// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process_util.h" #include #include #include #include #include #include #include "base/debug_util.h" #include "base/histogram.h" #include "base/logging.h" #include "base/scoped_handle_win.h" #include "base/scoped_ptr.h" namespace base { namespace { // System pagesize. This value remains constant on x86/64 architectures. const int PAGESIZE_KB = 4; // HeapSetInformation function pointer. typedef BOOL (WINAPI* HeapSetFn)(HANDLE, HEAP_INFORMATION_CLASS, PVOID, SIZE_T); // Previous unhandled filter. Will be called if not NULL when we intercept an // exception. Only used in unit tests. LPTOP_LEVEL_EXCEPTION_FILTER g_previous_filter = NULL; // Prints the exception call stack. // This is the unit tests exception filter. long WINAPI StackDumpExceptionFilter(EXCEPTION_POINTERS* info) { StackTrace(info).PrintBacktrace(); if (g_previous_filter) return g_previous_filter(info); return EXCEPTION_CONTINUE_SEARCH; } // Connects back to a console if available. // Only necessary on Windows, no-op on other platforms. void AttachToConsole() { if (!AttachConsole(ATTACH_PARENT_PROCESS)) { unsigned int result = GetLastError(); // Was probably already attached. if (result == ERROR_ACCESS_DENIED) return; if (result == ERROR_INVALID_HANDLE || result == ERROR_INVALID_HANDLE) { // TODO(maruel): Walk up the process chain if deemed necessary. } // Continue even if the function call fails. AllocConsole(); } // http://support.microsoft.com/kb/105305 int raw_out = _open_osfhandle( reinterpret_cast(GetStdHandle(STD_OUTPUT_HANDLE)), _O_TEXT); *stdout = *_fdopen(raw_out, "w"); setvbuf(stdout, NULL, _IONBF, 0); int raw_err = _open_osfhandle( reinterpret_cast(GetStdHandle(STD_ERROR_HANDLE)), _O_TEXT); *stderr = *_fdopen(raw_err, "w"); setvbuf(stderr, NULL, _IONBF, 0); int raw_in = _open_osfhandle( reinterpret_cast(GetStdHandle(STD_INPUT_HANDLE)), _O_TEXT); *stdin = *_fdopen(raw_in, "r"); setvbuf(stdin, NULL, _IONBF, 0); // Fix all cout, wcout, cin, wcin, cerr, wcerr, clog and wclog. std::ios::sync_with_stdio(); } } // namespace ProcessId GetCurrentProcId() { return ::GetCurrentProcessId(); } ProcessHandle GetCurrentProcessHandle() { return ::GetCurrentProcess(); } bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle) { // We try to limit privileges granted to the handle. If you need this // for test code, consider using OpenPrivilegedProcessHandle instead of // adding more privileges here. ProcessHandle result = OpenProcess(PROCESS_DUP_HANDLE | PROCESS_TERMINATE, FALSE, pid); if (result == INVALID_HANDLE_VALUE) return false; *handle = result; return true; } bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle) { ProcessHandle result = OpenProcess(PROCESS_DUP_HANDLE | PROCESS_TERMINATE | PROCESS_QUERY_INFORMATION | PROCESS_VM_READ | SYNCHRONIZE, FALSE, pid); if (result == INVALID_HANDLE_VALUE) return false; *handle = result; return true; } void CloseProcessHandle(ProcessHandle process) { CloseHandle(process); } // Helper for GetProcId() bool GetProcIdViaGetProcessId(ProcessHandle process, DWORD* id) { // Dynamically get a pointer to GetProcessId(). typedef DWORD (WINAPI *GetProcessIdFunction)(HANDLE); static GetProcessIdFunction GetProcessIdPtr = NULL; static bool initialize_get_process_id = true; if (initialize_get_process_id) { initialize_get_process_id = false; HMODULE kernel32_handle = GetModuleHandle(L"kernel32.dll"); if (!kernel32_handle) { NOTREACHED(); return false; } GetProcessIdPtr = reinterpret_cast(GetProcAddress( kernel32_handle, "GetProcessId")); } if (!GetProcessIdPtr) return false; // Ask for the process ID. *id = (*GetProcessIdPtr)(process); return true; } // Helper for GetProcId() bool