// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include #include #include #include #include #include "base/command_line.h" #include "base/compiler_specific.h" #include "base/debug_util.h" #include "base/dir_reader_posix.h" #include "base/eintr_wrapper.h" #include "base/logging.h" #include "base/platform_thread.h" #include "base/process_util.h" #include "base/scoped_ptr.h" #include "base/stringprintf.h" #include "base/time.h" #include "base/waitable_event.h" #if defined(OS_MACOSX) #include #define environ (*_NSGetEnviron()) #else extern char** environ; #endif namespace base { namespace { int WaitpidWithTimeout(ProcessHandle handle, int64 wait_milliseconds, bool* success) { // This POSIX version of this function only guarantees that we wait no less // than |wait_milliseconds| for the process to exit. The child process may // exit sometime before the timeout has ended but we may still block for up // to 256 milliseconds after the fact. // // waitpid() has no direct support on POSIX for specifying a timeout, you can // either ask it to block indefinitely or return immediately (WNOHANG). // When a child process terminates a SIGCHLD signal is sent to the parent. // Catching this signal would involve installing a signal handler which may // affect other parts of the application and would be difficult to debug. // // Our strategy is to call waitpid() once up front to check if the process // has already exited, otherwise to loop for wait_milliseconds, sleeping for // at most 256 milliseconds each time using usleep() and then calling // waitpid(). The amount of time we sleep starts out at 1 milliseconds, and // we double it every 4 sleep cycles. // // usleep() is speced to exit if a signal is received for which a handler // has been installed. This means that when a SIGCHLD is sent, it will exit // depending on behavior external to this function. // // This function is used primarily for unit tests, if we want to use it in // the application itself it would probably be best to examine other routes. int status = -1; pid_t ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG)); static const int64 kMaxSleepInMicroseconds = 1 << 18; // ~256 milliseconds. int64 max_sleep_time_usecs = 1 << 10; // ~1 milliseconds. int64 double_sleep_time = 0; // If the process hasn't exited yet, then sleep and try again. Time wakeup_time = Time::Now() + TimeDelta::FromMilliseconds(wait_milliseconds); while (ret_pid == 0) { Time now = Time::Now(); if (now > wakeup_time) break; // Guaranteed to be non-negative! int64 sleep_time_usecs = (wakeup_time - now).InMicroseconds(); // Sleep for a bit while we wait for the process to finish. if (sleep_time_usecs > max_sleep_time_usecs) sleep_time_usecs = max_sleep_time_usecs; // usleep() will return 0 and set errno to EINTR on receipt of a signal // such as SIGCHLD. usleep(sleep_time_usecs); ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG)); if ((max_sleep_time_usecs < kMaxSleepInMicroseconds) && (double_sleep_time++ % 4 == 0)) { max_sleep_time_usecs *= 2; } } if (success) *success = (ret_pid != -1); return status; } void StackDumpSignalHandler(int signal) { LOG(ERROR) << "Received signal " << signal; StackTrace().PrintBacktrace(); _exit(1); } void ResetChildSignalHandlersToDefaults() { // The previous signal handlers are likely to be meaningless in the child's // context so we reset them to the defaults for now. http://crbug.com/44953 // These signal handlers are setup in browser_main.cc:BrowserMain signal(SIGTERM, SIG_DFL); signal(SIGHUP, SIG_DFL); signal(SIGINT, SIG_DFL); } } // anonymous namespace ProcessId GetCurrentProcId() { return getpid(); } ProcessHandle GetCurrentProcessHandle() { return GetCurrentProcId(); } bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle) { // On Posix platforms, process handles are the same as PIDs, so we // don't need to do anything. *handle = pid; return true; } bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle) { // On POSIX permissions are checked for each operation on process, // not when opening a "handle". return OpenProcessHandle(pid, handle); } bool OpenProcessHandleWithAccess(ProcessId pid, uint32 access_flags, ProcessHandle* handle) { // On POSIX permissions are checked for each operation on process, // not when opening a "handle". return OpenProcessHandle(pid, handle); } void CloseProcessHandle(ProcessHandle process) { // See OpenProcessHandle, nothing to do. return; } ProcessId GetProcId(ProcessHandle process) { return process; } // Attempts to kill the process identified by the given process // entry structure. Ignores specified exit_code; posix can't force that. // Returns true if this is successful, false otherwise. bool KillProcess(ProcessHandle process_id, int exit_code, bool wait) { DCHECK_GT(process_id, 1) << " tried to kill invalid process_id"; if (process_id <= 1) return false; static unsigned kMaxSleepMs = 1000; unsigned sleep_ms = 4; bool result = kill(process_id, SIGTERM) == 0; if (result && wait) { int tries = 60; // The process may not end immediately due to pending I/O bool exited = false; while (tries-- > 0) { pid_t pid = HANDLE_EINTR(waitpid(process_id, NULL, WNOHANG)); if (pid == process_id) { exited = true; break; } if (pid == -1) { if (errno == ECHILD) { // The wait may fail with ECHILD if another process also waited for // the same pid, causing the process state to get cleaned up. exited = true; break; } DPLOG(ERROR) << "Error waiting for process " << process_id; } usleep(sleep_ms * 1000); if (sleep_ms < kMaxSleepMs) sleep_ms *= 2; } if (!exited) result = kill(process_id, SIGKILL) == 0; } if (!result) DPLOG(ERROR) << "Unable to terminate process " << process_id; return result; } bool KillProcessGroup(ProcessHandle process_group_id) { bool result = kill(-1 * process_group_id, SIGKILL) == 0; if (!result) PLOG(ERROR) << "Unable to terminate process group " << process_group_id; return result; } // A class to handle auto-closing of DIR*'s. class ScopedDIRClose { public: inline void operator()(DIR* x) const { if (x) { closedir(x); } } }; typedef scoped_ptr_malloc ScopedDIR; #if defined(OS_LINUX) static const rlim_t kSystemDefaultMaxFds = 8192; static const char kFDDir[] = "/proc/self/fd"; #elif defined(OS_MACOSX) static const rlim_t kSystemDefaultMaxFds = 256; static const char kFDDir[] = "/dev/fd"; #elif defined(OS_SOLARIS) static const rlim_t kSystemDefaultMaxFds = 8192; static const char kFDDir[] = "/dev/fd"; #elif defined(OS_FREEBSD) static const rlim_t kSystemDefaultMaxFds = 8192; static const char kFDDir[] = "/dev/fd"; #elif defined(OS_OPENBSD) static const rlim_t kSystemDefaultMaxFds = 256; static const char kFDDir[] = "/dev/fd"; #endif void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) { // DANGER: no calls to malloc are allowed from now on: // http://crbug.com/36678 // Get the maximum number of FDs possible. struct rlimit nofile; rlim_t max_fds; if (getrlimit(RLIMIT_NOFILE, &nofile)) { // getrlimit failed. Take a best guess. max_fds = kSystemDefaultMaxFds; DLOG(ERROR) << "getrlimit(RLIMIT_NOFILE) failed: " << errno; } else { max_fds = nofile.rlim_cur; } if (max_fds > INT_MAX) max_fds = INT_MAX; DirReaderPosix fd_dir(kFDDir); if (!fd_dir.IsValid()) { // Fallback case: Try every possible fd. for (rlim_t i = 0; i < max_fds; ++i) { const int fd = static_cast(i); if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO) continue; InjectiveMultimap::const_iterator j; for (j = saved_mapping.begin(); j != saved_mapping.end(); j++) { if (fd == j->dest) break; } if (j != saved_mapping.end()) continue; // Since we're just trying to close anything we can find, // ignore any error return values of close(). int unused ALLOW_UNUSED = HANDLE_EINTR(close(fd)); } return; } const int dir_fd = fd_dir.fd(); for ( ; fd_dir.Next(); ) { // Skip . and .. entries. if (fd_dir.name()[0] == '.') continue; char *endptr; errno = 0; const long int fd = strtol(fd_dir.name(), &endptr, 10); if (fd_dir.name()[0] == 0 || *endptr || fd < 0 || errno) continue; if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO) continue; InjectiveMultimap::const_iterator i; for (i = saved_mapping.begin(); i != saved_mapping.end(); i++) { if (fd == i->dest) break; } if (i != saved_mapping.end()) continue; if (fd == dir_fd) continue; // When running under Valgrind, Valgrind opens several FDs for its // own use and will complain if we try to close them. All of // these FDs are >= |max_fds|, so we can check against that here // before closing. See https://bugs.kde.org/show_bug.cgi?id=191758 if (fd < static_cast(max_fds)) { int ret = HANDLE_EINTR(close(fd)); DPCHECK(ret == 0); } } } char** AlterEnvironment(const environment_vector& changes, const char* const* const env) { unsigned count = 0; unsigned size = 0; // First assume that all of the current environment will be included. for (unsigned i = 0; env[i]; i++) { const char *const pair = env[i]; count++; size += strlen(pair) + 1 /* terminating NUL */; } for (environment_vector::const_iterator j = changes.begin(); j != changes.end(); j++) { bool found = false; const char *pair; for (unsigned i = 0; env[i]; i++) { pair = env[i]; const char *const equals = strchr(pair, '='); if (!equals) continue; const unsigned keylen = equals - pair; if (keylen == j->first.size() && memcmp(pair, j->first.data(), keylen) == 0) { found = true; break; } } // if found, we'll either be deleting or replacing this element. if (found) { count--; size -= strlen(pair) + 1; if (j->second.size()) found = false; } // if !found, then we have a new element to add. if (!found && j->second.size() > 0) { count++; size += j->first.size() + 1 /* '=' */ + j->second.size() + 1 /* NUL */; } } count++; // for the final NULL uint8_t *buffer = new uint8_t[sizeof(char*) * count + size]; char **const ret = reinterpret_cast(buffer); unsigned k = 0; char *scratch = reinterpret_cast(buffer + sizeof(char*) * count); for (unsigned i = 0; env[i]; i++) { const char *const pair = env[i]; const char *const equals = strchr(pair, '='); if (!equals) { const unsigned len = strlen(pair); ret[k++] = scratch; memcpy(scratch, pair, len + 1); scratch += len + 1; continue; } const unsigned keylen = equals - pair; bool handled = false; for (environment_vector::const_iterator j = changes.begin(); j != changes.end(); j++) { if (j->first.size() == keylen && memcmp(j->first.data(), pair, keylen) == 0) { if (!j->second.empty()) { ret[k++] = scratch; memcpy(scratch, pair, keylen + 1); scratch += keylen + 1; memcpy(scratch, j->second.c_str(), j->second.size() + 1); scratch += j->second.size() + 1; } handled = true; break; } } if (!handled) { const unsigned len = strlen(pair); ret[k++] = scratch; memcpy(scratch, pair, len + 1); scratch += len + 1; } } // Now handle new elements for (environment_vector::const_iterator j = changes.begin(); j != changes.end(); j++) { if (j->second.size() == 0) continue; bool found = false; for (unsigned i = 0; env[i]; i++) { const char *const pair = env[i]; const char *const equals = strchr(pair, '='); if (!equals) continue; const unsigned keylen = equals - pair; if (keylen == j->first.size() && memcmp(pair, j->first.data(), keylen) == 0) { found = true; break; } } if (!found) { ret[k++] = scratch; memcpy(scratch, j->first.data(), j->first.size()); scratch += j->first.size(); *scratch++ = '='; memcpy(scratch, j->second.c_str(), j->second.size() + 1); scratch += j->second.size() + 1; } } ret[k] = NULL; return ret; } bool LaunchAppImpl( const std::vector& argv, const environment_vector& env_changes, const file_handle_mapping_vector& fds_to_remap, bool wait, ProcessHandle* process_handle, bool start_new_process_group) { pid_t