// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/stats_table.h" #include "base/logging.h" #include "base/platform_thread.h" #include "base/process_util.h" #include "base/scoped_ptr.h" #include "base/shared_memory.h" #include "base/string_piece.h" #include "base/string_util.h" #include "base/sys_string_conversions.h" #include "base/thread_local_storage.h" #if defined(OS_POSIX) #include "errno.h" #endif // The StatsTable uses a shared memory segment that is laid out as follows // // +-------------------------------------------+ // | Version | Size | MaxCounters | MaxThreads | // +-------------------------------------------+ // | Thread names table | // +-------------------------------------------+ // | Thread TID table | // +-------------------------------------------+ // | Thread PID table | // +-------------------------------------------+ // | Counter names table | // +-------------------------------------------+ // | Data | // +-------------------------------------------+ // // The data layout is a grid, where the columns are the thread_ids and the // rows are the counter_ids. // // If the first character of the thread_name is '\0', then that column is // empty. // If the first character of the counter_name is '\0', then that row is // empty. // // About Locking: // This class is designed to be both multi-thread and multi-process safe. // Aside from initialization, this is done by partitioning the data which // each thread uses so that no locking is required. However, to allocate // the rows and columns of the table to particular threads, locking is // required. // // At the shared-memory level, we have a lock. This lock protects the // shared-memory table only, and is used when we create new counters (e.g. // use rows) or when we register new threads (e.g. use columns). Reading // data from the table does not require any locking at the shared memory // level. // // Each process which accesses the table will create a StatsTable object. // The StatsTable maintains a hash table of the existing counters in the // table for faster lookup. Since the hash table is process specific, // each process maintains its own cache. We avoid complexity here by never // de-allocating from the hash table. (Counters are dynamically added, // but not dynamically removed). // In order for external viewers to be able to read our shared memory, // we all need to use the same size ints. COMPILE_ASSERT(sizeof(int)==4, expect_4_byte_ints); namespace { // An internal version in case we ever change the format of this // file, and so that we can identify our table. const int kTableVersion = 0x13131313; // The name for un-named counters and threads in the table. const char kUnknownName[] = ""; // Calculates delta to align an offset to the size of an int inline int AlignOffset(int offset) { return (sizeof(int) - (offset % sizeof(int))) % sizeof(int); } inline int AlignedSize(int size) { return size + AlignOffset(size); } // StatsTableTLSData carries the data stored in the TLS slots for the // StatsTable. This is used so that we can properly cleanup when the // thread exits and return the table slot. // // Each thread that calls RegisterThread in the StatsTable will have // a StatsTableTLSData stored in its TLS. struct StatsTableTLSData { StatsTable* table; int slot; }; } // namespace // The StatsTablePrivate maintains convenience pointers into the // shared memory segment. Use this class to keep the data structure // clean and accessible. class StatsTablePrivate { public: // Various header information contained in the memory mapped segment. struct TableHeader { int version; int size; int max_counters; int max_threads; }; // Construct a new StatsTablePrivate based on expected size parameters, or // return NULL on failure. static StatsTablePrivate* New(const std::string& name, int size, int max_threads, int max_counters); base::SharedMemory* shared_memory() { return &shared_memory_; } // Accessors for our header pointers TableHeader* table_header() const { return table_header_; } int version() const { return table_header_->version; } int size() const { return table_header_->size; } int max_counters() const { return table_header_->max_counters; } int max_threads() const { return table_header_->max_threads; } // Accessors for our tables char* thread_name(int slot_id) const { return &thread_names_table_[ (slot_id-1) * (StatsTable::kMaxThreadNameLength)]; } PlatformThreadId* thread_tid(int slot_id) const { return &(thread_tid_table_[slot_id-1]); } int* thread_pid(int slot_id) const { return &(thread_pid_table_[slot_id-1]); } char* counter_name(int counter_id) const { return &counter_names_table_[ (counter_id-1) * (StatsTable::kMaxCounterNameLength)]; } int* row(int counter_id) const { return &data_table_[(counter_id-1) * max_threads()]; } private: // Constructor is private because you should use New() instead. StatsTablePrivate() {} // Initializes the table on first access. Sets header values // appropriately and zeroes all counters. void InitializeTable(void* memory, int size, int max_counters, int max_threads); // Initializes