetSize() const { return 0; } static bool GetCPUTypeForProcess(pid_t pid, cpu_type_t* cpu_type) { size_t len = sizeof(*cpu_type); int result = sysctlbyname("sysctl.proc_cputype", cpu_type, &len, NULL, 0); if (result != 0) { DPLOG(ERROR) << "sysctlbyname(""sysctl.proc_cputype"")"; return false; } return true; } static bool IsAddressInSharedRegion(mach_vm_address_t addr, cpu_type_t type) { if (type == CPU_TYPE_I386) return addr >= SHARED_REGION_BASE_I386 && addr < (SHARED_REGION_BASE_I386 + SHARED_REGION_SIZE_I386); else if (type == CPU_TYPE_X86_64) return addr >= SHARED_REGION_BASE_X86_64 && addr < (SHARED_REGION_BASE_X86_64 + SHARED_REGION_SIZE_X86_64); else return false; } // This is a rough approximation of the algorithm that libtop uses. // private_bytes is the size of private resident memory. // shared_bytes is the size of shared resident memory. bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes, size_t* shared_bytes) { kern_return_t kr; size_t private_pages_count = 0; size_t shared_pages_count = 0; if (!private_bytes && !shared_bytes) return true; mach_port_t task = TaskForPid(process_); if (task == MACH_PORT_NULL) { DLOG(ERROR) << "Invalid process"; return false; } cpu_type_t cpu_type; if (!GetCPUTypeForProcess(process_, &cpu_type)) return false; // The same region can be referenced multiple times. To avoid double counting // we need to keep track of which regions we've already counted. base::hash_set seen_objects; // We iterate through each VM region in the task's address map. For shared // memory we add up all the pages that are marked as shared. Like libtop we // try to avoid counting pages that are also referenced by other tasks. Since // we don't have access to the VM regions of other tasks the only hint we have // is if the address is in the shared region area. // // Private memory is much simpler. We simply count the pages that are marked // as private or copy on write (COW). // // See libtop_update_vm_regions in // http://www.opensource.apple.com/source/top/top-67/libtop.c mach_vm_size_t size = 0; for (mach_vm_address_t address = MACH_VM_MIN_ADDRESS;; address += size) { vm_region_top_info_data_t info; mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT; mach_port_t object_name; kr = mach_vm_region(task, &address, &size, VM_REGION_TOP_INFO, (vm_region_info_t)&info, &info_count, &object_name); if (kr == KERN_INVALID_ADDRESS) { // We're at the end of the address space. break; } else if (kr != KERN_SUCCESS) { DLOG(ERROR) << "Calling mach_vm_region failed with error: " << mach_error_string(kr); return false; } if (IsAddressInSharedRegion(address, cpu_type) && info.share_mode != SM_PRIVATE) continue; if (info.share_mode == SM_COW && info.ref_count == 1) info.share_mode = SM_PRIVATE; switch (info.share_mode) { case SM_PRIVATE: private_pages_count += info.private_pages_resident; private_pages_count += info.shared_pages_resident; break; case SM_COW: private_pages_count += info.private_pages_resident; // Fall through case SM_SHARED: if (seen_objects.count(info.obj_id) == 0) { // Only count the first reference to this region. seen_objects.insert(info.obj_id); shared_pages_count += info.shared_pages_resident; } break; default: break; } } vm_size_t page_size; kr = host_page_size(task, &page_size); if (kr != KERN_SUCCESS) { DLOG(ERROR) << "Failed to fetch host page size, error: " << mach_error_string(kr); return false; } if (private_bytes) *private_bytes = private_pages_count * page_size; if (shared_bytes) *shared_bytes = shared_pages_count * page_size; return true; } void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const { } bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const { size_t priv = GetWorkingSetSize(); if (!priv) return false; ws_usage->priv = priv / 1024; ws_usage->shareable = 0; ws_usage->shared = 0; return true; } #define