// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/string_util.h" #include "build/build_config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "base/basictypes.h" #include "base/logging.h" #include "base/singleton.h" #include "base/third_party/dmg_fp/dmg_fp.h" #include "base/utf_string_conversion_utils.h" #include "base/third_party/icu/icu_utf.h" namespace { // Force the singleton used by Empty[W]String[16] to be a unique type. This // prevents other code that might accidentally use Singleton from // getting our internal one. struct EmptyStrings { EmptyStrings() {} const std::string s; const std::wstring ws; const string16 s16; }; // Used by ReplaceStringPlaceholders to track the position in the string of // replaced parameters. struct ReplacementOffset { ReplacementOffset(uintptr_t parameter, size_t offset) : parameter(parameter), offset(offset) {} // Index of the parameter. uintptr_t parameter; // Starting position in the string. size_t offset; }; static bool CompareParameter(const ReplacementOffset& elem1, const ReplacementOffset& elem2) { return elem1.parameter < elem2.parameter; } // Generalized string-to-number conversion. // // StringToNumberTraits should provide: // - a typedef for string_type, the STL string type used as input. // - a typedef for value_type, the target numeric type. // - a static function, convert_func, which dispatches to an appropriate // strtol-like function and returns type value_type. // - a static function, valid_func, which validates |input| and returns a bool // indicating whether it is in proper form. This is used to check for // conditions that convert_func tolerates but should result in // StringToNumber returning false. For strtol-like funtions, valid_func // should check for leading whitespace. template bool StringToNumber(const typename StringToNumberTraits::string_type& input, typename StringToNumberTraits::value_type* output) { typedef StringToNumberTraits traits; errno = 0; // Thread-safe? It is on at least Mac, Linux, and Windows. typename traits::string_type::value_type* endptr = NULL; typename traits::value_type value = traits::convert_func(input.c_str(), &endptr); *output = value; // Cases to return false: // - If errno is ERANGE, there was an overflow or underflow. // - If the input string is empty, there was nothing to parse. // - If endptr does not point to the end of the string, there are either // characters remaining in the string after a parsed number, or the string // does not begin with a parseable number. endptr is compared to the // expected end given the string's stated length to correctly catch cases // where the string contains embedded NUL characters. // - valid_func determines that the input is not in preferred form. return errno == 0 && !input.empty() && input.c_str() + input.length() == endptr && traits::valid_func(input); } static int strtoi(const char *nptr, char **endptr, int base) { long res = strtol(nptr, endptr, base); #if __LP64__ // Long is 64-bits, we have to handle under/overflow ourselves. if (res > kint32max) { res = kint32max; errno = ERANGE; } else if (res < kint32min) { res = kint32min; errno = ERANGE; } #endif return static_cast(res); } static unsigned int strtoui(const char *nptr, char **endptr, int base) { unsigned long res = strtoul(nptr, endptr, base); #if __LP64__ // Long is 64-bits, we have to handle under/overflow ourselves. Test to see // if the result can fit into 32-bits (as signed or unsigned). if (static_cast(static_cast(res)) != static_cast(res) && static_cast(res) != res) { res = kuint32max; errno = ERANGE; } #endif return static_cast(res); } class StringToIntTraits { public: typedef std::string string_type; typedef int value_type; static const int kBase = 10; static inline value_type convert_func(const string_type::value_type* str, string_type::value_type** endptr) { return strtoi(str, endptr, kBase); } static inline bool valid_func(const string_type& str) { return !str.empty() && !isspace(str[0]); } }; class String16ToIntTraits { public: typedef string16 string_type; typedef int value_type; static const int kBase = 10; static inline value_type convert_func(const string_type::value_type* str, string_type::value_type** endptr) { #if defined(WCHAR_T_IS_UTF16) return wcstol(str, endptr, kBase); #elif defined(WCHAR_T_IS_UTF32) std::string ascii_string = UTF16ToASCII(string16(str)); char* ascii_end = NULL; value_type ret = strtoi(ascii_string.c_str(), &ascii_end, kBase); if (ascii_string.c_str() + ascii_string.length() == ascii_end) { *endptr = const_cast(str) + ascii_string.length(); } return ret; #endif } static inline bool valid_func(const string_type& str) { return !str.empty() && !iswspace(str[0]); } }; class StringToInt64Traits { public: typedef std::string string_type; typedef int64 value_type; static const int kBase = 10; static inline value_type convert_func(const string_type::value_type* str, string_type::value_type** endptr) { #ifdef OS_WIN return _strtoi64(str, endptr, kBase); #else // assume OS_POSIX return strtoll(str, endptr, kBase); #endif } static inline bool valid_func(const string_type& str) { return !str.empty() && !isspace(str[0]); } }; class String16ToInt64Traits { public: typedef string16 string_type; typedef int64 value_type; static const int kBase = 10; static inline value_type convert_func(const string_type::value_type* str, string_type::value_type** endptr) { #ifdef OS_WIN return _wcstoi64(str, endptr, kBase); #else // assume OS_POSIX std::string ascii_string = UTF16ToASCII(string16(str)); char* ascii_end = NULL; value_type ret = strtoll(ascii_string.c_str(), &ascii_end, kBase); if (ascii_string.c_str() + ascii_string.length() == ascii_end) { *endptr = const_cast(str) + ascii_string.length(); } return ret; #endif } static inline bool valid_func(const string_type& str) { return !str.empty() && !iswspace(str[0]); } }; // For the HexString variants, use the unsigned variants like strtoul for // convert_func so that