our in-memory pointers into a pre-created StatsTable. void ComputeMappedPointers(void* memory); base::SharedMemory shared_memory_; TableHeader* table_header_; char* thread_names_table_; PlatformThreadId* thread_tid_table_; int* thread_pid_table_; char* counter_names_table_; int* data_table_; }; // static StatsTablePrivate* StatsTablePrivate::New(const std::string& name, int size, int max_threads, int max_counters) { scoped_ptr priv(new StatsTablePrivate()); if (!priv->shared_memory_.Create(base::SysUTF8ToWide(name), false, true, size)) return NULL; if (!priv->shared_memory_.Map(size)) return NULL; void* memory = priv->shared_memory_.memory(); TableHeader* header = static_cast(memory); // If the version does not match, then assume the table needs // to be initialized. if (header->version != kTableVersion) priv->InitializeTable(memory, size, max_counters, max_threads); // We have a valid table, so compute our pointers. priv->ComputeMappedPointers(memory); return priv.release(); } void StatsTablePrivate::InitializeTable(void* memory, int size, int max_counters, int max_threads) { // Zero everything. memset(memory, 0, size); // Initialize the header. TableHeader* header = static_cast(memory); header->version = kTableVersion; header->size = size; header->max_counters = max_counters; header->max_threads = max_threads; } void StatsTablePrivate::ComputeMappedPointers(void* memory) { char* data = static_cast(memory); int offset = 0; table_header_ = reinterpret_cast(data); offset += sizeof(*table_header_); offset += AlignOffset(offset); // Verify we're looking at a valid StatsTable. DCHECK_EQ(table_header_->version, kTableVersion); thread_names_table_ = reinterpret_cast(data + offset); offset += sizeof(char) * max_threads() * StatsTable::kMaxThreadNameLength; offset += AlignOffset(offset); thread_tid_table_ = reinterpret_cast(data + offset); offset += sizeof(int) * max_threads(); offset += AlignOffset(offset); thread_pid_table_ = reinterpret_cast(data + offset); offset += sizeof(int) * max_threads(); offset += AlignOffset(offset); counter_names_table_ = reinterpret_cast(data + offset); offset += sizeof(char) * max_counters() * StatsTable::kMaxCounterNameLength; offset += AlignOffset(offset); data_table_ = reinterpret_cast(data + offset); offset += sizeof(int) * max_threads() * max_counters(); DCHECK_EQ(offset, size()); } // We keep a singleton table which can be easily accessed. StatsTable* StatsTable::global_table_ = NULL; StatsTable::StatsTable(const std::string& name, int max_threads, int max_counters) : impl_(NULL), tls_index_(SlotReturnFunction) { int table_size = AlignedSize(sizeof(StatsTablePrivate::TableHeader)) + AlignedSize((max_counters * sizeof(char) * kMaxCounterNameLength)) + AlignedSize((max_threads * sizeof(char) * kMaxThreadNameLength)) + AlignedSize(max_threads * sizeof(int)) + AlignedSize(max_threads * sizeof(int)) + AlignedSize((sizeof(int) * (max_counters * max_threads))); impl_ = StatsTablePrivate::New(name, table_size, max_threads, max_counters); // TODO(port): clean up this error reporting. #if defined(OS_WIN) if (!impl_) LOG(ERROR) << "StatsTable did not initialize:" << GetLastError(); #elif defined(OS_POSIX) if (!impl_) LOG(ERROR) << "StatsTable did not initialize:" << strerror(errno); #endif } StatsTable::~StatsTable() { // Before we tear down our copy of the table, be sure to // unregister our thread. UnregisterThread(); // Return ThreadLocalStorage. At this point, if any registered threads // still exist, they cannot Unregister. tls_index_.Free(); // Cleanup our shared memory. delete impl_; // If we are the global table, unregister ourselves. if (global_table_ == this) global_table_ = NULL; } int StatsTable::RegisterThread(const std::string& name) { int slot = 0; // Registering a thread requires that we lock the shared memory // so that two threads don't grab the same slot. Fortunately, // thread creation shouldn't happen in inner loops. { base::SharedMemoryAutoLock lock(impl_->shared_memory()); slot = FindEmptyThread(); if (!slot) { return 0; } DCHECK(impl_); // We have space, so consume a column in the table. std::string thread_name = name; if (name.empty()) thread_name = kUnknownName; base::strlcpy(impl_->thread_name(slot), thread_name.c_str(), kMaxThreadNameLength); *(impl_->thread_tid(slot)) = PlatformThread::CurrentId(); *(impl_->thread_pid(slot)) = base::GetCurrentProcId(); } // Set our thread local storage. StatsTableTLSData* data = new StatsTableTLSData; data->table = this; data->slot = slot; tls_index_.Set(data); return slot; } StatsTableTLSData* StatsTable::GetTLSData() const { StatsTableTLSData* data = static_cast(tls_index_.Get()); if (!data) return NULL; DCHECK(data->slot); DCHECK_EQ(data->table, this); return data; } void StatsTable::UnregisterThread() { UnregisterThread(GetTLSData()); } void StatsTable::UnregisterThread(StatsTableTLSData* data) { if (!data) return; DCHECK(impl_); // Mark the slot free by zeroing out the thread name. char* name = impl_->thread_name(data->slot); *name = '\0'; // Remove the calling thread's TLS so that it cannot use the