GetProcIdViaNtQueryInformationProcess(ProcessHandle process, DWORD* id) { // Dynamically get a pointer to NtQueryInformationProcess(). typedef NTSTATUS (WINAPI *NtQueryInformationProcessFunction)( HANDLE, PROCESSINFOCLASS, PVOID, ULONG, PULONG); static NtQueryInformationProcessFunction NtQueryInformationProcessPtr = NULL; static bool initialize_query_information_process = true; if (initialize_query_information_process) { initialize_query_information_process = false; // According to nsylvain, ntdll.dll is guaranteed to be loaded, even though // the Windows docs seem to imply that you should LoadLibrary() it. HMODULE ntdll_handle = GetModuleHandle(L"ntdll.dll"); if (!ntdll_handle) { NOTREACHED(); return false; } NtQueryInformationProcessPtr = reinterpret_cast(GetProcAddress( ntdll_handle, "NtQueryInformationProcess")); } if (!NtQueryInformationProcessPtr) return false; // Ask for the process ID. PROCESS_BASIC_INFORMATION info; ULONG bytes_returned; NTSTATUS status = (*NtQueryInformationProcessPtr)(process, ProcessBasicInformation, &info, sizeof info, &bytes_returned); if (!SUCCEEDED(status) || (bytes_returned != (sizeof info))) return false; *id = static_cast(info.UniqueProcessId); return true; } ProcessId GetProcId(ProcessHandle process) { // Get a handle to |process| that has PROCESS_QUERY_INFORMATION rights. HANDLE current_process = GetCurrentProcess(); HANDLE process_with_query_rights; if (DuplicateHandle(current_process, process, current_process, &process_with_query_rights, PROCESS_QUERY_INFORMATION, false, 0)) { // Try to use GetProcessId(), if it exists. Fall back on // NtQueryInformationProcess() otherwise (< Win XP SP1). DWORD id; bool success = GetProcIdViaGetProcessId(process_with_query_rights, &id) || GetProcIdViaNtQueryInformationProcess(process_with_query_rights, &id); CloseHandle(process_with_query_rights); if (success) return id; } // We're screwed. NOTREACHED(); return 0; } bool LaunchApp(const std::wstring& cmdline, bool wait, bool start_hidden, ProcessHandle* process_handle) { STARTUPINFO startup_info = {0}; startup_info.cb = sizeof(startup_info); startup_info.dwFlags = STARTF_USESHOWWINDOW; startup_info.wShowWindow = start_hidden ? SW_HIDE : SW_SHOW; PROCESS_INFORMATION process_info; if (!CreateProcess(NULL, const_cast(cmdline.c_str()), NULL, NULL, FALSE, 0, NULL, NULL, &startup_info, &process_info)) return false; // Handles must be closed or they will leak CloseHandle(process_info.hThread); if (wait) WaitForSingleObject(process_info.hProcess, INFINITE); // If the caller wants the process handle, we won't close it. if (process_handle) { *process_handle = process_info.hProcess; } else { CloseHandle(process_info.hProcess); } return true; } bool LaunchApp(const CommandLine& cl, bool wait, bool start_hidden, ProcessHandle* process_handle) { return LaunchApp(cl.command_line_string(), wait, start_hidden, process_handle); } // Attempts to kill the process identified by the given process // entry structure, giving it the specified exit code. // Returns true if this is successful, false otherwise. bool KillProcessById(ProcessId process_id, int exit_code, bool wait) { HANDLE process = OpenProcess(PROCESS_TERMINATE | SYNCHRONIZE, FALSE, // Don't inherit handle process_id); if (!process) return false; bool ret = KillProcess(process, exit_code, wait); CloseHandle(process); return ret; } bool GetAppOutput(const CommandLine& cl, std::string* output) { HANDLE out_read = NULL; HANDLE out_write = NULL; SECURITY_ATTRIBUTES sa_attr; // Set the bInheritHandle flag so pipe handles are inherited. sa_attr.nLength = sizeof(SECURITY_ATTRIBUTES); sa_attr.bInheritHandle = TRUE; sa_attr.lpSecurityDescriptor = NULL; // Create the pipe for