input like "0x80000000" doesn't result in an overflow. class HexStringToIntTraits { public: typedef std::string string_type; typedef int value_type; static const int kBase = 16; static inline value_type convert_func(const string_type::value_type* str, string_type::value_type** endptr) { return strtoui(str, endptr, kBase); } static inline bool valid_func(const string_type& str) { return !str.empty() && !isspace(str[0]); } }; class HexString16ToIntTraits { public: typedef string16 string_type; typedef int value_type; static const int kBase = 16; static inline value_type convert_func(const string_type::value_type* str, string_type::value_type** endptr) { #if defined(WCHAR_T_IS_UTF16) return wcstoul(str, endptr, kBase); #elif defined(WCHAR_T_IS_UTF32) std::string ascii_string = UTF16ToASCII(string16(str)); char* ascii_end = NULL; value_type ret = strtoui(ascii_string.c_str(), &ascii_end, kBase); if (ascii_string.c_str() + ascii_string.length() == ascii_end) { *endptr = const_cast(str) + ascii_string.length(); } return ret; #endif } static inline bool valid_func(const string_type& str) { return !str.empty() && !iswspace(str[0]); } }; class StringToDoubleTraits { public: typedef std::string string_type; typedef double value_type; static inline value_type convert_func(const string_type::value_type* str, string_type::value_type** endptr) { return dmg_fp::strtod(str, endptr); } static inline bool valid_func(const string_type& str) { return !str.empty() && !isspace(str[0]); } }; class String16ToDoubleTraits { public: typedef string16 string_type; typedef double value_type; static inline value_type convert_func(const string_type::value_type* str, string_type::value_type** endptr) { // Because dmg_fp::strtod does not like char16, we convert it to ASCII. // In theory, this should be safe, but it's possible that 16-bit chars // might get ignored by accident causing something to be parsed when it // shouldn't. std::string ascii_string = UTF16ToASCII(string16(str)); char* ascii_end = NULL; value_type ret = dmg_fp::strtod(ascii_string.c_str(), &ascii_end); if (ascii_string.c_str() + ascii_string.length() == ascii_end) { // Put endptr at end of input string, so it's not recognized as an error. *endptr = const_cast(str) + ascii_string.length(); } return ret; } static inline bool valid_func(const string_type& str) { return !str.empty() && !iswspace(str[0]); } }; } // namespace namespace base { bool IsWprintfFormatPortable(const wchar_t* format) { for (const wchar_t* position = format; *position != '\0'; ++position) { if (*position == '%') { bool in_specification = true; bool modifier_l = false; while (in_specification) { // Eat up characters until reaching a known specifier. if (*++position == '\0') { // The format string ended in the middle of a specification. Call // it portable because no unportable specifications were found. The // string is equally broken on all platforms. return true; } if (*position == 'l') { // 'l' is the only thing that can save the 's' and 'c' specifiers. modifier_l = true; } else if (((*position == 's' || *position == 'c') && !modifier_l) || *position == 'S' || *position == 'C' || *position == 'F' || *position == 'D' || *position == 'O' || *position == 'U') { // Not portable. return false; } if (wcschr(L"diouxXeEfgGaAcspn%", *position)) { // Portable, keep scanning the rest of the format string. in_specification = false; } } } } return true; } } // namespace base const std::string& EmptyString() { return Singleton::get()->s; } const std::wstring& EmptyWString() { return Singleton::get()->ws; } const string16& EmptyString16() { return Singleton::get()->s16; } #define WHITESPACE_UNICODE \ 0x0009, /* to */ \ 0x000A, \ 0x000B, \ 0x000C, \ 0x000D, \ 0x0020, /* Space */ \ 0x0085, /* */ \ 0x00A0, /* No-Break Space */ \ 0x1680, /* Ogham Space Mark */ \ 0x180E, /* Mongolian Vowel Separator */ \ 0x2000, /* En Quad to Hair Space */ \ 0x2001, \ 0x2002, \ 0x2003, \ 0x2004, \ 0x2005, \ 0x2006, \ 0x2007, \ 0x2008, \ 0x2009, \ 0x200A, \ 0x200C, /* Zero Width Non-Joiner */ \ 0x2028, /* Line Separator */ \ 0x2029, /* Paragraph Separator */ \ 0x202F, /* Narrow No-Break Space */ \ 0x205F, /* Medium Mathematical Space */ \ 0x3000, /* Ideographic Space */ \ 0 const wchar_t kWhitespaceWide[] = { WHITESPACE_UNICODE }; const char16 kWhitespaceUTF16[] = { WHITESPACE_UNICODE }; const char kWhitespaceASCII[] = { 0x09, // to 0x0A, 0x0B, 0x0C, 0x0D, 0x20, // Space 0 }; const char kUtf8ByteOrderMark[] = "\xEF\xBB\xBF"; template bool RemoveCharsT(const STR& input, const typename STR::value_type remove_chars[], STR* output) { bool removed = false; size_t found; *output = input; found = output->find_first_of(remove_chars); while (found != STR::npos) { removed = true; output->replace(found, 1, STR()); found = output->find_first_of(remove_chars, found); } return removed; } bool RemoveChars(const std::wstring& input, const wchar_t remove_chars[], std::wstring* output) { return RemoveCharsT(input, remove_chars, output); } #if !defined(WCHAR_T_IS_UTF16) bool RemoveChars(const string16& input, const char16 remove_chars[], string16* output) { return RemoveCharsT(input, remove_chars, output); } #endif bool RemoveChars(const std::string& input, const char remove_chars[], std::string* output) { return RemoveCharsT(input, remove_chars, output); } template TrimPositions TrimStringT(const STR& input, const typename STR::value_type trim_chars[], TrimPositions positions, STR* output) { // Find the edges of leading/trailing whitespace as desired. const typename STR::size_type last_char = input.length() - 1; const typename STR::size_type first_good_char = (positions & TRIM_LEADING) ? input.find_first_not_of(trim_chars) : 0; const typename STR::size_type last_good_char = (positions & TRIM_TRAILING) ? input.find_last_not_of(trim_chars) : last_char; // When the string was all whitespace, report that we stripped off whitespace // from whichever position the caller was interested