pid; InjectiveMultimap fd_shuffle1, fd_shuffle2; fd_shuffle1.reserve(fds_to_remap.size()); fd_shuffle2.reserve(fds_to_remap.size()); scoped_array argv_cstr(new char*[argv.size() + 1]); scoped_array new_environ(AlterEnvironment(env_changes, environ)); pid = fork(); if (pid < 0) return false; if (pid == 0) { // Child process if (start_new_process_group) { // Instead of inheriting the process group ID of the parent, the child // starts off a new process group with pgid equal to its process ID. if (setpgid(0, 0) < 0) return false; } #if defined(OS_MACOSX) RestoreDefaultExceptionHandler(); #endif ResetChildSignalHandlersToDefaults(); #if 0 // When debugging it can be helpful to check that we really aren't making // any hidden calls to malloc. void *malloc_thunk = reinterpret_cast(reinterpret_cast(malloc) & ~4095); mprotect(malloc_thunk, 4096, PROT_READ | PROT_WRITE | PROT_EXEC); memset(reinterpret_cast(malloc), 0xff, 8); #endif // DANGER: no calls to malloc are allowed from now on: // http://crbug.com/36678 for (file_handle_mapping_vector::const_iterator it = fds_to_remap.begin(); it != fds_to_remap.end(); ++it) { fd_shuffle1.push_back(InjectionArc(it->first, it->second, false)); fd_shuffle2.push_back(InjectionArc(it->first, it->second, false)); } environ = new_environ.get(); // Obscure fork() rule: in the child, if you don't end up doing exec*(), // you call _exit() instead of exit(). This is because _exit() does not // call any previously-registered (in the parent) exit handlers, which // might do things like block waiting for threads that don't even exist // in the child. // fd_shuffle1 is mutated by this call because it cannot malloc. if (!ShuffleFileDescriptors(&fd_shuffle1)) _exit(127); CloseSuperfluousFds(fd_shuffle2); for (size_t i = 0; i < argv.size(); i++) argv_cstr[i] = const_cast(argv[i].c_str()); argv_cstr[argv.size()] = NULL; execvp(argv_cstr[0], argv_cstr.get()); RAW_LOG(ERROR, "LaunchApp: failed to execvp:"); RAW_LOG(ERROR, argv_cstr[0]); _exit(127); } else { // Parent process if (wait) { pid_t ret = HANDLE_EINTR(waitpid(pid, 0, 0)); DPCHECK(ret > 0); } if (process_handle) *process_handle = pid; } return true; } bool LaunchApp( const std::vector& argv, const environment_vector& env_changes, const file_handle_mapping_vector& fds_to_remap, bool wait, ProcessHandle* process_handle) { return LaunchAppImpl(argv, env_changes, fds_to_remap, wait, process_handle, false); } bool LaunchAppInNewProcessGroup( const std::vector& argv, const environment_vector& env_changes, const file_handle_mapping_vector& fds_to_remap, bool wait, ProcessHandle* process_handle) { return LaunchAppImpl(argv, env_changes, fds_to_remap, wait, process_handle, true); } bool LaunchApp(const std::vector& argv, const file_handle_mapping_vector& fds_to_remap, bool wait, ProcessHandle* process_handle) { base::environment_vector no_env; return LaunchApp(argv, no_env, fds_to_remap, wait, process_handle); } bool LaunchApp(const CommandLine& cl, bool wait, bool start_hidden, ProcessHandle* process_handle) { file_handle_mapping_vector no_files; return LaunchApp(cl.argv(), no_files, wait, process_handle); } ProcessMetrics::~ProcessMetrics() { } void EnableTerminationOnHeapCorruption() { // On POSIX, there nothing to do AFAIK. } bool EnableInProcessStackDumping() { // When running in an application, our code typically expects SIGPIPE // to be ignored. Therefore, when testing that same code, it should run // with SIGPIPE ignored as well. struct sigaction action; action.sa_handler = SIG_IGN; action.sa_flags = 0; sigemptyset(&action.sa_mask); bool success = (sigaction(SIGPIPE, &action, NULL) == 0); success &= (signal(SIGILL, &StackDumpSignalHandler) != SIG_ERR); success &= (signal(SIGABRT, &StackDumpSignalHandler) != SIG_ERR); success &= (signal(SIGFPE, &StackDumpSignalHandler) != SIG_ERR); success &= (signal(SIGBUS, &StackDumpSignalHandler) != SIG_ERR); success &= (signal(SIGSEGV, &StackDumpSignalHandler) != SIG_ERR); success &= (signal(SIGSYS, &StackDumpSignalHandler) != SIG_ERR); return success; } void RaiseProcessToHighPriority() { // On POSIX, we don't actually do anything here. We could try to nice() or // setpriority() or sched_getscheduler, but these all require extra rights. } bool DidProcessCrash(bool* child_exited, ProcessHandle handle) { int status; const pid_t result = HANDLE_EINTR(waitpid(handle, &status, WNOHANG)); if (result == -1) { PLOG(ERROR) << "waitpid(" << handle << ")"; if (child_exited) *child_exited = false; return false; } else if (result == 0) { // the child hasn't exited yet. if (child_exited) *child_exited = false; return false; } if (child_exited) *child_exited = true; if (WIFSIGNALED(status)) { switch (WTERMSIG(status)) { case SIGSEGV: case SIGILL: case SIGABRT: case SIGFPE: return true; default: return false; } } if (WIFEXITED(status)) return WEXITSTATUS(status) != 0; return false; } bool WaitForExitCode(ProcessHandle handle, int* exit_code) { int status; if (HANDLE_EINTR(waitpid(handle, &status, 0)) == -1) { NOTREACHED(); return false; } if (WIFEXITED(status)) { *exit_code = WEXITSTATUS(status); return true; } // If it didn't exit cleanly, it must have been signaled. DCHECK(WIFSIGNALED(status)); return false; } bool WaitForExitCodeWithTimeout(ProcessHandle handle, int* exit_code, int64 timeout_milliseconds) { bool waitpid_success = false; int status = WaitpidWithTimeout(handle, timeout_milliseconds, &waitpid_success); if (status == -1) return false; if (!waitpid_success) return false; if (!WIFEXITED(status)) return false; if (WIFSIGNALED(status)) { *exit_code = -1; return true; } *exit_code = WEXITSTATUS(status); return true; } bool WaitForSingleProcess(ProcessHandle handle, int64 wait_milliseconds) { bool waitpid_success; int status; if (wait_milliseconds == base::kNoTimeout) waitpid_success = (HANDLE_EINTR(waitpid(handle, &status, 0)) != -1); else status = WaitpidWithTimeout(handle, wait_milliseconds, &waitpid_success); if (status != -1) { DCHECK(waitpid_success); return WIFEXITED(status); } else { return false; } } bool CrashAwareSleep(ProcessHandle handle, int64 wait_milliseconds) { bool waitpid_success; int status = WaitpidWithTimeout(handle, wait_milliseconds, &waitpid_success); if (status != -1) { DCHECK(waitpid_success); return !(WIFEXITED(status) || WIFSIGNALED(status)); } else { // If waitpid returned with an error, then the process doesn't exist // (which most probably means it didn't exist before our call). return waitpid_success; } } int64 TimeValToMicroseconds(const struct timeval& tv) { static const int kMicrosecondsPerSecond = 1000000; int64 ret = tv.tv_sec; // Avoid (int * int) integer overflow. ret *= kMicrosecondsPerSecond; ret += tv.tv_usec; return ret; } // Executes the application specified by |cl| and wait for it to exit. Stores // the output (stdout) in |output|. If |do_search_path| is set, it searches the // path for the application; in that case, |envp| must be null, and it will use // the current environment. If |do_search_path| is false, |cl| should fully // specify the path of the application, and |envp| will be used as the // environment. Redirects stderr to /dev/null. Returns true on success // (application launched and exited cleanly, with exit code indicating success). static bool GetAppOutputInternal(const CommandLine& cl, char* const envp[], std::string* output, size_t max_output, bool do_search_path) { int pipe_fd[2]; pid_t pid; InjectiveMultimap fd_shuffle1, fd_shuffle2; const std::vector& argv = cl.argv(); scoped_array argv_cstr(new char*[argv.size() + 1]); fd_shuffle1.reserve(3); fd_shuffle2.reserve(3); // Either |do_search_path| should be false or |envp| should be null, but not // both. DCHECK(!do_search_path ^ !envp); if (pipe(pipe_fd) < 0) return false; switch (pid = fork()) { case -1: // error close(pipe_fd[0]); close(pipe_fd[1]); return false; case 0: // child { #if defined(OS_MACOSX) RestoreDefaultExceptionHandler(); #endif // DANGER: no calls to malloc are allowed from now on: // http://crbug.com/36678 // Obscure fork() rule: in the child, if you don't end up doing exec*(), // you call _exit() instead of exit(). This is because _exit() does not // call any previously-registered (in the parent) exit handlers, which // might do things like block waiting for threads that don't even exist // in the child. int dev_null = open("/dev/null", O_WRONLY); if (dev_null < 0) _exit(127); fd_shuffle1.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true)); fd_shuffle1.push_back(InjectionArc(dev_null, STDERR_FILENO, true)); fd_shuffle1.push_back(InjectionArc(dev_null, STDIN_FILENO, true)); // Adding another element here? Remeber to increase the argument to // reserve(), above. std::copy(fd_shuffle1.begin(), fd_shuffle1.end(), std::back_inserter(fd_shuffle2)); if (!ShuffleFileDescriptors(&fd_shuffle1)) _exit(127); CloseSuperfluousFds(fd_shuffle2); for (size_t i = 0; i < argv.size(); i++) argv_cstr[i] = const_cast(argv[i].c_str()); argv_cstr[argv.size()] = NULL; if (do_search_path) execvp(argv_cstr[0], argv_cstr.get()); else execve(argv_cstr[0], argv_cstr.get(), envp); _exit(127); } default: // parent { // Close our writing end of pipe now. Otherwise later read would not // be able to detect end of child's output (in theory we could still // write to the pipe). close(pipe_fd[1]); output->clear(); char buffer[256]; size_t output_buf_left = max_output; ssize_t bytes_read = 1; // A lie to properly handle |max_output == 0| // case in the logic below. while (output_buf_left > 0) { bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer, std::min(output_buf_left, sizeof(buffer)))); if (bytes_read <= 0) break; output->append(buffer, bytes_read); output_buf_left -= static_cast(bytes_read); } close(pipe_fd[0]); // Always wait for exit code (even if we know we'll declare success). int exit_code = EXIT_FAILURE; bool success = WaitForExitCode(pid, &exit_code); // If we stopped because we read as much as we wanted, we always declare // success (because the child may exit due to |SIGPIPE|). if (output_buf_left || bytes_read <= 0) { if (!success || exit_code != EXIT_SUCCESS) return false; } return true; } } } bool GetAppOutput(const CommandLine& cl, std::string* output) { // Run |execve()| with the current environment and store "unlimited" data. return GetAppOutputInternal(cl, NULL, output, std::numeric_limits::max(), true); } // TODO(viettrungluu): Conceivably, we should have a timeout as well, so we // don't hang if what we're calling hangs. bool GetAppOutputRestricted(const CommandLine& cl, std::string* output, size_t max_output) { // Run |execve()| with the empty environment. char* const empty_environ = NULL; return GetAppOutputInternal(cl, &empty_environ, output, max_output, false); } bool WaitForProcessesToExit(const std::wstring& executable_name, int64 wait_milliseconds, const ProcessFilter* filter) { bool result = false; // TODO(port): This is inefficient, but works if there are multiple procs. // TODO(port): use waitpid to avoid leaving zombies around base::Time end_time = base::Time::Now() + base::TimeDelta::FromMilliseconds(wait_milliseconds); do { NamedProcessIterator iter(executable_name, filter); if (!iter.NextProcessEntry()) { result = true; break; } PlatformThread::Sleep(100); } while ((base::Time::Now() - end_time) > base::TimeDelta()); return result; } bool CleanupProcesses(const std::wstring& executable_name, int64 wait_milliseconds, int exit_code, const ProcessFilter* filter) { bool exited_cleanly = WaitForProcessesToExit(executable_name, wait_milliseconds, filter); if (!exited_cleanly) KillProcesses(executable_name, exit_code, filter); return exited_cleanly; } } // namespace base