TIME_VALUE_TO_TIMEVAL(a, r) do { \ (r)->tv_sec = (a)->seconds; \ (r)->tv_usec = (a)->microseconds; \ } while (0) double ProcessMetrics::GetCPUUsage() { mach_port_t task = TaskForPid(process_); if (task == MACH_PORT_NULL) return 0; kern_return_t kr; // Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage() // in libtop.c), but this is more concise and gives the same results: task_thread_times_info thread_info_data; mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT; kr = task_info(task, TASK_THREAD_TIMES_INFO, reinterpret_cast(&thread_info_data), &thread_info_count); if (kr != KERN_SUCCESS) { // Most likely cause: |task| is a zombie. return 0; } task_basic_info_64 task_info_data; if (!GetTaskInfo(task, &task_info_data)) return 0; /* Set total_time. */ // thread info contains live time... struct timeval user_timeval, system_timeval, task_timeval; TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval); TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval); timeradd(&user_timeval, &system_timeval, &task_timeval); // ... task info contains terminated time. TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval); TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval); timeradd(&user_timeval, &task_timeval, &task_timeval); timeradd(&system_timeval, &task_timeval, &task_timeval); struct timeval now; int retval = gettimeofday(&now, NULL); if (retval) return 0; int64 time = TimeValToMicroseconds(now); int64 task_time = TimeValToMicroseconds(task_timeval); if ((last_system_time_ == 0) || (last_time_ == 0)) { // First call, just set the last values. last_system_time_ = task_time; last_time_ = time; return 0; } int64 system_time_delta = task_time - last_system_time_; int64 time_delta = time - last_time_; DCHECK_NE(0U, time_delta); if (time_delta == 0) return 0; // We add time_delta / 2 so the result is rounded. double cpu = static_cast((system_time_delta * 100.0) / time_delta); last_system_time_ = task_time; last_time_ = time; return cpu; } mach_port_t ProcessMetrics::TaskForPid(ProcessHandle process) const { mach_port_t task = MACH_PORT_NULL; if (port_provider_) task = port_provider_->TaskForPid(process_); if (task == MACH_PORT_NULL && process_ == getpid()) task = mach_task_self(); return task; } // ------------------------------------------------------------------------ // Bytes committed by the system. size_t GetSystemCommitCharge() { host_name_port_t host = mach_host_self(); mach_msg_type_number_t count = HOST_VM_INFO_COUNT; vm_statistics_data_t data; kern_return_t kr = host_statistics(host, HOST_VM_INFO, reinterpret_cast(&data), &count); if (kr) { DLOG(WARNING) << "Failed to fetch host statistics."; return 0; } vm_size_t page_size; kr = host_page_size(host, &page_size); if (kr) { DLOG(ERROR) << "Failed to fetch host page size."; return 0; } return (data.active_count * page_size) / 1024; } namespace { // Finds the library path for malloc() and thus the libC part of libSystem, // which in Lion is in a separate image. const char* LookUpLibCPath() { const void* addr = reinterpret_cast(&malloc); Dl_info info; if (dladdr(addr, &info)) return info.dli_fname; DLOG(WARNING) << "Could not find image path for malloc()"; return NULL; } typedef void(*malloc_error_break_t)(void); malloc_error_break_t g_original_malloc_error_break = NULL; // Returns the function pointer for malloc_error_break. This symbol is declared // as __private_extern__ and cannot be dlsym()ed. Instead, use nlist() to // get it. malloc_error_break_t LookUpMallocErrorBreak() { #if ARCH_CPU_32_BITS const char* lib_c_path = LookUpLibCPath(); if (!lib_c_path) return NULL; // Only need to look up two symbols, but nlist() requires a NULL-terminated // array and takes no count. struct nlist nl[3]; bzero(&nl, sizeof(nl)); // The symbol to find. nl[0].n_un.n_name = const_cast("_malloc_error_break"); // A reference symbol by