in. For empty input, we // stripped no whitespace, but we still need to clear |output|. if (input.empty() || (first_good_char == STR::npos) || (last_good_char == STR::npos)) { bool input_was_empty = input.empty(); // in case output == &input output->clear(); return input_was_empty ? TRIM_NONE : positions; } // Trim the whitespace. *output = input.substr(first_good_char, last_good_char - first_good_char + 1); // Return where we trimmed from. return static_cast( ((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) | ((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING)); } bool TrimString(const std::wstring& input, const wchar_t trim_chars[], std::wstring* output) { return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE; } #if !defined(WCHAR_T_IS_UTF16) bool TrimString(const string16& input, const char16 trim_chars[], string16* output) { return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE; } #endif bool TrimString(const std::string& input, const char trim_chars[], std::string* output) { return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE; } void TruncateUTF8ToByteSize(const std::string& input, const size_t byte_size, std::string* output) { DCHECK(output); if (byte_size > input.length()) { *output = input; return; } DCHECK_LE(byte_size, static_cast(kint32max)); // Note: This cast is necessary because CBU8_NEXT uses int32s. int32 truncation_length = static_cast(byte_size); int32 char_index = truncation_length - 1; const char* data = input.data(); // Using CBU8, we will move backwards from the truncation point // to the beginning of the string looking for a valid UTF8 // character. Once a full UTF8 character is found, we will // truncate the string to the end of that character. while (char_index >= 0) { int32 prev = char_index; uint32 code_point = 0; CBU8_NEXT(data, char_index, truncation_length, code_point); if (!base::IsValidCharacter(code_point) || !base::IsValidCodepoint(code_point)) { char_index = prev - 1; } else { break; } } if (char_index >= 0 ) *output = input.substr(0, char_index); else output->clear(); } TrimPositions TrimWhitespace(const std::wstring& input, TrimPositions positions, std::wstring* output) { return TrimStringT(input, kWhitespaceWide, positions, output); } #if !defined(WCHAR_T_IS_UTF16) TrimPositions TrimWhitespace(const string16& input, TrimPositions positions, string16* output) { return TrimStringT(input, kWhitespaceUTF16, positions, output); } #endif TrimPositions TrimWhitespaceASCII(const std::string& input, TrimPositions positions, std::string* output) { return TrimStringT(input, kWhitespaceASCII, positions, output); } // This function is only for backward-compatibility. // To be removed when all callers are updated. TrimPositions TrimWhitespace(const std::string& input, TrimPositions positions, std::string* output) { return TrimWhitespaceASCII(input, positions, output); } template STR CollapseWhitespaceT(const STR& text, bool trim_sequences_with_line_breaks) { STR result; result.resize(text.size()); // Set flags to pretend we're already in a trimmed whitespace sequence, so we // will trim any leading whitespace. bool in_whitespace = true; bool already_trimmed = true; int chars_written = 0; for (typename STR::const_iterator i(text.begin()); i != text.end(); ++i) { if (IsWhitespace(*i)) { if (!in_whitespace) { // Reduce all whitespace sequences to a single space. in_whitespace = true; result[chars_written++] = L' '; } if (trim_sequences_with_line_breaks && !already_trimmed && ((*i == '\n') || (*i == '\r'))) { // Whitespace sequences containing CR or LF are eliminated entirely. already_trimmed = true; --chars_written; } } else { // Non-whitespace chracters are copied straight across. in_whitespace = false; already_trimmed = false; result[chars_written++] = *i; } } if (in_whitespace && !already_trimmed) { // Any trailing whitespace is eliminated. --chars_written; } result.resize(chars_written); return result; } std::wstring CollapseWhitespace(const std::wstring& text, bool trim_sequences_with_line_breaks) { return CollapseWhitespaceT(text, trim_sequences_with_line_breaks); } #if !defined(WCHAR_T_IS_UTF16) string16 CollapseWhitespace(const string16& text, bool trim_sequences_with_line_breaks) { return CollapseWhitespaceT(text, trim_sequences_with_line_breaks); } #endif std::string CollapseWhitespaceASCII(const std::string& text, bool trim_sequences_with_line_breaks) { return CollapseWhitespaceT(text, trim_sequences_with_line_breaks); } bool ContainsOnlyWhitespaceASCII(const std::string& str) { for (std::string::const_iterator i(str.begin()); i != str.end(); ++i) { if (!IsAsciiWhitespace(*i)) return false; } return true; } bool ContainsOnlyWhitespace(const string16& str) { for (string16::const_iterator i(str.begin()); i != str.end(); ++i) { if (!IsWhitespace(*i)) return false; } return true; } template static bool ContainsOnlyCharsT(const STR& input, const STR& characters) { for (typename STR::const_iterator iter = input.begin(); iter != input.end(); ++iter) { if (characters.find(*iter) == STR::npos) return false; } return true; } bool ContainsOnlyChars(const std::wstring& input, const std::wstring& characters) { return ContainsOnlyCharsT(input, characters); } #if !defined(WCHAR_T_IS_UTF16) bool ContainsOnlyChars(const string16& input, const string16& characters) { return ContainsOnlyCharsT(input, characters); } #endif bool ContainsOnlyChars(const std::string& input, const std::string& characters) { return ContainsOnlyCharsT(input, characters); } std::string WideToASCII(const std::wstring& wide) { DCHECK(IsStringASCII(wide)) << wide; return std::string(wide.begin(), wide.end()); } std::wstring ASCIIToWide(const base::StringPiece& ascii) { DCHECK(IsStringASCII(ascii)) << ascii; return std::wstring(ascii.begin(), ascii.end()); } std::string UTF16ToASCII(const string16& utf16) { DCHECK(IsStringASCII(utf16)) << utf16; return std::string(utf16.begin(), utf16.end()); } string16 