// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // All Rights Reserved. #ifndef BASE_SCOPED_PTR_H__ #define BASE_SCOPED_PTR_H__ // This is an implementation designed to match the anticipated future TR2 // implementation of the scoped_ptr class, and its closely-related brethren, // scoped_array, scoped_ptr_malloc. #include #include #include // A scoped_ptr is like a T*, except that the destructor of scoped_ptr // automatically deletes the pointer it holds (if any). // That is, scoped_ptr owns the T object that it points to. // Like a T*, a scoped_ptr may hold either NULL or a pointer to a T object. // Also like T*, scoped_ptr is thread-compatible, and once you // dereference it, you get the threadsafety guarantees of T. // // The size of a scoped_ptr is small: // sizeof(scoped_ptr) == sizeof(C*) template class scoped_ptr { public: // The element type typedef C element_type; // Constructor. Defaults to intializing with NULL. // There is no way to create an uninitialized scoped_ptr. // The input parameter must be allocated with new. explicit scoped_ptr(C* p = NULL) : ptr_(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_ptr() { enum { type_must_be_complete = sizeof(C) }; delete ptr_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != ptr_) { enum { type_must_be_complete = sizeof(C) }; delete ptr_; ptr_ = p; } } // Accessors to get the owned object. // operator* and operator-> will assert() if there is no current object. C& operator*() const { assert(ptr_ != NULL); return *ptr_; } C* operator->() const { assert(ptr_ != NULL); return ptr_; } C* get() const { return ptr_; } // Comparison operators. // These return whether two scoped_ptr refer to the same object, not just to // two different but equal objects. bool operator==(C* p) const { return ptr_ == p; } bool operator!=(C* p) const { return ptr_ != p; } // Swap two scoped pointers. void swap(scoped_ptr& p2) { C* tmp = ptr_; ptr_ = p2.ptr_; p2.ptr_ = tmp; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* retVal = ptr_; ptr_ = NULL; return retVal; } private: C* ptr_; // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't // make sense, and if C2 == C, it still doesn't make sense because you should // never have the same object owned by two different scoped_ptrs. template bool operator==(scoped_ptr const& p2) const; template bool operator!=(scoped_ptr const& p2) const; // Disallow evil constructors scoped_ptr(const scoped_ptr&); void operator=(const scoped_ptr&); }; // Free functions template void swap(scoped_ptr& p1, scoped_ptr& p2) { p1.swap(p2); } template bool operator==(C* p1, const scoped_ptr& p2) { return p1 == p2.get(); } template bool operator!=(C* p1, const scoped_ptr& p2) { return p1 != p2.get(); } // scoped_array is like scoped_ptr, except that the caller must allocate // with new [] and the destructor deletes objects with delete []. // // As with scoped_ptr, a scoped_array either points to an object // or is NULL. A scoped_array owns the object that it points to. // scoped_array is thread-compatible, and once you index into it, // the returned objects have only the threadsafety guarantees of T. // // Size: sizeof(scoped_array) == sizeof(C*) template class scoped_array { public: // The element type typedef C element_type; // Constructor. Defaults to intializing with NULL. // There is no way to create an uninitialized scoped_array. // The input parameter must be allocated with new []. explicit scoped_array(C* p = NULL) : array_(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_array() { enum { type_must_be_complete = sizeof(C) }; delete[] array_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != array_) { enum { type_must_be_complete = sizeof(C) }; delete[] array_; array_ = p; } } // Get one element of the current object. // Will assert() if there is no current object, or index i is negative. C& operator[](std::ptrdiff_t i) const { assert(i >= 0); assert(array_ != NULL); return array_[i]; } // Get a pointer to the zeroth element of the current object. // If there is no current object, return NULL. C* get() const { return array_; } // Comparison operators. // These return whether two scoped_array refer to the same object, not just to // two different but equal objects. bool operator==(C* p) const { return array_ == p; } bool operator!=(C* p) const { return array_ != p; } // Swap two scoped arrays. void swap(scoped_array& p2) { C* tmp = array_; array_ = p2.array_; p2.array_ = tmp; } // Release an array. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* retVal = array_; array_ = NULL; return retVal; } private: C* array_; // Forbid comparison of different scoped_array types. template bool operator==(scoped_array const& p2) const; template bool operator!=(scoped_array const& p2) const; // Disallow evil constructors scoped_array(const scoped_array&); void operator=(const scoped_array&); }; // Free functions template void swap(scoped_array& p1, scoped_array& p2) { p1.swap(p2); } template bool operator==(C* p1, const scoped_array& p2) { return p1 == p2.get(); } template bool operator!=(C* p1, const scoped_array& p2) { return p1 != p2.get(); } // This class wraps the c library function free() in a class that can be // passed as a template argument to scoped_ptr_malloc below. class ScopedPtrMallocFree { public: inline void operator()(void* x) const { free(x); } }; // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a // second template argument, the functor used to free the object. template class scoped_ptr_malloc { public: // The element type typedef C element_type; // Constructor. Defaults to intializing with NULL. // There is no way to create an uninitialized scoped_ptr. // The input parameter must be allocated with an allocator that matches the // Free functor. For the default Free functor, this is malloc, calloc, or // realloc. explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {} // Destructor. If there is a C object, call the Free functor. ~scoped_ptr_malloc() { free_(ptr_); } // Reset. Calls the Free functor on the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (ptr_ != p) { free_(ptr_); ptr_ = p; } } // Get the current object. // operator* and operator-> will cause an assert() failure if there is // no current object. C& operator*() const { assert(ptr_ != NULL); return *ptr_; } C* operator->() const { assert(ptr_ != NULL); return ptr_; } C* get() const { return ptr_; } // Comparison operators. // These return whether a scoped_ptr_malloc and a plain pointer refer // to the same object, not just to two different but equal objects. // For compatibility wwith the boost-derived implementation, these // take non-const arguments. bool operator==(C* p) const { return ptr_ == p; } bool operator!=(C* p) const { return ptr_ != p; } // Swap two scoped pointers. void swap(scoped_ptr_malloc & b) { C* tmp = b.ptr_; b.ptr_ = ptr_; ptr_ = tmp; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* tmp = ptr_; ptr_ = NULL; return tmp; } private: C* ptr_; // no reason to use these: each scoped_ptr_malloc should have its own object template bool operator==(scoped_ptr_malloc const& p) const; template bool operator!=(scoped_ptr_malloc const& p) const; static FreeProc const free_; // Disallow evil constructors scoped_ptr_malloc(const scoped_ptr_malloc&); void operator=(const scoped_ptr_malloc&); }; template FP const scoped_ptr_malloc::free_ = FP(); template inline void swap(scoped_ptr_malloc& a, scoped_ptr_malloc& b) { a.swap(b); } template inline bool operator==(C* p, const scoped_ptr_malloc& b) { return p == b.get(); } template inline bool operator!=(C* p, const scoped_ptr_malloc& b) { return p != b.get(); } #endif // BASE_SCOPED_PTR_H__