which the address of the desired symbol will be // calculated. nl[1].n_un.n_name = const_cast("_malloc"); int rv = nlist(lib_c_path, nl); if (rv != 0 || nl[0].n_type == N_UNDF || nl[1].n_type == N_UNDF) { return NULL; } // nlist() returns addresses as offsets in the image, not the instruction // pointer in memory. Use the known in-memory address of malloc() // to compute the offset for malloc_error_break(). uintptr_t reference_addr = reinterpret_cast(&malloc); reference_addr -= nl[1].n_value; reference_addr += nl[0].n_value; return reinterpret_cast(reference_addr); #endif // ARCH_CPU_32_BITS return NULL; } // Simple scoper that saves the current value of errno, resets it to 0, and on // destruction puts the old value back. This is so that CrMallocErrorBreak can // safely test errno free from the effects of other routines. class ScopedClearErrno { public: ScopedClearErrno() : old_errno_(errno) { errno = 0; } ~ScopedClearErrno() { if (errno == 0) errno = old_errno_; } private: int old_errno_; DISALLOW_COPY_AND_ASSIGN(ScopedClearErrno); }; // Combines ThreadLocalBoolean with AutoReset. It would be convenient // to compose ThreadLocalPointer with AutoReset, but that // would require allocating some storage for the bool. class ThreadLocalBooleanAutoReset { public: ThreadLocalBooleanAutoReset(ThreadLocalBoolean* tlb, bool new_value) : scoped_tlb_(tlb), original_value_(tlb->Get()) { scoped_tlb_->Set(new_value); } ~ThreadLocalBooleanAutoReset() { scoped_tlb_->Set(original_value_); } private: ThreadLocalBoolean* scoped_tlb_; bool original_value_; DISALLOW_COPY_AND_ASSIGN(ThreadLocalBooleanAutoReset); }; base::LazyInstance::Leaky g_unchecked_malloc = LAZY_INSTANCE_INITIALIZER; void CrMallocErrorBreak() { g_original_malloc_error_break(); // Out of memory is certainly not heap corruption, and not necessarily // something for which the process should be terminated. Leave that decision // to the OOM killer. The EBADF case comes up because the malloc library // attempts to log to ASL (syslog) before calling this code, which fails // accessing a Unix-domain socket because of sandboxing. if (errno == ENOMEM || (errno == EBADF && g_unchecked_malloc.Get().Get())) return; // A unit test checks this error message, so it needs to be in release builds. PLOG(ERROR) << "Terminating process due to a potential for future heap corruption"; // Crash by writing to NULL+errno to allow analyzing errno from // crash dump info (setting a breakpad key would re-enter the malloc // library). Max documented errno in intro(2) is actually 102, but // it really just needs to be "small" to stay on the right vm page. const int kMaxErrno = 256; char* volatile death_ptr = NULL; death_ptr += std::min(errno, kMaxErrno); *death_ptr = '!'; } } // namespace void EnableTerminationOnHeapCorruption() { #ifdef ADDRESS_SANITIZER // Don't do anything special on heap corruption, because it should be handled // by AddressSanitizer. return; #endif malloc_error_break_t malloc_error_break = LookUpMallocErrorBreak(); if (!malloc_error_break) { DLOG(WARNING) << "Could not find malloc_error_break"; return; } mach_error_t err = mach_override_ptr( (void*)malloc_error_break, (void*)&CrMallocErrorBreak, (void**)&g_original_malloc_error_break); if (err != err_none) DLOG(WARNING) << "Could not override malloc_error_break; error = " << err; } // ------------------------------------------------------------------------ namespace { bool g_oom_killer_enabled; // === C malloc/calloc/valloc/realloc/posix_memalign === typedef void* (*malloc_type)(struct _malloc_zone_t* zone, size_t size); typedef void* (*calloc_type)(struct _malloc_zone_t* zone, size_t num_items, size_t size); typedef void* (*valloc_type)(struct _malloc_zone_t* zone, size_t size); typedef void (*free_type)(struct _malloc_zone_t* zone, void* ptr); typedef void* (*realloc_type)(struct _malloc_zone_t* zone, void* ptr, size_t size); typedef void* (*memalign_type)(struct _malloc_zone_t* zone, size_t alignment, size_t size); malloc_type g_old_malloc; calloc_type g_old_calloc; valloc_type g_old_valloc; free_type g_old_free; realloc_type g_old_realloc; memalign_type g_old_memalign; malloc_type g_old_malloc_purgeable; calloc_type g_old_calloc_purgeable; valloc_type g_old_valloc_purgeable; free_type g_old_free_purgeable; realloc_type g_old_realloc_purgeable; memalign_type g_old_memalign_purgeable; void* oom_killer_malloc(struct _malloc_zone_t* zone, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_malloc(zone, size); if (!result && size) debug::BreakDebugger(); return result; } void* oom_killer_calloc(struct _malloc_zone_t* zone, size_t num_items, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_calloc(zone, num_items, size); if (!result && num_items && size) debug::BreakDebugger(); return result; } void* oom_killer_valloc(struct _malloc_zone_t* zone, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_valloc(zone, size); if (!result && size) debug::BreakDebugger(); return result; } void oom_killer_free(struct _malloc_zone_t* zone, void* ptr) { ScopedClearErrno clear_errno; g_old_free(zone, ptr); } void* oom_killer_realloc(struct _malloc_zone_t* zone, void* ptr, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_realloc(zone, ptr, size); if (!result && size) debug::BreakDebugger(); return result; } void* oom_killer_memalign(struct _malloc_zone_t* zone, size_t alignment, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_memalign(zone, alignment, size); // Only die if posix_memalign would have returned ENOMEM, since there are // other reasons why NULL might be returned (see // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ). if (!result && size && alignment >= sizeof(void*) && (alignment & (alignment - 1)) == 0) { debug::BreakDebugger(); } return result; } void* oom_killer_malloc_purgeable(struct _malloc_zone_t* zone, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_malloc_purgeable(zone, size); if (!result && size) debug::BreakDebugger(); return result; } void* oom_killer_calloc_purgeable(struct _malloc_zone_t* zone, size_t num_items, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_calloc_purgeable(zone, num_items, size); if (!result && num_items && size) debug::BreakDebugger(); return result; } void* oom_killer_valloc_purgeable(struct _malloc_zone_t* zone, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_valloc_purgeable(zone, size); if (!result && size) debug::BreakDebugger(); return result; } void oom_killer_free_purgeable(struct _malloc_zone_t* zone, void* ptr) { ScopedClearErrno clear_errno; g_old_free_purgeable(zone, ptr); } void* oom_killer_realloc_purgeable(struct _malloc_zone_t* zone, void* ptr, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_realloc_purgeable(zone, ptr, size); if (!result && size) debug::BreakDebugger(); return result; } void* oom_killer_memalign_purgeable(struct _malloc_zone_t* zone, size_t alignment, size_t size) { ScopedClearErrno clear_errno; void* result = g_old_memalign_purgeable(zone, alignment, size); // Only die if posix_memalign would have returned ENOMEM, since there are // other reasons why NULL might be returned (see // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ). if (!result && size && alignment >= sizeof(void*) && (alignment & (alignment - 1)) == 0) { debug::BreakDebugger(); } return result; } // === C++ operator new === void oom_killer_new() { debug::BreakDebugger(); } // === Core Foundation CFAllocators === bool CanGetContextForCFAllocator() { return !base::mac:: IsOSDangerouslyLaterThanMountainLionForUseByCFAllocatorReplacement(); } CFAllocatorContext* ContextForCFAllocator(CFAllocatorRef allocator) { if (base::mac::IsOSSnowLeopard()) { ChromeCFAllocatorLeopards* our_allocator = const_cast( reinterpret_cast(allocator)); return &our_allocator->_context; } else if (base::mac::IsOSLion() || base::mac::IsOSMountainLion()) { ChromeCFAllocatorLions* our_allocator = const_cast( reinterpret_cast(allocator)); return &our_allocator->_context; } else { return NULL; } } CFAllocatorAllocateCallBack g_old_cfallocator_system_default; CFAllocatorAllocateCallBack g_old_cfallocator_malloc; CFAllocatorAllocateCallBack g_old_cfallocator_malloc_zone; void* oom_killer_cfallocator_system_default(CFIndex alloc_size, CFOptionFlags hint, void* info) { void* result = g_old_cfallocator_system_default(alloc_size, hint, info); if (!result) debug::BreakDebugger(); return result; } void* oom_killer_cfallocator_malloc(CFIndex alloc_size, CFOptionFlags hint, void* info) { void* result = g_old_cfallocator_malloc(alloc_size, hint, info); if (!result) debug::BreakDebugger(); return result; } void* oom_killer_cfallocator_malloc_zone(CFIndex alloc_size, CFOptionFlags hint, void* info) { void* result = g_old_cfallocator_malloc_zone(alloc_size, hint, info); if (!result) debug::BreakDebugger(); return result; } // === Cocoa NSObject allocation === typedef id (*allocWithZone_t)(id, SEL, NSZone*); allocWithZone_t g_old_allocWithZone; id oom_killer_allocWithZone(id self, SEL _cmd, NSZone* zone) { id result = g_old_allocWithZone(self, _cmd, zone); if (!result) debug::BreakDebugger(); return result; } } // namespace void* UncheckedMalloc(size_t size) { if (g_old_malloc) { ScopedClearErrno clear_errno; ThreadLocalBooleanAutoReset flag(g_unchecked_malloc.Pointer(), true); return g_old_malloc(malloc_default_zone(), size); } return malloc(size); } void EnableTerminationOnOutOfMemory() { if (g_oom_killer_enabled) return; g_oom_killer_enabled = true; // === C malloc/calloc/valloc/realloc/posix_memalign === // This approach is not perfect, as requests for amounts of memory larger than // MALLOC_ABSOLUTE_MAX_SIZE (currently SIZE_T_MAX - (2 * PAGE_SIZE)) will // still fail with a NULL rather than dying (see // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c for details). // Unfortunately, it's the best we can do. Also note that this does not affect // allocations from non-default zones. CHECK(!g_old_malloc && !g_old_calloc && !g_old_valloc && !g_old_realloc && !g_old_memalign) << "Old allocators unexpectedly non-null"; CHECK(!g_old_malloc_purgeable && !g_old_calloc_purgeable && !g_old_valloc_purgeable && !g_old_realloc_purgeable && !g_old_memalign_purgeable) << "Old allocators unexpectedly non-null"; #if !defined(ADDRESS_SANITIZER) // Don't do anything special on OOM for the malloc zones replaced by // AddressSanitizer, as modifying or protecting them may not work correctly. // See http://trac.webkit.org/changeset/53362/trunk/Tools/DumpRenderTree/mac bool zone_allocators_protected = base::mac::IsOSLionOrLater(); ChromeMallocZone* default_zone = reinterpret_cast(malloc_default_zone()); ChromeMallocZone* purgeable_zone = reinterpret_cast(malloc_default_purgeable_zone()); vm_address_t page_start_default = 0; vm_address_t page_start_purgeable = 0; vm_size_t len_default = 0; vm_size_t len_purgeable = 0; if (zone_allocators_protected) { page_start_default = reinterpret_cast(default_zone) & static_cast(~(getpagesize() - 1)); len_default = reinterpret_cast(default_zone) - page_start_default + sizeof(ChromeMallocZone); mprotect(reinterpret_cast(page_start_default), len_default, PROT_READ | PROT_WRITE); if (purgeable_zone) { page_start_purgeable = reinterpret_cast(purgeable_zone) & static_cast(~(getpagesize() - 1)); len_purgeable = reinterpret_cast(purgeable_zone) - page_start_purgeable + sizeof(ChromeMallocZone); mprotect(reinterpret_cast(page_start_purgeable), len_purgeable, PROT_READ | PROT_WRITE); } } // Default zone g_old_malloc = default_zone->malloc; g_old_calloc = default_zone->calloc; g_old_valloc = default_zone->valloc; g_old_free = default_zone->free; g_old_realloc = default_zone->realloc; CHECK(g_old_malloc && g_old_calloc && g_old_valloc && g_old_free && g_old_realloc) << "Failed to get system allocation functions."; default_zone->malloc = oom_killer_malloc; default_zone->calloc = oom_killer_calloc; default_zone->valloc = oom_killer_valloc; default_zone->free = oom_killer_free; default_zone->realloc = oom_killer_realloc; if (default_zone->version >= 5) { g_old_memalign = default_zone->memalign; if (g_old_memalign) default_zone->memalign = oom_killer_memalign; } // Purgeable zone (if it exists) if (purgeable_zone) { g_old_malloc_purgeable = purgeable_zone->malloc; g_old_calloc_purgeable = purgeable_zone->calloc; g_old_valloc_purgeable = purgeable_zone->valloc; g_old_free_purgeable = purgeable_zone->free; g_old_realloc_purgeable = purgeable_zone->realloc; CHECK(g_old_malloc_purgeable && g_old_calloc_purgeable && g_old_valloc_purgeable && g_old_free_purgeable && g_old_realloc_purgeable) << "Failed to get system allocation functions."; purgeable_zone->malloc = oom_killer_malloc_purgeable; purgeable_zone->calloc = oom_killer_calloc_purgeable; purgeable_zone->valloc = oom_killer_valloc_purgeable; purgeable_zone->free = oom_killer_free_purgeable; purgeable_zone->realloc = oom_killer_realloc_purgeable; if (purgeable_zone->version >= 5) { g_old_memalign_purgeable = purgeable_zone->memalign; if (g_old_memalign_purgeable) purgeable_zone->memalign = oom_killer_memalign_purgeable; } } if (zone_allocators_protected) { mprotect(reinterpret_cast(page_start_default), len_default, PROT_READ); if (purgeable_zone) { mprotect(reinterpret_cast(page_start_purgeable), len_purgeable, PROT_READ); } } #endif // === C malloc_zone_batch_malloc === // batch_malloc is omitted because the default malloc zone's implementation // only supports batch_malloc for "tiny" allocations from the free list. It // will fail for allocations larger than "tiny", and will only allocate as // many blocks as it's able to from the free list. These factors mean that it // can return less than the requested memory even in a non-out-of-memory // situation. There's no good way to detect whether a batch_malloc failure is // due to these other factors, or due to genuine memory or address space // exhaustion. The fact that it only allocates space from the "tiny" free list // means that it's likely that a failure will not be due to memory exhaustion. // Similarly, these constraints on batch_malloc mean that callers must always // be expecting to receive less memory than was requested, even in situations // where memory pressure is not a concern. Finally, the only public interface // to batch_malloc is malloc_zone_batch_malloc, which is specific to the // system's malloc implementation. It's unlikely that anyone's even heard of // it. // === C++ operator new === // Yes, operator new does call through to malloc, but this will catch failures // that our imperfect handling of malloc cannot. std::set_new_handler(oom_killer_new); #ifndef ADDRESS_SANITIZER // === Core Foundation CFAllocators === // This will not catch allocation done by custom allocators, but will catch // all allocation done by system-provided ones. CHECK(!g_old_cfallocator_system_default && !g_old_cfallocator_malloc && !g_old_cfallocator_malloc_zone) << "Old allocators unexpectedly non-null"; bool cf_allocator_internals_known = CanGetContextForCFAllocator(); if (cf_allocator_internals_known) { CFAllocatorContext* context = ContextForCFAllocator(kCFAllocatorSystemDefault); CHECK(context) << "Failed to get context for kCFAllocatorSystemDefault."; g_old_cfallocator_system_default = context->allocate; CHECK(g_old_cfallocator_system_default) << "Failed to get kCFAllocatorSystemDefault allocation function."; context->allocate = oom_killer_cfallocator_system_default; context = ContextForCFAllocator(kCFAllocatorMalloc); CHECK(context) << "Failed to get context for kCFAllocatorMalloc."; g_old_cfallocator_malloc = context->allocate; CHECK(g_old_cfallocator_malloc) << "Failed to get kCFAllocatorMalloc allocation function."; context->allocate = oom_killer_cfallocator_malloc; context = ContextForCFAllocator(kCFAllocatorMallocZone); CHECK(context) << "Failed to get context for kCFAllocatorMallocZone."; g_old_cfallocator_malloc_zone = context->allocate; CHECK(g_old_cfallocator_malloc_zone) << "Failed to get kCFAllocatorMallocZone allocation function."; context->allocate = oom_killer_cfallocator_malloc_zone; } else { NSLog(@"Internals of CFAllocator not known; out-of-memory failures via " "CFAllocator will not result in termination. http://crbug.com/45650"); } #endif // === Cocoa NSObject allocation === // Note that both +[NSObject new] and +[NSObject alloc] call through to // +[NSObject allocWithZone:]. CHECK(!g_old_allocWithZone) << "Old allocator unexpectedly non-null"; Class nsobject_class = [NSObject class]; Method orig_method = class_getClassMethod(nsobject_class, @selector(allocWithZone:)); g_old_allocWithZone = reinterpret_cast( method_getImplementation(orig_method)); CHECK(g_old_allocWithZone) << "Failed to get allocWithZone allocation function."; method_setImplementation(orig_method, reinterpret_cast(oom_killer_allocWithZone)); } ProcessId GetParentProcessId(ProcessHandle process) { struct kinfo_proc info; size_t length = sizeof(struct kinfo_proc); int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process }; if (sysctl(mib, 4, &info, &length, NULL, 0) < 0) { DPLOG(ERROR) << "sysctl"; return -1; } if (length == 0) return -1; return info.kp_eproc.e_ppid; } namespace { const int kWaitBeforeKillSeconds = 2; // Reap |child| process. This call blocks until completion. void BlockingReap(pid_t child) { const pid_t result = HANDLE_EINTR(waitpid(child, NULL, 0)); if (result == -1) { DPLOG(ERROR) << "waitpid(" << child << ", NULL, 0)"; } } // Waits for |timeout| seconds for the given |child| to exit and reap it. If // the child doesn't exit within the time specified, kills it. // // This function takes two approaches: first, it tries to use kqueue to // observe when the process exits. kevent can monitor a kqueue with a // timeout, so this method is preferred to wait for a specified period of // time. Once the kqueue indicates the process has exited, waitpid will reap // the exited child. If the kqueue doesn't provide an exit event notification, // before the timeout expires, or if the kqueue fails or misbehaves, the // process will be mercilessly killed and reaped. // // A child process passed to this function may be in one of several states: // running, terminated and not yet reaped, and (apparently, and unfortunately) // terminated and already reaped. Normally, a process will at least have been // asked to exit before this function is called, but this is not required. // If a process is terminating and unreaped, there may be a window between the // time that kqueue will no longer recognize it and when it becomes an actual // zombie that a non-blocking (WNOHANG) waitpid can reap. This condition is // detected when kqueue indicates that the process is not running and a // non-blocking waitpid fails to reap the process but indicates that it is // still running. In this event, a blocking attempt to reap the process // collects the known-dying child, preventing zombies from congregating. // // In the event that the kqueue misbehaves entirely, as it might under a // EMFILE condition ("too many open files", or out of file descriptors), this // function will forcibly kill and reap the child without delay. This // eliminates another potential zombie vector. (If you're out of file // descriptors, you're probably deep into something else, but that