// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #define _CRT_SECURE_NO_WARNINGS #include "base/command_line.h" #include "base/eintr_wrapper.h" #include "base/file_path.h" #include "base/multiprocess_test.h" #include "base/path_service.h" #include "base/platform_thread.h" #include "base/process_util.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_LINUX) #include #endif #if defined(OS_POSIX) #include #include #endif #if defined(OS_WIN) #include #endif namespace base { class ProcessUtilTest : public MultiProcessTest { #if defined(OS_POSIX) public: // Spawn a child process that counts how many file descriptors are open. int CountOpenFDsInChild(); #endif }; MULTIPROCESS_TEST_MAIN(SimpleChildProcess) { return 0; } TEST_F(ProcessUtilTest, SpawnChild) { ProcessHandle handle = this->SpawnChild(L"SimpleChildProcess"); ASSERT_NE(static_cast(NULL), handle); EXPECT_TRUE(WaitForSingleProcess(handle, 5000)); base::CloseProcessHandle(handle); } MULTIPROCESS_TEST_MAIN(SlowChildProcess) { // Sleep until file "SlowChildProcess.die" is created. FILE *fp; do { PlatformThread::Sleep(100); fp = fopen("SlowChildProcess.die", "r"); } while (!fp); fclose(fp); remove("SlowChildProcess.die"); exit(0); return 0; } TEST_F(ProcessUtilTest, KillSlowChild) { remove("SlowChildProcess.die"); ProcessHandle handle = this->SpawnChild(L"SlowChildProcess"); ASSERT_NE(static_cast(NULL), handle); FILE *fp = fopen("SlowChildProcess.die", "w"); fclose(fp); EXPECT_TRUE(base::WaitForSingleProcess(handle, 5000)); base::CloseProcessHandle(handle); } // TODO(estade): if possible, port these 2 tests. #if defined(OS_WIN) TEST_F(ProcessUtilTest, EnableLFH) { ASSERT_TRUE(EnableLowFragmentationHeap()); if (IsDebuggerPresent()) { // Under these conditions, LFH can't be enabled. There's no point to test // anything. const char* no_debug_env = getenv("_NO_DEBUG_HEAP"); if (!no_debug_env || strcmp(no_debug_env, "1")) return; } HANDLE heaps[1024] = { 0 }; unsigned number_heaps = GetProcessHeaps(1024, heaps); EXPECT_GT(number_heaps, 0u); for (unsigned i = 0; i < number_heaps; ++i) { ULONG flag = 0; SIZE_T length; ASSERT_NE(0, HeapQueryInformation(heaps[i], HeapCompatibilityInformation, &flag, sizeof(flag), &length)); // If flag is 0, the heap is a standard heap that does not support // look-asides. If flag is 1, the heap supports look-asides. If flag is 2, // the heap is a low-fragmentation heap (LFH). Note that look-asides are not // supported on the LFH. // We don't have any documented way of querying the HEAP_NO_SERIALIZE flag. EXPECT_LE(flag, 2u); EXPECT_NE(flag, 1u); } } TEST_F(ProcessUtilTest, CalcFreeMemory) { ProcessMetrics* metrics = ProcessMetrics::CreateProcessMetrics(::GetCurrentProcess()); ASSERT_TRUE(NULL != metrics); // Typical values here is ~1900 for total and ~1000 for largest. Obviously // it depends in what other tests have done to this process. FreeMBytes free_mem1 = {0}; EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem1)); EXPECT_LT(10u, free_mem1.total); EXPECT_LT(10u, free_mem1.largest); EXPECT_GT(2048u, free_mem1.total); EXPECT_GT(2048u, free_mem1.largest); EXPECT_GE(free_mem1.total, free_mem1.largest); EXPECT_TRUE(NULL != free_mem1.largest_ptr); // Allocate 20M and check again. It should have gone down. const int kAllocMB = 20; char* alloc = new char[kAllocMB * 1024 * 1024]; EXPECT_TRUE(NULL != alloc); size_t expected_total = free_mem1.total - kAllocMB; size_t expected_largest = free_mem1.largest; FreeMBytes free_mem2 = {0}; EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem2)); EXPECT_GE(free_mem2.total, free_mem2.largest); EXPECT_GE(expected_total, free_mem2.total); EXPECT_GE(expected_largest, free_mem2.largest); EXPECT_TRUE(NULL != free_mem2.largest_ptr); delete[] alloc; delete metrics; } TEST_F(ProcessUtilTest, GetAppOutput) { // Let's create a decently long message. std::string message; for (int i = 0; i < 