ASCIIToUTF16(const base::StringPiece& ascii) { DCHECK(IsStringASCII(ascii)) << ascii; return string16(ascii.begin(), ascii.end()); } // Latin1 is just the low range of Unicode, so we can copy directly to convert. bool WideToLatin1(const std::wstring& wide, std::string* latin1) { std::string output; output.resize(wide.size()); latin1->clear(); for (size_t i = 0; i < wide.size(); i++) { if (wide[i] > 255) return false; output[i] = static_cast(wide[i]); } latin1->swap(output); return true; } bool IsString8Bit(const std::wstring& str) { for (size_t i = 0; i < str.length(); i++) { if (str[i] > 255) return false; } return true; } template static bool DoIsStringASCII(const STR& str) { for (size_t i = 0; i < str.length(); i++) { typename ToUnsigned::Unsigned c = str[i]; if (c > 0x7F) return false; } return true; } bool IsStringASCII(const std::wstring& str) { return DoIsStringASCII(str); } #if !defined(WCHAR_T_IS_UTF16) bool IsStringASCII(const string16& str) { return DoIsStringASCII(str); } #endif bool IsStringASCII(const base::StringPiece& str) { return DoIsStringASCII(str); } bool IsStringUTF8(const std::string& str) { const char *src = str.data(); int32 src_len = static_cast(str.length()); int32 char_index = 0; while (char_index < src_len) { int32 code_point; CBU8_NEXT(src, char_index, src_len, code_point); if (!base::IsValidCharacter(code_point)) return false; } return true; } template static inline bool DoLowerCaseEqualsASCII(Iter a_begin, Iter a_end, const char* b) { for (Iter it = a_begin; it != a_end; ++it, ++b) { if (!*b || ToLowerASCII(*it) != *b) return false; } return *b == 0; } // Front-ends for LowerCaseEqualsASCII. bool LowerCaseEqualsASCII(const std::string& a, const char* b) { return DoLowerCaseEqualsASCII(a.begin(), a.end(), b); } bool LowerCaseEqualsASCII(const std::wstring& a, const char* b) { return DoLowerCaseEqualsASCII(a.begin(), a.end(), b); } #if !defined(WCHAR_T_IS_UTF16) bool LowerCaseEqualsASCII(const string16& a, const char* b) { return DoLowerCaseEqualsASCII(a.begin(), a.end(), b); } #endif bool LowerCaseEqualsASCII(std::string::const_iterator a_begin, std::string::const_iterator a_end, const char* b) { return DoLowerCaseEqualsASCII(a_begin, a_end, b); } bool LowerCaseEqualsASCII(std::wstring::const_iterator a_begin, std::wstring::const_iterator a_end, const char* b) { return DoLowerCaseEqualsASCII(a_begin, a_end, b); } #if !defined(WCHAR_T_IS_UTF16) bool LowerCaseEqualsASCII(string16::const_iterator a_begin, string16::const_iterator a_end, const char* b) { return DoLowerCaseEqualsASCII(a_begin, a_end, b); } #endif bool LowerCaseEqualsASCII(const char* a_begin, const char* a_end, const char* b) { return DoLowerCaseEqualsASCII(a_begin, a_end, b); } bool LowerCaseEqualsASCII(const wchar_t* a_begin, const wchar_t* a_end, const char* b) { return DoLowerCaseEqualsASCII(a_begin, a_end, b); } #if !defined(WCHAR_T_IS_UTF16) bool LowerCaseEqualsASCII(const char16* a_begin, const char16* a_end, const char* b) { return DoLowerCaseEqualsASCII(a_begin, a_end, b); } #endif bool EqualsASCII(const string16& a, const base::StringPiece& b) { if (a.length() != b.length()) return false; return std::equal(b.begin(), b.end(), a.begin()); } bool StartsWithASCII(const std::string& str, const std::string& search, bool case_sensitive) { if (case_sensitive) return str.compare(0, search.length(), search) == 0; else return base::strncasecmp(str.c_str(), search.c_str(), search.length()) == 0; } template bool StartsWithT(const STR& str, const STR& search, bool case_sensitive) { if (case_sensitive) { return str.compare(0, search.length(), search) == 0; } else { if (search.size() > str.size()) return false; return std::equal(search.begin(), search.end(), str.begin(), CaseInsensitiveCompare()); } } bool StartsWith(const std::wstring& str, const std::wstring& search, bool case_sensitive) { return StartsWithT(str, search, case_sensitive); } #if !defined(WCHAR_T_IS_UTF16) bool StartsWith(const string16& str, const string16& search, bool case_sensitive) { return StartsWithT(str, search, case_sensitive); } #endif template bool EndsWithT(const STR& str, const STR& search, bool case_sensitive) { typename STR::size_type str_length = str.length(); typename STR::size_type search_length = search.length(); if (search_length > str_length) return false; if (case_sensitive) { return str.compare(str_length - search_length, search_length, search) == 0; } else { return std::equal(search.begin(), search.end(), str.begin() + (str_length - search_length), CaseInsensitiveCompare()); } } bool EndsWith(const std::string& str, const std::string& search, bool case_sensitive) { return EndsWithT(str, search, case_sensitive); } bool EndsWith(const std::wstring& str, const std::wstring& search, bool case_sensitive) { return EndsWithT(str, search, case_sensitive); } #if !defined(WCHAR_T_IS_UTF16) bool EndsWith(const string16& str, const string16& search, bool case_sensitive) { return EndsWithT(str, search, case_sensitive); } #endif DataUnits GetByteDisplayUnits(int64 bytes) { // The byte thresholds at which we display amounts. A byte count is displayed // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1]. // This must match the DataUnits enum. static const int64 kUnitThresholds[] = { 0, // DATA_UNITS_BYTE, 3*1024, // DATA_UNITS_KIBIBYTE, 2*1024*1024, // DATA_UNITS_MEBIBYTE, 1024*1024*1024 // DATA_UNITS_GIBIBYTE, }; if (bytes < 0) { NOTREACHED() << "Negative bytes value"; return DATA_UNITS_BYTE; } int unit_index = arraysize(kUnitThresholds); while (--unit_index > 0) { if (bytes >= kUnitThresholds[unit_index]) break; } DCHECK(unit_index >= DATA_UNITS_BYTE && unit_index <= DATA_UNITS_GIBIBYTE); return DataUnits(unit_index); } // TODO(mpcomplete): deal with locale // Byte suffixes. This must match the DataUnits enum. static const wchar_t* const kByteStrings[] = { L"B", L"kB", L"MB", L"GB" }; static const wchar_t* const kSpeedStrings[] = { L"B/s", L"kB/s", L"MB/s", L"GB/s" }; std::wstring