// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/rand_util.h" #include #include #include "testing/gtest/include/gtest/gtest.h" namespace { const int kIntMin = std::numeric_limits::min(); const int kIntMax = std::numeric_limits::max(); } // namespace TEST(RandUtilTest, SameMinAndMax) { EXPECT_EQ(base::RandInt(0, 0), 0); EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin); EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax); } TEST(RandUtilTest, RandDouble) { // Force 64-bit precision, making sure we're not in a 80-bit FPU register. volatile double number = base::RandDouble(); EXPECT_GT(1.0, number); EXPECT_LE(0.0, number); } TEST(RandUtilTest, RandBytes) { const size_t buffer_size = 50; char buffer[buffer_size]; memset(buffer, 0, buffer_size); base::RandBytes(buffer, buffer_size); std::sort(buffer, buffer + buffer_size); // Probability of occurrence of less than 25 unique bytes in 50 random bytes // is below 10^-25. EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25); } TEST(RandUtilTest, RandBytesAsString) { std::string random_string = base::RandBytesAsString(0); EXPECT_EQ(0U, random_string.size()); random_string = base::RandBytesAsString(145); EXPECT_EQ(145U, random_string.size()); char accumulator = 0; for (size_t i = 0; i < random_string.size(); ++i) accumulator |= random_string[i]; // In theory this test can fail, but it won't before the universe dies of // heat death. EXPECT_NE(0, accumulator); } // Make sure that it is still appropriate to use RandGenerator in conjunction // with std::random_shuffle(). TEST(RandUtilTest, RandGeneratorForRandomShuffle) { EXPECT_EQ(base::RandGenerator(1), 0U); EXPECT_LE(std::numeric_limits::max(), std::numeric_limits::max()); } TEST(RandUtilTest, RandGeneratorIsUniform) { // Verify that RandGenerator has a uniform distribution. This is a // regression test that consistently failed when RandGenerator was // implemented this way: // // return base::RandUint64() % max; // // A degenerate case for such an implementation is e.g. a top of // range that is 2/3rds of the way to MAX_UINT64, in which case the // bottom half of the range would be twice as likely to occur as the // top half. A bit of calculus care of jar@ shows that the largest // measurable delta is when the top of the range is 3/4ths of the // way, so that's what we use in the test. const uint64 kTopOfRange = (std::numeric_limits::max() / 4ULL) * 3ULL; const uint64 kExpectedAverage = kTopOfRange / 2ULL; const uint64 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2% const int kMinAttempts = 1000; const int kMaxAttempts = 1000000; double cumulative_average = 0.0; int count = 0; while (count < kMaxAttempts) { uint64 value = base::RandGenerator(kTopOfRange); cumulative_average = (count * cumulative_average + value) / (count + 1); // Don't quit too quickly for things to start converging, or we may have // a false positive. if (count > kMinAttempts && kExpectedAverage - kAllowedVariance < cumulative_average && cumulative_average < kExpectedAverage + kAllowedVariance) { break; } ++count; } ASSERT_LT(count, kMaxAttempts) << "Expected average was " << kExpectedAverage << ", average ended at " << cumulative_average; } TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) { // This tests to see that our underlying random generator is good // enough, for some value of good enough. uint64 kAllZeros = 0ULL; uint64 kAllOnes = ~kAllZeros; uint64 found_ones = kAllZeros; uint64 found_zeros = kAllOnes; for (size_t i = 0; i < 1000; ++i) { uint64 value = base::RandUint64(); found_ones |= value; found_zeros &= value; if (found_zeros == kAllZeros && found_ones == kAllOnes) return; } FAIL() << "Didn't achieve all bit values in maximum number of tries."; }