1025; i++) { // 1025 so it does not end on a kilo-byte // boundary. message += "Hello!"; } FilePath python_runtime; ASSERT_TRUE(PathService::Get(base::DIR_SOURCE_ROOT, &python_runtime)); python_runtime = python_runtime.Append(FILE_PATH_LITERAL("third_party")) .Append(FILE_PATH_LITERAL("python_24")) .Append(FILE_PATH_LITERAL("python.exe")); CommandLine cmd_line(python_runtime.value()); cmd_line.AppendLooseValue(L"-c"); cmd_line.AppendLooseValue(L"\"import sys; sys.stdout.write('" + ASCIIToWide(message) + L"');\""); std::string output; ASSERT_TRUE(base::GetAppOutput(cmd_line, &output)); EXPECT_EQ(message, output); // Let's make sure stderr is ignored. CommandLine other_cmd_line(python_runtime.value()); other_cmd_line.AppendLooseValue(L"-c"); other_cmd_line.AppendLooseValue( L"\"import sys; sys.stderr.write('Hello!');\""); output.clear(); ASSERT_TRUE(base::GetAppOutput(other_cmd_line, &output)); EXPECT_EQ("", output); } #endif // defined(OS_WIN) #if defined(OS_POSIX) // Returns the maximum number of files that a process can have open. // Returns 0 on error. int GetMaxFilesOpenInProcess() { struct rlimit rlim; if (getrlimit(RLIMIT_NOFILE, &rlim) != 0) { return 0; } // rlim_t is a uint64 - clip to maxint. We do this since FD #s are ints // which are all 32 bits on the supported platforms. rlim_t max_int = static_cast(std::numeric_limits::max()); if (rlim.rlim_cur > max_int) { return max_int; } return rlim.rlim_cur; } const int kChildPipe = 20; // FD # for write end of pipe in child process. MULTIPROCESS_TEST_MAIN(ProcessUtilsLeakFDChildProcess) { // This child process counts the number of open FDs, it then writes that // number out to a pipe connected to the parent. int num_open_files = 0; int write_pipe = kChildPipe; int max_files = GetMaxFilesOpenInProcess(); for (int i = STDERR_FILENO + 1; i < max_files; i++) { if (i != kChildPipe) { if (HANDLE_EINTR(close(i)) != -1) { num_open_files += 1; } } } int written = HANDLE_EINTR(write(write_pipe, &num_open_files, sizeof(num_open_files))); DCHECK_EQ(static_cast(written), sizeof(num_open_files)); HANDLE_EINTR(close(write_pipe)); return 0; } int ProcessUtilTest::CountOpenFDsInChild() { int fds[2]; if (pipe(fds) < 0) NOTREACHED(); file_handle_mapping_vector fd_mapping_vec; fd_mapping_vec.push_back(std::pair(fds[1], kChildPipe)); ProcessHandle handle = this->SpawnChild(L"ProcessUtilsLeakFDChildProcess", fd_mapping_vec, false); CHECK(handle); HANDLE_EINTR(close(fds[1])); // Read number of open files in client process from pipe; int num_open_files = -1; ssize_t bytes_read = HANDLE_EINTR(read(fds[0], &num_open_files, sizeof(num_open_files))); CHECK(bytes_read == static_cast(sizeof(num_open_files))); CHECK(WaitForSingleProcess(handle, 1000)); base::CloseProcessHandle(handle); HANDLE_EINTR(close(fds[0])); return num_open_files; } TEST_F(ProcessUtilTest, FDRemapping) { int fds_before = CountOpenFDsInChild(); // open some dummy fds to make sure they don't propogate over to the // child process. int dev_null = open("/dev/null", O_RDONLY); int sockets[2]; socketpair(AF_UNIX, SOCK_STREAM, 0, sockets); int fds_after = CountOpenFDsInChild(); ASSERT_EQ(fds_after, fds_before); HANDLE_EINTR(close(sockets[0])); HANDLE_EINTR(close(sockets[1])); HANDLE_EINTR(close(dev_null)); } TEST_F(ProcessUtilTest, GetAppOutput) { std::string output; EXPECT_TRUE(GetAppOutput(CommandLine(L"true"), &output)); EXPECT_STREQ("", output.c_str()); EXPECT_FALSE(GetAppOutput(CommandLine(L"false"), &output)); std::vector argv; argv.push_back("/bin/echo"); argv.push_back("-n"); argv.push_back("foobar42"); EXPECT_TRUE(GetAppOutput(CommandLine(argv), &output)); EXPECT_STREQ("foobar42", output.c_str()); } #if defined(OS_LINUX) TEST_F(ProcessUtilTest, GetParentProcessId) { base::ProcessId ppid = GetParentProcessId(GetCurrentProcId()); EXPECT_EQ(ppid, getppid()); } #endif #endif // defined(OS_POSIX) } // namespace base