FormatBytesInternal(int64 bytes, DataUnits units, bool show_units, const wchar_t* const* suffix) { if (bytes < 0) { NOTREACHED() << "Negative bytes value"; return std::wstring(); } DCHECK(units >= DATA_UNITS_BYTE && units <= DATA_UNITS_GIBIBYTE); // Put the quantity in the right units. double unit_amount = static_cast(bytes); for (int i = 0; i < units; ++i) unit_amount /= 1024.0; wchar_t buf[64]; if (bytes != 0 && units != DATA_UNITS_BYTE && unit_amount < 100) base::swprintf(buf, arraysize(buf), L"%.1lf", unit_amount); else base::swprintf(buf, arraysize(buf), L"%.0lf", unit_amount); std::wstring ret(buf); if (show_units) { ret += L" "; ret += suffix[units]; } return ret; } std::wstring FormatBytes(int64 bytes, DataUnits units, bool show_units) { return FormatBytesInternal(bytes, units, show_units, kByteStrings); } std::wstring FormatSpeed(int64 bytes, DataUnits units, bool show_units) { return FormatBytesInternal(bytes, units, show_units, kSpeedStrings); } template void DoReplaceSubstringsAfterOffset(StringType* str, typename StringType::size_type start_offset, const StringType& find_this, const StringType& replace_with, bool replace_all) { if ((start_offset == StringType::npos) || (start_offset >= str->length())) return; DCHECK(!find_this.empty()); for (typename StringType::size_type offs(str->find(find_this, start_offset)); offs != StringType::npos; offs = str->find(find_this, offs)) { str->replace(offs, find_this.length(), replace_with); offs += replace_with.length(); if (!replace_all) break; } } void ReplaceFirstSubstringAfterOffset(string16* str, string16::size_type start_offset, const string16& find_this, const string16& replace_with) { DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with, false); // replace first instance } void ReplaceFirstSubstringAfterOffset(std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with) { DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with, false); // replace first instance } void ReplaceSubstringsAfterOffset(string16* str, string16::size_type start_offset, const string16& find_this, const string16& replace_with) { DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with, true); // replace all instances } void ReplaceSubstringsAfterOffset(std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with) { DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with, true); // replace all instances } // Overloaded wrappers around vsnprintf and vswprintf. The buf_size parameter // is the size of the buffer. These return the number of characters in the // formatted string excluding the NUL terminator. If the buffer is not // large enough to accommodate the formatted string without truncation, they // return the number of characters that would be in the fully-formatted string // (vsnprintf, and vswprintf on Windows), or -1 (vswprintf on POSIX platforms). inline int vsnprintfT(char* buffer, size_t buf_size, const char* format, va_list argptr) { return base::vsnprintf(buffer, buf_size, format, argptr); } inline int vsnprintfT(wchar_t* buffer, size_t buf_size, const wchar_t* format, va_list argptr) { return base::vswprintf(buffer, buf_size, format, argptr); } // Templatized backend for StringPrintF/StringAppendF. This does not finalize // the va_list, the caller is expected to do that. template static void StringAppendVT(StringType* dst, const typename StringType::value_type* format, va_list ap) { // First try with a small fixed size buffer. // This buffer size should be kept in sync with StringUtilTest.GrowBoundary // and StringUtilTest.StringPrintfBounds. typename StringType::value_type stack_buf[1024]; va_list ap_copy; GG_VA_COPY(ap_copy, ap); #if !defined(OS_WIN) errno = 0; #endif int result = vsnprintfT(stack_buf, arraysize(stack_buf), format, ap_copy); va_end(ap_copy); if (result >= 0 && result < static_cast(arraysize(stack_buf))) { // It fit. dst->append(stack_buf, result); return; } // Repeatedly increase buffer size until it fits. int mem_length = arraysize(stack_buf); while (true) { if (result < 0) { #if !defined(OS_WIN) // On Windows, vsnprintfT always returns the number of characters in a // fully-formatted string, so if we reach this point, something else is // wrong and no amount of buffer-doubling is going to fix it. if (errno != 0 && errno != EOVERFLOW) #endif { // If an error other than overflow occurred, it's never going to work. DLOG(WARNING) << "Unable to printf the requested string due to error."; return; } // Try doubling the buffer size. mem_length *= 2; } else { // We need exactly "result + 1" characters. mem_length = result + 1; } if (mem_length > 32 * 1024 * 1024) { // That should be plenty, don't try anything larger. This protects // against huge allocations when using vsnprintfT implementations that // return -1 for reasons other than overflow without setting errno. DLOG(WARNING) << "Unable to printf the requested string due to size."; return; } std::vector mem_buf(mem_length); // NOTE: You can only use a va_list once. Since we're in a while loop, we // need to make a new copy each time so we don't use up the original. GG_VA_COPY(ap_copy, ap); result = vsnprintfT(&mem_buf[0], mem_length, format, ap_copy); va_end(ap_copy); if ((result >= 0) && (result < mem_length)) { // It fit. dst->append(&mem_buf[0], result); return; } } } namespace { template struct IntToStringT { // This is to avoid a compiler warning about unary minus on unsigned type. // For example, say you had the following code: // template // INT abs(INT value) { return value < 0 ? -value : value; } // Even though if INT is unsigned, it's impossible for value < 0, so the // unary minus will never be taken, the compiler will still generate a // warning. We do a little specialization dance... template struct ToUnsignedT { }; template struct ToUnsignedT { static UINT2 ToUnsigned(INT2 value) { return static_cast(value); } }; template struct ToUnsignedT { static UINT2 ToUnsigned(INT2 value) { return