doesn't // mean that zombies be allowed to kick you while you're down.) // // The fact that this function seemingly can be called to wait on a child // that's not only already terminated but already reaped is a bit of a // problem: a reaped child's pid can be reclaimed and may refer to a distinct // process in that case. The fact that this function can seemingly be called // to wait on a process that's not even a child is also a problem: kqueue will // work in that case, but waitpid won't, and killing a non-child might not be // the best approach. void WaitForChildToDie(pid_t child, int timeout) { DCHECK(child > 0); DCHECK(timeout > 0); // DON'T ADD ANY EARLY RETURNS TO THIS FUNCTION without ensuring that // |child| has been reaped. Specifically, even if a kqueue, kevent, or other // call fails, this function should fall back to the last resort of trying // to kill and reap the process. Not observing this rule will resurrect // zombies. int result; int kq = HANDLE_EINTR(kqueue()); if (kq == -1) { DPLOG(ERROR) << "kqueue()"; } else { file_util::ScopedFD auto_close_kq(&kq); struct kevent change = {0}; EV_SET(&change, child, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL); result = HANDLE_EINTR(kevent(kq, &change, 1, NULL, 0, NULL)); if (result == -1) { if (errno != ESRCH) { DPLOG(ERROR) << "kevent (setup " << child << ")"; } else { // At this point, one of the following has occurred: // 1. The process has died but has not yet been reaped. // 2. The process has died and has already been reaped. // 3. The process is in the process of dying. It's no longer // kqueueable, but it may not be waitable yet either. Mark calls // this case the "zombie death race". result = HANDLE_EINTR(waitpid(child, NULL, WNOHANG)); if (result != 0) { // A positive result indicates case 1. waitpid succeeded and reaped // the child. A result of -1 indicates case 2. The child has already // been reaped. In both of these cases, no further action is // necessary. return; } // |result| is 0, indicating case 3. The process will be waitable in // short order. Fall back out of the kqueue code to kill it (for good // measure) and reap it. } } else { // Keep track of the elapsed time to be able to restart kevent if it's // interrupted. TimeDelta remaining_delta = TimeDelta::FromSeconds(timeout); Time deadline = Time::Now() + remaining_delta; result = -1; struct kevent event = {0}; while (remaining_delta.InMilliseconds() > 0) { const struct timespec remaining_timespec = remaining_delta.ToTimeSpec(); result = kevent(kq, NULL, 0, &event, 1, &remaining_timespec); if (result == -1 && errno == EINTR) { remaining_delta = deadline - Time::Now(); result = 0; } else { break; } } if (result == -1) { DPLOG(ERROR) << "kevent (wait " << child << ")"; } else if (result > 1) { DLOG(ERROR) << "kevent (wait " << child << "): unexpected result " << result; } else if (result == 1) { if ((event.fflags & NOTE_EXIT) && (event.ident == static_cast(child))) { // The process is dead or dying. This won't block for long, if at // all. BlockingReap(child); return; } else { DLOG(ERROR) << "kevent (wait " << child << "): unexpected event: fflags=" << event.fflags << ", ident=" << event.ident; } } } } // The child is still alive, or is very freshly dead. Be sure by sending it // a signal. This is safe even if it's freshly dead, because it will be a // zombie (or on the way to zombiedom) and kill will return 0 even if the // signal is not delivered to a live process. result = kill(child, SIGKILL); if (result == -1) { DPLOG(ERROR) << "kill(" << child << ", SIGKILL)"; } else { // The child is definitely on the way out now. BlockingReap won't need to // wait for long, if at all. BlockingReap(child); } } } // namespace void EnsureProcessTerminated(ProcessHandle process) { WaitForChildToDie(process, kWaitBeforeKillSeconds); } } // namespace base