// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process_util.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/file_util.h" #include "base/logging.h" #include "base/string_tokenizer.h" #include "base/string_util.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/sys_info.h" #include "base/threading/thread_restrictions.h" namespace base { ProcessId GetParentProcessId(ProcessHandle process) { struct kinfo_proc info; size_t length; int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process, sizeof(struct kinfo_proc), 0 }; if (sysctl(mib, arraysize(mib), NULL, &length, NULL, 0) < 0) return -1; mib[5] = (length / sizeof(struct kinfo_proc)); if (sysctl(mib, arraysize(mib), &info, &length, NULL, 0) < 0) return -1; return info.p_ppid; } FilePath GetProcessExecutablePath(ProcessHandle process) { struct kinfo_proc kp; size_t len; int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process, sizeof(struct kinfo_proc), 0 }; if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) == -1) return FilePath(); mib[5] = (len / sizeof(struct kinfo_proc)); if (sysctl(mib, arraysize(mib), &kp, &len, NULL, 0) < 0) return FilePath(); if ((kp.p_flag & P_SYSTEM) != 0) return FilePath(); if (strcmp(kp.p_comm, "chrome") == 0) return FilePath(kp.p_comm); return FilePath(); } ProcessIterator::ProcessIterator(const ProcessFilter* filter) : index_of_kinfo_proc_(), filter_(filter) { int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_UID, getuid(), sizeof(struct kinfo_proc), 0 }; bool done = false; int try_num = 1; const int max_tries = 10; do { size_t len = 0; if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) < 0) { DLOG(ERROR) << "failed to get the size needed for the process list"; kinfo_procs_.resize(0); done = true; } else { size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc); // Leave some spare room for process table growth (more could show up // between when we check and now) num_of_kinfo_proc += 16; kinfo_procs_.resize(num_of_kinfo_proc); len = num_of_kinfo_proc * sizeof(struct kinfo_proc); if (sysctl(mib, arraysize(mib), &kinfo_procs_[0], &len, NULL, 0) < 0) { // If we get a mem error, it just means we need a bigger buffer, so // loop around again. Anything else is a real error and give up. if (errno != ENOMEM) { DLOG(ERROR) << "failed to get the process list"; kinfo_procs_.resize(0); done = true; } } else { // Got the list, just make sure we're sized exactly right size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc); kinfo_procs_.resize(num_of_kinfo_proc); done = true; } } } while (!done && (try_num++ < max_tries)); if (!done) { DLOG(ERROR) << "failed to collect the process list in a few tries"; kinfo_procs_.resize(0); } } ProcessIterator::~ProcessIterator() { } bool ProcessIterator::CheckForNextProcess() { std::string data; for (; index_of_kinfo_proc_ < kinfo_procs_.size(); ++index_of_kinfo_proc_) { kinfo_proc& kinfo = kinfo_procs_[index_of_kinfo_proc_]; // Skip processes just awaiting collection if ((kinfo.p_pid > 0) && (kinfo.p_stat == SZOMB)) continue; int mib[] = { CTL_KERN, KERN_PROC_ARGS, kinfo.p_pid }; // Find out what size buffer we need. size_t data_len = 0; if (sysctl(mib, arraysize(mib), NULL, &data_len, NULL, 0) < 0) { DVPLOG(1) << "failed to figure out the buffer size for a commandline"; continue; } data.resize(data_len); if (sysctl(mib, arraysize(mib), &data[0], &data_len, NULL, 0) < 0) { DVPLOG(1) << "failed to fetch a commandline"; continue; } // |data| contains all the command line parameters of the process, separated // by blocks of one or more null characters. We tokenize |data| into a // vector of strings using '\0' as a delimiter and populate // |entry_.cmd_line_args_|. std::string delimiters; delimiters.push_back('\0'); Tokenize(data, delimiters, &entry_.cmd_line_args_); // |data| starts with the full executable path followed by a null character. // We search for the first instance of '\0' and extract everything before it // to populate |entry_.exe_file_|. size_t exec_name_end = data.find('\0'); if (exec_name_end == std::string::npos) { DLOG(ERROR) << "command line data didn't match expected format"; continue; } entry_.pid_ = kinfo.p_pid; entry_.ppid_ = kinfo.p_ppid; entry_.gid_ = kinfo.p__pgid; size_t last_slash = data.rfind('/', exec_name_end); if (last_slash == std::string::npos) entry_.exe_file_.assign(data, 0, exec_name_end); else entry_.exe_file_.assign(data, last_slash + 1, exec_name_end - last_slash - 1); // Start w/ the next entry next time through ++index_of_kinfo_proc_; // Done return true; } return false; } bool NamedProcessIterator::IncludeEntry() { return (executable_name_ == entry().exe_file() && ProcessIterator::IncludeEntry()); } ProcessMetrics::ProcessMetrics(ProcessHandle process) : process_(process), last_time_(0), last_system_time_(0), last_cpu_(0) { processor_count_ = base::SysInfo::NumberOfProcessors(); } // static ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) { return new ProcessMetrics(process); } size_t ProcessMetrics::GetPagefileUsage() const { struct kinfo_proc info; size_t length; int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process_, sizeof(struct kinfo_proc), 0 }; if (sysctl(mib, arraysize(mib), NULL, &length, NULL, 0) < 0) return -1; mib[5] = (length / sizeof(struct kinfo_proc)); if (sysctl(mib, arraysize(mib), &info, &length, NULL, 0) < 0) return -1; return (info.p_vm_tsize + info.p_vm_dsize + info.p_vm_ssize); } size_t ProcessMetrics::GetPeakPagefileUsage() const { return 0; } size_t ProcessMetrics::GetWorkingSetSize() const { struct kinfo_proc info; size_t length; int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process_, sizeof(struct kinfo_proc), 0 }; if (sysctl(mib, arraysize(mib), NULL, &length, NULL, 0) < 0) return -1; mib[5] = (length / sizeof(struct kinfo_proc)); if (sysctl(mib, arraysize(mib), &info, &length, NULL, 0) < 0) return -1; return info.p_vm_rssize * getpagesize(); } size_t ProcessMetrics::GetPeakWorkingSetSize() const { return 0; } bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes, size_t* shared_bytes) { WorkingSetKBytes ws_usage; if (!GetWorkingSetKBytes(&ws_usage)) return false; if (private_bytes) *private_bytes = ws_usage.priv << 10; if (shared_bytes) *shared_bytes = ws_usage.shared * 1024; return true; } bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const { // TODO(bapt) be sure we can't be precise size_t priv = GetWorkingSetSize(); if (!priv) return false; ws_usage->priv = priv / 1024; ws_usage->shareable = 0; ws_usage->shared = 0; return true; } bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const { return false; } static int GetProcessCPU(pid_t pid) { struct kinfo_proc info; size_t length; int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, pid, sizeof(struct kinfo_proc), 0 }; if (sysctl(mib, arraysize(mib), NULL, &length, NULL, 0) < 0) return -1; mib[5] = (length / sizeof(struct kinfo_proc)); if (sysctl(mib, arraysize(mib), &info, &length, NULL, 0) < 0) return 0; return info.p_pctcpu; } double ProcessMetrics::GetCPUUsage() { struct timeval now; int retval = gettimeofday(&now, NULL); if (retval) return 0; int64 time = TimeValToMicroseconds(now); if (last_time_ == 0) { // First call, just set the last values. last_time_ = time; last_cpu_ = GetProcessCPU(process_); return 0; } int64 time_delta = time - last_time_; DCHECK_NE(time_delta, 0); if (time_delta == 0) return 0; int cpu = GetProcessCPU(process_); last_time_ = time; last_cpu_ = cpu; double percentage = static_cast((cpu * 100.0) / FSCALE); return percentage; } size_t GetSystemCommitCharge() { int mib[] = { CTL_VM, VM_METER }; int pagesize; struct vmtotal vmtotal; unsigned long mem_total, mem_free, mem_inactive; size_t len = sizeof(vmtotal); if (sysctl(mib, arraysize(mib), &vmtotal, &len, NULL, 0) < 0) return 0; mem_total = vmtotal.t_vm; mem_free = vmtotal.t_free; mem_inactive = vmtotal.t_vm - vmtotal.t_avm; pagesize = getpagesize(); return mem_total - (mem_free*pagesize) - (mem_inactive*pagesize); } void EnableTerminationOnOutOfMemory() { } void EnableTerminationOnHeapCorruption() { } } // namespace base