slot. tls_index_.Set(NULL); delete data; } void StatsTable::SlotReturnFunction(void* data) { // This is called by the TLS destructor, which on some platforms has // already cleared the TLS info, so use the tls_data argument // rather than trying to fetch it ourselves. StatsTableTLSData* tls_data = static_cast(data); if (tls_data) { DCHECK(tls_data->table); tls_data->table->UnregisterThread(tls_data); } } int StatsTable::CountThreadsRegistered() const { if (!impl_) return 0; // Loop through the shared memory and count the threads that are active. // We intentionally do not lock the table during the operation. int count = 0; for (int index = 1; index <= impl_->max_threads(); index++) { char* name = impl_->thread_name(index); if (*name != '\0') count++; } return count; } int StatsTable::GetSlot() const { StatsTableTLSData* data = GetTLSData(); if (!data) return 0; return data->slot; } int StatsTable::FindEmptyThread() const { // Note: the API returns slots numbered from 1..N, although // internally, the array is 0..N-1. This is so that we can return // zero as "not found". // // The reason for doing this is because the thread 'slot' is stored // in TLS, which is always initialized to zero, not -1. If 0 were // returned as a valid slot number, it would be confused with the // uninitialized state. if (!impl_) return 0; int index = 1; for (; index <= impl_->max_threads(); index++) { char* name = impl_->thread_name(index); if (!*name) break; } if (index > impl_->max_threads()) return 0; // The table is full. return index; } int StatsTable::FindCounterOrEmptyRow(const std::string& name) const { // Note: the API returns slots numbered from 1..N, although // internally, the array is 0..N-1. This is so that we can return // zero as "not found". // // There isn't much reason for this other than to be consistent // with the way we track columns for thread slots. (See comments // in FindEmptyThread for why it is done this way). if (!impl_) return 0; int free_slot = 0; for (int index = 1; index <= impl_->max_counters(); index++) { char* row_name = impl_->counter_name(index); if (!*row_name && !free_slot) free_slot = index; // save that we found a free slot else if (!strncmp(row_name, name.c_str(), kMaxCounterNameLength)) return index; } return free_slot; } int StatsTable::FindCounter(const std::string& name) { // Note: the API returns counters numbered from 1..N, although // internally, the array is 0..N-1. This is so that we can return // zero as "not found". if (!impl_) return 0; // Create a scope for our auto-lock. { AutoLock scoped_lock(counters_lock_); // Attempt to find the counter. CountersMap::const_iterator iter; iter = counters_.find(name); if (iter != counters_.end()) return iter->second; } // Counter does not exist, so add it. return AddCounter(name); } int StatsTable::AddCounter(const std::string& name) { DCHECK(impl_); if (!impl_) return 0; int counter_id = 0; { // To add a counter to the shared memory, we need the // shared memory lock. base::SharedMemoryAutoLock lock(impl_->shared_memory()); // We have space, so create a new counter. counter_id = FindCounterOrEmptyRow(name); if (!counter_id) return 0; std::string counter_name = name; if (name.empty()) counter_name = kUnknownName; base::strlcpy(impl_->counter_name(counter_id), counter_name.c_str(), kMaxCounterNameLength); } // now add to our in-memory cache { AutoLock lock(counters_lock_); counters_[name] = counter_id; } return counter_id; } int* StatsTable::GetLocation(int counter_id, int slot_id) const { if (!impl_) return NULL; if (slot_id > impl_->max_threads()) return NULL; int* row = impl_->row(counter_id); return &(row[slot_id-1]); } const char* StatsTable::GetRowName(int index) const { if (!impl_) return NULL; return impl_->counter_name(index); } int StatsTable::GetRowValue(int index, int pid) const { if (!impl_) return 0; int rv = 0; int* row = impl_->row(index); for (int slot_id = 0; slot_id < impl_->max_threads(); slot_id++) { if (pid == 0 || *impl_->thread_pid(slot_id) == pid) rv += row[slot_id]; } return rv; } int StatsTable::GetRowValue(int index) const { return GetRowValue(index, 0); } int StatsTable::GetCounterValue(const std::string& name, int pid) { if (!impl_) return 0; int row = FindCounter(name); if (!row) return 0; return GetRowValue(row, pid); } int StatsTable::GetCounterValue(const std::string& name) { return GetCounterValue(name, 0); } int StatsTable::GetMaxCounters() const { if (!impl_) return 0; return impl_->max_counters(); } int StatsTable::GetMaxThreads() const { if (!impl_) return 0; return impl_->max_threads(); } int* StatsTable::FindLocation(const char* name) { // Get the static StatsTable StatsTable *table = StatsTable::current(); if (!table) return NULL; // Get the slot for this thread. Try to register // it if none exists. int slot = table->GetSlot(); if (!slot && !(slot = table->RegisterThread(""))) return NULL; // Find the counter id for the counter. std::string str_name(name); int counter = table->FindCounter(str_name); // Now we can find the location in the table. return table->GetLocation(counter, slot); }