static_cast(value < 0 ? -value : value); } }; // This set of templates is very similar to the above templates, but // for testing whether an integer is negative. template struct TestNegT { }; template struct TestNegT { static bool TestNeg(INT2 value) { // value is unsigned, and can never be negative. return false; } }; template struct TestNegT { static bool TestNeg(INT2 value) { return value < 0; } }; static STR IntToString(INT value) { // log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4. // So round up to allocate 3 output characters per byte, plus 1 for '-'. const int kOutputBufSize = 3 * sizeof(INT) + 1; // Allocate the whole string right away, we will right back to front, and // then return the substr of what we ended up using. STR outbuf(kOutputBufSize, 0); bool is_neg = TestNegT::TestNeg(value); // Even though is_neg will never be true when INT is parameterized as // unsigned, even the presence of the unary operation causes a warning. UINT res = ToUnsignedT::ToUnsigned(value); for (typename STR::iterator it = outbuf.end();;) { --it; DCHECK(it != outbuf.begin()); *it = static_cast((res % 10) + '0'); res /= 10; // We're done.. if (res == 0) { if (is_neg) { --it; DCHECK(it != outbuf.begin()); *it = static_cast('-'); } return STR(it, outbuf.end()); } } NOTREACHED(); return STR(); } }; } std::string IntToString(int value) { return IntToStringT:: IntToString(value); } std::wstring IntToWString(int value) { return IntToStringT:: IntToString(value); } string16 IntToString16(int value) { return IntToStringT:: IntToString(value); } std::string UintToString(unsigned int value) { return IntToStringT:: IntToString(value); } std::wstring UintToWString(unsigned int value) { return IntToStringT:: IntToString(value); } string16 UintToString16(unsigned int value) { return IntToStringT:: IntToString(value); } std::string Int64ToString(int64 value) { return IntToStringT:: IntToString(value); } std::wstring Int64ToWString(int64 value) { return IntToStringT:: IntToString(value); } std::string Uint64ToString(uint64 value) { return IntToStringT:: IntToString(value); } std::wstring Uint64ToWString(uint64 value) { return IntToStringT:: IntToString(value); } std::string DoubleToString(double value) { // According to g_fmt.cc, it is sufficient to declare a buffer of size 32. char buffer[32]; dmg_fp::g_fmt(buffer, value); return std::string(buffer); } std::wstring DoubleToWString(double value) { return ASCIIToWide(DoubleToString(value)); } void StringAppendV(std::string* dst, const char* format, va_list ap) { StringAppendVT(dst, format, ap); } void StringAppendV(std::wstring* dst, const wchar_t* format, va_list ap) { StringAppendVT(dst, format, ap); } std::string StringPrintf(const char* format, ...) { va_list ap; va_start(ap, format); std::string result; StringAppendV(&result, format, ap); va_end(ap); return result; } std::wstring StringPrintf(const wchar_t* format, ...) { va_list ap; va_start(ap, format); std::wstring result; StringAppendV(&result, format, ap); va_end(ap); return result; } std::string StringPrintV(const char* format, va_list ap) { std::string result; StringAppendV(&result, format, ap); return result; } const std::string& SStringPrintf(std::string* dst, const char* format, ...) { va_list ap; va_start(ap, format); dst->clear(); StringAppendV(dst, format, ap); va_end(ap); return *dst; } const std::wstring& SStringPrintf(std::wstring* dst, const wchar_t* format, ...) { va_list ap; va_start(ap, format); dst->clear(); StringAppendV(dst, format, ap); va_end(ap); return *dst; } void StringAppendF(std::string* dst, const char* format, ...) { va_list ap; va_start(ap, format); StringAppendV(dst, format, ap); va_end(ap); } void StringAppendF(std::wstring* dst, const wchar_t* format, ...) { va_list ap; va_start(ap, format); StringAppendV(dst, format, ap); va_end(ap); } template static void SplitStringT(const STR& str, const typename STR::value_type s, bool trim_whitespace, std::vector* r) { size_t last = 0; size_t i; size_t c = str.size(); for (i = 0; i <= c; ++i) { if (i == c || str[i] == s) { size_t len = i - last; STR tmp = str.substr(last, len); if (trim_whitespace) { STR t_tmp; TrimWhitespace(tmp, TRIM_ALL, &t_tmp); r->push_back(t_tmp); } else { r->push_back(tmp); } last = i + 1; } } } void SplitString(const std::wstring& str, wchar_t s, std::vector* r) { SplitStringT(str, s, true, r); } #if !defined(WCHAR_T_IS_UTF16) void SplitString(const string16& str, char16 s, std::vector* r) { SplitStringT(str, s, true, r); } #endif void SplitString(const std::string& str, char s, std::vector* r) { SplitStringT(str, s, true, r); } void SplitStringDontTrim(const std::wstring& str, wchar_t s, std::vector* r) { SplitStringT(str, s, false, r); } #if !defined(WCHAR_T_IS_UTF16) void SplitStringDontTrim(const string16& str, char16 s, std::vector* r) { SplitStringT(str, s, false, r); } #endif void SplitStringDontTrim(const std::string& str, char s, std::vector* r) { SplitStringT(str, s, false, r); } template static void SplitStringUsingSubstrT(const STR& str, const STR& s, std::vector* r) { typename STR::size_type begin_index = 0; while (true) { const typename STR::size_type end_index = str.find(s, begin_index); if (end_index == STR::npos) { const STR term = str.substr(begin_index); STR tmp; TrimWhitespace(term, TRIM_ALL, &tmp); r->push_back(tmp); return; } const STR term = str.substr(begin_index, end_index - begin_index); STR tmp; TrimWhitespace(term, TRIM_ALL, &tmp); r->push_back(tmp); begin_index = end_index + s.size(); } } void SplitStringUsingSubstr(const string16& str, const string16& s, std::vector* r) { SplitStringUsingSubstrT(str, s, r); } void SplitStringUsingSubstr(const std::string& str, const std::string& s, std::vector* r) { SplitStringUsingSubstrT(str, s, r); } template static size_t TokenizeT(const STR& str, const STR& delimiters, std::vector* tokens) { tokens->clear(); typename STR::size_type start = str.find_first_not_of(delimiters); while (start != STR::npos) { typename STR::size_type end = str.find_first_of(delimiters, start + 1); if (end == STR::npos) { tokens->push_back(str.substr(start)); break; } else { tokens->push_back(str.substr(start, end - start)); start = str.find_first_not_of(delimiters, end + 1); } } return tokens->size(); } size_t Tokenize(const std::wstring& str, const std::wstring& delimiters, std::vector* tokens) { return TokenizeT(str, delimiters, tokens); } #if !defined(WCHAR_T_IS_UTF16) size_t Tokenize(const string16& str, const string16& delimiters, std::vector* tokens) { return TokenizeT(str, delimiters, tokens); } #endif size_t Tokenize(const std::string& str, const std::string& delimiters, std::vector* tokens) { return TokenizeT(str, delimiters, tokens); } size_t Tokenize(const base::StringPiece& str, const base::StringPiece& delimiters, std::vector* tokens) { return TokenizeT(str, delimiters, tokens); } template static STR JoinStringT(const std::vector& parts, typename STR::value_type sep) { if (parts.size() == 0) return STR(); STR result(parts[0]); typename std::vector::const_iterator iter = parts.begin(); ++iter; for (; iter != parts.end(); ++iter) { result += sep; result += *iter; } return result; } std::string JoinString(const std::vector& parts, char sep) { return JoinStringT(parts, sep); } #if !defined(WCHAR_T_IS_UTF16) string16 JoinString(const std::vector& parts, char16 sep) { return JoinStringT(parts, sep); } #endif std::wstring JoinString(const std::vector& parts, wchar_t sep) { return JoinStringT(parts, sep); } template void SplitStringAlongWhitespaceT(const STR& str, std::vector* result) { const size_t length = str.length(); if (!length) return; bool last_was_ws = false; size_t last_non_ws_start = 0; for (size_t i = 0; i < length; ++i) { switch (str[i]) { // HTML 5 defines whitespace as: space, tab, LF, line tab, FF, or CR. case L' ': case L'\t': case L'\xA': case L'\xB': case L'\xC': case L'\xD': if (!last_was_ws) { if (i > 0) { result->push_back( str.substr(last_non_ws_start, i - last_non_ws_start)); } last_was_ws = true; } break; default: // Not a space character. if (last_was_ws) { last_was_ws = false; last_non_ws_start = i; } break; } } if (!last_was_ws) { result->push_back( str.substr(last_non_ws_start, length - last_non_ws_start)); } } void SplitStringAlongWhitespace(const std::wstring& str, std::vector* result) { SplitStringAlongWhitespaceT(str, result); } #if !defined(WCHAR_T_IS_UTF16) void SplitStringAlongWhitespace(const string16& str, std::vector* result) { SplitStringAlongWhitespaceT(str, result); } #endif void SplitStringAlongWhitespace(const std::string& str, std::vector* result) { SplitStringAlongWhitespaceT(str, result); } template OutStringType DoReplaceStringPlaceholders(const FormatStringType& format_string, const std::vector& subst, std::vector* offsets) { size_t substitutions = subst.size(); DCHECK(substitutions < 10); size_t sub_length = 0; for (typename std::vector::const_iterator iter = subst.begin(); iter != subst.end(); ++iter) { sub_length += (*iter).length(); } OutStringType formatted; formatted.reserve(format_string.length() + sub_length); std::vector r_offsets; for (typename FormatStringType::const_iterator i = format_string.begin(); i != format_string.end(); ++i) { if ('$' == *i) { if (i + 1 != format_string.end()) { ++i; DCHECK('$' == *i || '1' <= *i) << "Invalid placeholder: " << *i; if ('$' == *i) { formatted.push_back('$'); } else { uintptr_t index = *i - '1'; if (offsets) { ReplacementOffset r_offset(index, static_cast(formatted.size())); r_offsets.insert(std::lower_bound(r_offsets.begin(), r_offsets.end(), r_offset, &CompareParameter), r_offset); } if (index < substitutions) formatted.append(subst.at(index)); } } } else { formatted.push_back(*i); } } if (offsets) { for (std::vector::const_iterator i = r_offsets.begin(); i != r_offsets.end(); ++i) { offsets->push_back(i->offset); } } return formatted; } string16 ReplaceStringPlaceholders(const string16& format_string, const std::vector& subst, std::vector* offsets) { return DoReplaceStringPlaceholders(format_string, subst, offsets); } std::string ReplaceStringPlaceholders(const base::StringPiece& format_string, const std::vector& subst, std::vector* offsets) { return DoReplaceStringPlaceholders(format_string, subst, offsets); } string16 ReplaceStringPlaceholders(const string16& format_string, const string16& a, size_t* offset) { std::vector offsets; std::vector subst; subst.push_back(a); string16 result = ReplaceStringPlaceholders(format_string, subst, &offsets); DCHECK(offsets.size() == 1); if (offset) { *offset = offsets[0]; } return result; } template static bool IsWildcard(CHAR character) { return character == '*' || character == '?'; } // Move the strings pointers to the point where they start to differ. template static void EatSameChars(const CHAR** pattern, const CHAR** string) { bool escaped = false; while (**pattern && **string) { if (!escaped && IsWildcard(**pattern)) { // We don't want to match wildcard here, except if it's escaped. return; } // Check if the escapement char is found. If so, skip it and move to the // next character. if (!escaped && **pattern == L'\\') { escaped = true; (*pattern)++; continue; } // Check if the chars match, if so, increment the ptrs. if (**pattern == **string) { (*pattern)++; (*string)++; } else { // Uh ho, it did not match, we are done. If the last char was an // escapement, that means that it was an error to advance the ptr here, // let's put it back where it was. This also mean that the MatchPattern // function will return false because if we can't match an escape char // here, then no one will. if (escaped) { (*pattern)--; } return; } escaped = false; } } template static void EatWildcard(const CHAR** pattern) { while (**pattern) { if (!IsWildcard(**pattern)) return; (*pattern)++; } } template static bool MatchPatternT(const CHAR* eval, const CHAR* pattern, int depth) { const int kMaxDepth = 16; if (depth > kMaxDepth) return false; // Eat all the matching chars. EatSameChars(&pattern, &eval); // If the string is empty, then the pattern must be empty too, or contains // only wildcards. if (*eval == 0) { EatWildcard(&pattern); if (*pattern) return false; return true; } // Pattern is empty but not string, this is not a match. if (*pattern == 0) return false; // If this is a question mark, then we need to compare the rest with // the current string or the string with one character eaten. if (pattern[0] == '?') { if (MatchPatternT(eval, pattern + 1, depth + 1) || MatchPatternT(eval + 1, pattern + 1, depth + 1)) return true; } // This is a *, try to match all the possible substrings with the remainder // of the pattern. if (pattern[0] == '*') { while (*eval) { if (MatchPatternT(eval, pattern + 1, depth + 1)) return true; eval++; } // We reached the end of the string, let see if the pattern contains only // wildcards. if (*eval == 0) { EatWildcard(&pattern); if (*pattern) return false; return true; } } return false; } bool MatchPatternWide(const std::wstring& eval, const std::wstring& pattern) { return MatchPatternT(eval.c_str(), pattern.c_str(), 0); } bool MatchPatternASCII(const std::string& eval, const std::string& pattern) { DCHECK(IsStringASCII(eval) && IsStringASCII(pattern)); return MatchPatternT(eval.c_str(), pattern.c_str(), 0); } bool StringToInt(const std::string& input, int* output) { return StringToNumber(input, output); } bool StringToInt(const string16& input, int* output) { return StringToNumber(input, output); } bool StringToInt64(const std::string& input, int64* output) { return StringToNumber(input, output); } bool StringToInt64(const string16& input, int64* output) { return StringToNumber(input, output); } bool HexStringToInt(const std::string& input, int* output) { return StringToNumber(input, output); } bool HexStringToInt(const string16& input, int* output) { return StringToNumber(input, output); } namespace { template bool HexDigitToIntT(const CHAR digit, uint8* val) { if (digit >= '0' && digit <= '9') *val = digit - '0'; else if (digit >= 'a' && digit <= 'f') *val = 10 + digit - 'a'; else if (digit >= 'A' && digit <= 'F') *val = 10 + digit - 'A'; else return false; return true; } template bool HexStringToBytesT(const STR& input, std::vector* output) { DCHECK(output->size() == 0); size_t count = input.size(); if (count == 0 || (count % 2) != 0) return false; for (uintptr_t i = 0; i < count / 2; ++i) { uint8 msb = 0; // most significant 4 bits uint8 lsb = 0; // least significant 4 bits if (!HexDigitToIntT(input[i * 2], &msb) || !HexDigitToIntT(input[i * 2 + 1], &lsb)) return false; output->push_back((msb << 4) | lsb); } return true; } } // namespace bool HexStringToBytes(const std::string& input, std::vector* output) { return HexStringToBytesT(input, output); } bool HexStringToBytes(const string16& input, std::vector* output) { return HexStringToBytesT(input, output); } int StringToInt(const std::string& value) { int result; StringToInt(value, &result); return result; } int StringToInt(const string16& value) { int result; StringToInt(value, &result); return result; } int64 StringToInt64(const std::string& value) { int64 result; StringToInt64(value, &result); return result; } int64 StringToInt64(const string16& value) { int64 result; StringToInt64(value, &result); return result; } int HexStringToInt(const std::string& value) { int result; HexStringToInt(value, &result); return result; } int HexStringToInt(const string16& value) { int result; HexStringToInt(value, &result); return result; } bool StringToDouble(const std::string& input, double* output) { return StringToNumber(input, output); } bool StringToDouble(const string16& input, double* output) { return StringToNumber(input, output); } double StringToDouble(const std::string& value) { double result; StringToDouble(value, &result); return result; } double StringToDouble(const string16& value) { double result; StringToDouble(value, &result); return result; } // The following code is compatible with the OpenBSD lcpy interface. See: // http://www.gratisoft.us/todd/papers/strlcpy.html // ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c namespace { template size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) { for (size_t i = 0; i < dst_size; ++i) { if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL. return i; } // We were left off at dst_size. We over copied 1 byte. Null terminate. if (dst_size != 0) dst[dst_size - 1] = 0; // Count the rest of the |src|, and return it's length in characters. while (src[dst_size]) ++dst_size; return dst_size; } } // namespace size_t base::strlcpy(char* dst, const char* src, size_t dst_size) { return lcpyT(dst, src, dst_size); } size_t base::wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) { return lcpyT(dst, src, dst_size); } bool ElideString(const std::wstring& input, int max_len, std::wstring* output) { DCHECK(max_len >= 0); if (static_cast(input.length()) <= max_len) { output->assign(input); return false; } switch (max_len) { case 0: output->clear(); break; case 1: output->assign(input.substr(0, 1)); break; case 2: output->assign(input.substr(0, 2)); break; case 3: output->assign(input.substr(0, 1) + L"." + input.substr(input.length() - 1)); break; case 4: output->assign(input.substr(0, 1) + L".." + input.substr(input.length() - 1)); break; default: { int rstr_len = (max_len - 3) / 2; int lstr_len = rstr_len + ((max_len - 3) % 2); output->assign(input.substr(0, lstr_len) + L"..." + input.substr(input.length() - rstr_len)); break; } } return true; } std::string HexEncode(const void* bytes, size_t size) { static const char kHexChars[] = "0123456789ABCDEF"; // Each input byte creates two output hex characters. std::string ret(size * 2, '\0'); for (size_t i = 0; i < size; ++i) { char b = reinterpret_cast(bytes)[i]; ret[(i * 2)] = kHexChars[(b >> 4) & 0xf]; ret[(i * 2) + 1] = kHexChars[b & 0xf]; } return ret; }