the child process's STDOUT. if (!CreatePipe(&out_read, &out_write, &sa_attr, 0)) { NOTREACHED() << "Failed to create pipe"; return false; } // Ensure we don't leak the handles. ScopedHandle scoped_out_read(out_read); ScopedHandle scoped_out_write(out_write); // Ensure the read handle to the pipe for STDOUT is not inherited. if (!SetHandleInformation(out_read, HANDLE_FLAG_INHERIT, 0)) { NOTREACHED() << "Failed to disabled pipe inheritance"; return false; } // Now create the child process PROCESS_INFORMATION proc_info = { 0 }; STARTUPINFO start_info = { 0 }; start_info.cb = sizeof(STARTUPINFO); start_info.hStdOutput = out_write; // Keep the normal stdin and stderr. start_info.hStdInput = GetStdHandle(STD_INPUT_HANDLE); start_info.hStdError = GetStdHandle(STD_ERROR_HANDLE); start_info.dwFlags |= STARTF_USESTDHANDLES; // Create the child process. if (!CreateProcess(NULL, const_cast(cl.command_line_string().c_str()), NULL, NULL, TRUE, // Handles are inherited. 0, NULL, NULL, &start_info, &proc_info)) { NOTREACHED() << "Failed to start process"; return false; } // We don't need the thread handle, close it now. CloseHandle(proc_info.hThread); // Close our writing end of pipe now. Otherwise later read would not be able // to detect end of child's output. scoped_out_write.Close(); // Read output from the child process's pipe for STDOUT const int kBufferSize = 1024; char buffer[kBufferSize]; for (;;) { DWORD bytes_read = 0; BOOL success = ReadFile(out_read, buffer, kBufferSize, &bytes_read, NULL); if (!success || bytes_read == 0) break; output->append(buffer, bytes_read); } // Let's wait for the process to finish. WaitForSingleObject(proc_info.hProcess, INFINITE); CloseHandle(proc_info.hProcess); return true; } bool KillProcess(ProcessHandle process, int exit_code, bool wait) { bool result = (TerminateProcess(process, exit_code) != FALSE); if (result && wait) { // The process may not end immediately due to pending I/O if (WAIT_OBJECT_0 != WaitForSingleObject(process, 60 * 1000)) DLOG(ERROR) << "Error waiting for process exit: " << GetLastError(); } else if (!result) { DLOG(ERROR) << "Unable to terminate process: " << GetLastError(); } return result; } bool DidProcessCrash(bool* child_exited, ProcessHandle handle) { DWORD exitcode = 0; if (child_exited) *child_exited = true; // On Windows it an error to call this function if // the child hasn't already exited. if (!::GetExitCodeProcess(handle, &exitcode)) { NOTREACHED(); return false; } if (exitcode == STILL_ACTIVE) { // The process is likely not dead or it used 0x103 as exit code. NOTREACHED(); return false; } // Warning, this is not generic code; it heavily depends on the way // the rest of the code kills a process. if (exitcode == PROCESS_END_NORMAL_TERMINATON || exitcode == PROCESS_END_KILLED_BY_USER || exitcode == PROCESS_END_PROCESS_WAS_HUNG || exitcode == 0xC0000354 || // STATUS_DEBUGGER_INACTIVE. exitcode == 0xC000013A || // Control-C/end session. exitcode == 0x40010004) { // Debugger terminated process/end session. return false; } // All other exit codes indicate crashes. return true; } bool WaitForExitCode(ProcessHandle handle, int* exit_code) { ScopedHandle closer(handle); // Ensure that we always close the handle. if (::WaitForSingleObject(handle, INFINITE) != WAIT_OBJECT_0) { NOTREACHED(); return false; } DWORD temp_code; // Don't clobber out-parameters in case of failure. if (!::GetExitCodeProcess(handle, &temp_code)) return false; *exit_code = temp_code; return true; } NamedProcessIterator::NamedProcessIterator(const std::wstring& executable_name, const ProcessFilter* filter) : started_iteration_(false), executable_name_(executable_name), filter_(filter) { snapshot_ = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0); } NamedProcessIterator::~NamedProcessIterator() { CloseHandle(snapshot_); } const ProcessEntry* NamedProcessIterator::NextProcessEntry() { bool result = false; do { result = CheckForNextProcess(); } while (result && !IncludeEntry()); if (result) { return &entry_; } return NULL; } bool NamedProcessIterator::CheckForNextProcess() { InitProcessEntry(&entry_); if (!started_iteration_) { started_iteration_ = true; return !!Process32First(snapshot_, &entry_); } return !!Process32Next(snapshot_, &entry_); } bool NamedProcessIterator::IncludeEntry() { return _wcsicmp(executable_name_.c_str(), entry_.szExeFile) == 0 && (!filter_ || filter_->Includes(entry_.th32ProcessID, entry_.th32ParentProcessID)); } void NamedProcessIterator::InitProcessEntry(ProcessEntry* entry) { memset(entry, 0, sizeof(*entry)); entry->dwSize = sizeof(*entry); } int GetProcessCount(const std::wstring& executable_name, const ProcessFilter* filter) { int count = 0; NamedProcessIterator iter(executable_name, filter); while (iter.NextProcessEntry()) ++count; return count; } bool KillProcesses(const std::wstring& executable_name, int exit_code, const ProcessFilter* filter) { bool result = true; const ProcessEntry* entry; NamedProcessIterator iter(executable_name, filter); while (entry = iter.NextProcessEntry()) { if (!KillProcessById((*entry).th32ProcessID, exit_code, true)) result = false; } return result; } bool WaitForProcessesToExit(const std::wstring& executable_name, int64 wait_milliseconds, const ProcessFilter* filter) { const ProcessEntry* entry; bool result = true; DWORD start_time = GetTickCount(); NamedProcessIterator iter(executable_name, filter); while (entry = iter.NextProcessEntry()) { DWORD remaining_wait = std::max(0, wait_milliseconds - (GetTickCount() - start_time)); HANDLE process = OpenProcess(SYNCHRONIZE, FALSE, entry->th32ProcessID); DWORD wait_result = WaitForSingleObject(process, remaining_wait); CloseHandle(process); result = result && (wait_result == WAIT_OBJECT_0); } return result; } bool WaitForSingleProcess(ProcessHandle handle, int64 wait_milliseconds) { bool retval = WaitForSingleObject(handle, wait_milliseconds) == WAIT_OBJECT_0; return retval; } bool CrashAwareSleep(ProcessHandle handle, int64 wait_milliseconds) { bool retval = WaitForSingleObject(handle, wait_milliseconds) == WAIT_TIMEOUT; return retval; } bool CleanupProcesses(const std::wstring& executable_name, int64 wait_milliseconds, int exit_code, const ProcessFilter* filter) { bool exited_cleanly = WaitForProcessesToExit(executable_name, wait_milliseconds, filter); if (!exited_cleanly) KillProcesses(executable_name, exit_code, filter); return exited_cleanly; } /////////////////////////////////////////////////////////////////////////////// // ProcesMetrics ProcessMetrics::ProcessMetrics(ProcessHandle process) : process_(process), last_time_(0), last_system_time_(0) { SYSTEM_INFO system_info; GetSystemInfo(&system_info); processor_count_ = system_info.dwNumberOfProcessors; } // static ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) { return new ProcessMetrics(process); } ProcessMetrics::~ProcessMetrics() { } size_t ProcessMetrics::GetPagefileUsage() const { PROCESS_MEMORY_COUNTERS pmc; if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) { return pmc.PagefileUsage; } return 0; } // Returns the peak space allocated for the pagefile, in bytes. size_t ProcessMetrics::GetPeakPagefileUsage() const { PROCESS_MEMORY_COUNTERS pmc; if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) { return pmc.PeakPagefileUsage; } return 0; } // Returns the current working set size, in bytes. size_t ProcessMetrics::GetWorkingSetSize() const { PROCESS_MEMORY_COUNTERS pmc; if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) { return pmc.WorkingSetSize; } return 0; } // Returns the peak working set size, in bytes. size_t ProcessMetrics::GetPeakWorkingSetSize() const { PROCESS_MEMORY_COUNTERS pmc; if (GetProcessMemoryInfo(process_, &pmc, sizeof(pmc))) { return pmc.PeakWorkingSetSize; } return 0; } size_t ProcessMetrics::GetPrivateBytes() const { // PROCESS_MEMORY_COUNTERS_EX is not supported until XP SP2. // GetProcessMemoryInfo() will simply fail on prior OS. So the requested // information is simply not available. Hence, we will return 0 on unsupported // OSes. Unlike most Win32 API, we don't need to initialize the "cb" member. PROCESS_MEMORY_COUNTERS_EX pmcx; if (GetProcessMemoryInfo(process_, reinterpret_cast(&pmcx), sizeof(pmcx))) { return pmcx.PrivateUsage; } return 0; } void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const { MEMORY_BASIC_INFORMATION mbi = {0}; size_t committed_private = 0; size_t committed_mapped = 0; size_t committed_image = 0; void* base_address = NULL; while (VirtualQueryEx(process_, base_address, &mbi, sizeof(mbi)) == sizeof(mbi)) { if (mbi.State == MEM_COMMIT) { if (mbi.Type == MEM_PRIVATE) { committed_private += mbi.RegionSize; } else if (mbi.Type == MEM_MAPPED) { committed_mapped += mbi.RegionSize; } else if (mbi.Type == MEM_IMAGE) { committed_image += mbi.RegionSize; } else { NOTREACHED(); } } void* new_base = (static_cast(mbi.BaseAddress)) + mbi.RegionSize; // Avoid infinite loop by weird MEMORY_BASIC_INFORMATION. // If we query 64bit processes in a 32bit process, VirtualQueryEx() // returns such data. if (new_base <= base_address) { usage->image = 0; usage->mapped = 0; usage->priv = 0; return; } base_address = new_base; } usage->image = committed_image / 1024; usage->mapped = committed_mapped / 1024; usage->priv = committed_private / 1024; } bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const { size_t ws_private = 0; size_t ws_shareable = 0; size_t ws_shared = 0; DCHECK(ws_usage); memset(ws_usage, 0, sizeof(*ws_usage)); DWORD number_of_entries = 4096; // Just a guess. PSAPI_WORKING_SET_INFORMATION* buffer = NULL; int retries = 5; for (;;) { DWORD buffer_size = sizeof(PSAPI_WORKING_SET_INFORMATION) + (number_of_entries * sizeof(PSAPI_WORKING_SET_BLOCK)); // if we can't expand the buffer, don't leak the previous // contents or pass a NULL pointer to QueryWorkingSet PSAPI_WORKING_SET_INFORMATION* new_buffer = reinterpret_cast( realloc(buffer, buffer_size)); if (!new_buffer) { free(buffer); return false; } buffer = new_buffer; // Call the function once to get number of items if (QueryWorkingSet(process_, buffer, buffer_size)) break; // Success if (GetLastError() != ERROR_BAD_LENGTH) { free(buffer); return false; } number_of_entries = static_cast(buffer->NumberOfEntries); // Maybe some entries are being added right now. Increase the buffer to // take that into account. number_of_entries = static_cast(number_of_entries * 1.25); if (--retries == 0) { free(buffer); // If we're looping, eventually fail. return false; } } // On windows 2000 the function returns 1 even when the buffer is too small. // The number of entries that we are going to parse is the minimum between the // size we allocated and the real number of entries. number_of_entries = std::min(number_of_entries, static_cast(buffer->NumberOfEntries)); for (unsigned int i = 0; i < number_of_entries; i++) { if (buffer->WorkingSetInfo[i].Shared) { ws_shareable++; if (buffer->WorkingSetInfo[i].ShareCount > 1) ws_shared++; } else { ws_private++; } } ws_usage->priv = ws_private * PAGESIZE_KB; ws_usage->shareable = ws_shareable * PAGESIZE_KB; ws_usage->shared = ws_shared * PAGESIZE_KB; free(buffer); return true; } static uint64 FileTimeToUTC(const FILETIME& ftime) { LARGE_INTEGER li; li.LowPart = ftime.dwLowDateTime; li.HighPart = ftime.dwHighDateTime; return li.QuadPart; } int ProcessMetrics::GetCPUUsage() { FILETIME now; FILETIME creation_time; FILETIME exit_time; FILETIME kernel_time; FILETIME user_time; GetSystemTimeAsFileTime(&now); if (!GetProcessTimes(process_, &creation_time, &exit_time, &kernel_time, &user_time)) { // We don't assert here because in some cases (such as in the Task Manager) // we may call this function on a process that has just exited but we have // not yet received the notification. return 0; } int64 system_time = (FileTimeToUTC(kernel_time) + FileTimeToUTC(user_time)) / processor_count_; int64 time = FileTimeToUTC(now); if ((last_system_time_ == 0) || (last_time_ == 0)) { // First call, just set the last values. last_system_time_ = system_time; last_time_ = time; return 0; } int64 system_time_delta = system_time - last_system_time_; int64 time_delta = time - last_time_; DCHECK(time_delta != 0); if (time_delta == 0) return 0; // We add time_delta / 2 so the result is rounded. int cpu = static_cast((system_time_delta * 100 + time_delta / 2) / time_delta); last_system_time_ = system_time; last_time_ = time; return cpu; } bool ProcessMetrics::GetIOCounters(IO_COUNTERS* io_counters) const { return GetProcessIoCounters(process_, io_counters) != FALSE; } bool ProcessMetrics::CalculateFreeMemory(FreeMBytes* free) const { const SIZE_T kTopAdress = 0x7F000000; const SIZE_T kMegabyte = 1024 * 1024; SIZE_T accumulated = 0; MEMORY_BASIC_INFORMATION largest = {0}; UINT_PTR scan = 0; while (scan < kTopAdress) { MEMORY_BASIC_INFORMATION info; if (!::VirtualQueryEx(process_, reinterpret_cast(scan), &info, sizeof(info))) return false; if (info.State == MEM_FREE) { accumulated += info.RegionSize; UINT_PTR end = scan + info.RegionSize; if (info.RegionSize > (largest.RegionSize)) largest = info; } scan += info.RegionSize; } free->largest = largest.RegionSize / kMegabyte; free->largest_ptr = largest.BaseAddress; free->total = accumulated / kMegabyte; return true; } bool EnableLowFragmentationHeap() { HMODULE kernel32 = GetModuleHandle(L"kernel32.dll"); HeapSetFn heap_set = reinterpret_cast(GetProcAddress( kernel32, "HeapSetInformation")); // On Windows 2000, the function is not exported. This is not a reason to // fail. if (!heap_set) return true; unsigned number_heaps = GetProcessHeaps(0, NULL); if (!number_heaps) return false; // Gives us some extra space in the array in case a thread is creating heaps // at the same time we're querying them. static const int MARGIN = 8; scoped_array heaps(new HANDLE[number_heaps + MARGIN]); number_heaps = GetProcessHeaps(number_heaps + MARGIN, heaps.get()); if (!number_heaps) return false; for (unsigned i = 0; i < number_heaps; ++i) { ULONG lfh_flag = 2; // Don't bother with the result code. It may fails on heaps that have the // HEAP_NO_SERIALIZE flag. This is expected and not a problem at all. heap_set(heaps[i], HeapCompatibilityInformation, &lfh_flag, sizeof(lfh_flag)); } return true; } void EnableTerminationOnHeapCorruption() { // Ignore the result code. Supported on XP SP3 and Vista. HeapSetInformation(NULL, HeapEnableTerminationOnCorruption, NULL, 0); } bool EnableInProcessStackDumping() { // Add stack dumping support on exception on windows. Similar to OS_POSIX // signal() handling in process_util_posix.cc. g_previous_filter = SetUnhandledExceptionFilter(&StackDumpExceptionFilter); AttachToConsole(); return true; } void RaiseProcessToHighPriority() { SetPriorityClass(GetCurrentProcess(), HIGH_PRIORITY_CLASS); } } // namespace base