// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Derived from google3/util/gtl/stl_util.h #ifndef BASE_STL_UTIL_H_ #define BASE_STL_UTIL_H_ #include #include #include #include #include #include "base/logging.h" // Clears internal memory of an STL object. // STL clear()/reserve(0) does not always free internal memory allocated // This function uses swap/destructor to ensure the internal memory is freed. template void STLClearObject(T* obj) { T tmp; tmp.swap(*obj); // Sometimes "T tmp" allocates objects with memory (arena implementation?). // Hence using additional reserve(0) even if it doesn't always work. obj->reserve(0); } // For a range within a container of pointers, calls delete (non-array version) // on these pointers. // NOTE: for these three functions, we could just implement a DeleteObject // functor and then call for_each() on the range and functor, but this // requires us to pull in all of algorithm.h, which seems expensive. // For hash_[multi]set, it is important that this deletes behind the iterator // because the hash_set may call the hash function on the iterator when it is // advanced, which could result in the hash function trying to deference a // stale pointer. template void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete *temp; } } // For a range within a container of pairs, calls delete (non-array version) on // BOTH items in the pairs. // NOTE: Like STLDeleteContainerPointers, it is important that this deletes // behind the iterator because if both the key and value are deleted, the // container may call the hash function on the iterator when it is advanced, // which could result in the hash function trying to dereference a stale // pointer. template void STLDeleteContainerPairPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete temp->first; delete temp->second; } } // For a range within a container of pairs, calls delete (non-array version) on // the FIRST item in the pairs. // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator. template void STLDeleteContainerPairFirstPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete temp->first; } } // For a range within a container of pairs, calls delete. // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator. // Deleting the value does not always invalidate the iterator, but it may // do so if the key is a pointer into the value object. template void STLDeleteContainerPairSecondPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete temp->second; } } // Counts the number of instances of val in a container. template typename std::iterator_traits< typename Container::const_iterator>::difference_type STLCount(const Container& container, const T& val) { return std::count(container.begin(), container.end(), val); } // Return a mutable char* pointing to a string's internal buffer, // which may not be null-terminated. Writing through this pointer will // modify the string. // // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the // next call to a string method that invalidates iterators. // // As of 2006-04, there is no standard-blessed way of getting a // mutable reference to a string's internal buffer. However, issue 530 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530) // proposes this as the method. According to Matt Austern, this should // already work on all current implementations. inline char* string_as_array(std::string* str) { // DO NOT USE const_cast(str->data()) return str->empty() ? NULL : &*str->begin(); } // The following functions are useful for cleaning up STL containers whose // elements point to allocated memory. // STLDeleteElements() deletes all the elements in an STL container and clears // the container. This function is suitable for use with a vector, set, // hash_set, or any other STL container which defines sensible begin(), end(), // and clear() methods. // // If container is NULL, this function is a no-op. // // As an alternative to calling STLDeleteElements() directly, consider // STLElementDeleter (defined below), which ensures that your container's // elements are deleted when the STLElementDeleter goes out of scope. template void STLDeleteElements(T* container) { if (!container) return; STLDeleteContainerPointers(container->begin(), container->end()); container->clear(); } // Given an STL container consisting of (key, value) pairs, STLDeleteValues // deletes all the "value" components and clears the container. Does nothing // in the case it's given a NULL pointer. template void STLDeleteValues(T* container) { if (!container) return; STLDeleteContainerPairSecondPointers(container->begin(), container->end()); container->clear(); } // The following classes provide a convenient way to delete all elements or // values from STL containers when they goes out of scope. This greatly // simplifies code that creates temporary objects and has multiple return // statements. Example: // // vector tmp_proto; // STLElementDeleter > d(&tmp_proto); // if (...) return false; // ... // return success; // Given a pointer to an STL container this class will delete all the element // pointers when it goes out of scope. template class STLElementDeleter { public: STLElementDeleter(T* container) : container_(container) {} ~STLElementDeleter() { STLDeleteElements(container_); } private: T* container_; }; // Given a pointer to an STL container this class will delete all the value // pointers when it goes out of scope. template class STLValueDeleter { public: STLValueDeleter(T* container) : container_(container) {} ~STLValueDeleter() { STLDeleteValues(container_); } private: T* container_; }; // Test to see if a set, map, hash_set or hash_map contains a particular key. // Returns true if the key is in the collection. template bool ContainsKey(const Collection& collection, const Key& key) { return collection.find(key) != collection.end(); } // Test to see if a collection like a vector contains a particular value. // Returns true if the value is in the collection. template bool ContainsValue(const Collection& collection, const Value& value) { return std::find(collection.begin(), collection.end(), value) != collection.end(); } namespace base { // Returns true if the container is sorted. template bool STLIsSorted(const Container& cont) { // Note: Use reverse iterator on container to ensure we only require // value_type to implement operator<. return std::adjacent_find(cont.rbegin(), cont.rend(), std::less()) == cont.rend(); } // Returns a new ResultType containing the difference of two sorted containers. template ResultType STLSetDifference(const Arg1& a1, const Arg2& a2) { DCHECK(STLIsSorted(a1)); DCHECK(STLIsSorted(a2)); ResultType difference; std::set_difference(a1.begin(), a1.end(), a2.begin(), a2.end(), std::inserter(difference, difference.end())); return difference; } // Returns a new ResultType containing the union of two sorted containers. template ResultType STLSetUnion(const Arg1& a1, const Arg2& a2) { DCHECK(STLIsSorted(a1)); DCHECK(STLIsSorted(a2)); ResultType result; std::set_union(a1.begin(), a1.end(), a2.begin(), a2.end(), std::inserter(result, result.end())); return result; } // Returns a new ResultType containing the intersection of two sorted // containers. template ResultType STLSetIntersection(const Arg1& a1, const Arg2& a2) { DCHECK(STLIsSorted(a1)); DCHECK(STLIsSorted(a2)); ResultType result; std::set_intersection(a1.begin(), a1.end(), a2.begin(), a2.end(), std::inserter(result, result.end())); return result; } // Returns true if the sorted container |a1| contains all elements of the sorted // container |a2|. template bool STLIncludes(const Arg1& a1, const Arg2& a2) { DCHECK(STLIsSorted(a1)); DCHECK(STLIsSorted(a2)); return std::includes(a1.begin(), a1.end(), a2.begin(), a2.end()); } } // namespace base #endif // BASE_STL_UTIL_H_