// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // This file defines utility functions for working with strings. #ifndef BASE_STRING_UTIL_H_ #define BASE_STRING_UTIL_H_ #include // va_list #include #include #include "base/basictypes.h" #include "base/string16.h" #include "base/string_piece.h" // For implicit conversions. // TODO(brettw) this dependency should be removed and callers that need // these functions should include this file directly. #include "base/utf_string_conversions.h" // Safe standard library wrappers for all platforms. namespace base { // C standard-library functions like "strncasecmp" and "snprintf" that aren't // cross-platform are provided as "base::strncasecmp", and their prototypes // are listed below. These functions are then implemented as inline calls // to the platform-specific equivalents in the platform-specific headers. // Compare the two strings s1 and s2 without regard to case using // the current locale; returns 0 if they are equal, 1 if s1 > s2, and -1 if // s2 > s1 according to a lexicographic comparison. int strcasecmp(const char* s1, const char* s2); // Compare up to count characters of s1 and s2 without regard to case using // the current locale; returns 0 if they are equal, 1 if s1 > s2, and -1 if // s2 > s1 according to a lexicographic comparison. int strncasecmp(const char* s1, const char* s2, size_t count); // Wrapper for vsnprintf that always null-terminates and always returns the // number of characters that would be in an untruncated formatted // string, even when truncation occurs. int vsnprintf(char* buffer, size_t size, const char* format, va_list arguments); // vswprintf always null-terminates, but when truncation occurs, it will either // return -1 or the number of characters that would be in an untruncated // formatted string. The actual return value depends on the underlying // C library's vswprintf implementation. int vswprintf(wchar_t* buffer, size_t size, const wchar_t* format, va_list arguments); // Some of these implementations need to be inlined. inline int snprintf(char* buffer, size_t size, const char* format, ...) { va_list arguments; va_start(arguments, format); int result = vsnprintf(buffer, size, format, arguments); va_end(arguments); return result; } inline int swprintf(wchar_t* buffer, size_t size, const wchar_t* format, ...) { va_list arguments; va_start(arguments, format); int result = vswprintf(buffer, size, format, arguments); va_end(arguments); return result; } // BSD-style safe and consistent string copy functions. // Copies |src| to |dst|, where |dst_size| is the total allocated size of |dst|. // Copies at most |dst_size|-1 characters, and always NULL terminates |dst|, as // long as |dst_size| is not 0. Returns the length of |src| in characters. // If the return value is >= dst_size, then the output was truncated. // NOTE: All sizes are in number of characters, NOT in bytes. size_t strlcpy(char* dst, const char* src, size_t dst_size); size_t wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size); // Scan a wprintf format string to determine whether it's portable across a // variety of systems. This function only checks that the conversion // specifiers used by the format string are supported and have the same meaning // on a variety of systems. It doesn't check for other errors that might occur // within a format string. // // Nonportable conversion specifiers for wprintf are: // - 's' and 'c' without an 'l' length modifier. %s and %c operate on char // data on all systems except Windows, which treat them as wchar_t data. // Use %ls and %lc for wchar_t data instead. // - 'S' and 'C', which operate on wchar_t data on all systems except Windows, // which treat them as char data. Use %ls and %lc for wchar_t data // instead. // - 'F', which is not identified by Windows wprintf documentation. // - 'D', 'O', and 'U', which are deprecated and not available on all systems. // Use %ld, %lo, and %lu instead. // // Note that there is no portable conversion specifier for char data when // working with wprintf. // // This function is intended to be called from base::vswprintf. bool IsWprintfFormatPortable(const wchar_t* format); } // namespace base #if defined(OS_WIN) #include "base/string_util_win.h" #elif defined(OS_POSIX) #include "base/string_util_posix.h" #else #error Define string operations appropriately for your platform #endif // Returns a reference to a globally unique empty string that functions can // return. Use this to avoid static construction of strings, not to replace // any and all uses of "std::string()" as nicer-looking sugar. // These functions are threadsafe. const std::string& EmptyString(); const std::wstring& EmptyWString(); const string16& EmptyString16(); extern const wchar_t kWhitespaceWide[]; extern const char16 kWhitespaceUTF16[]; extern const char kWhitespaceASCII[]; // Removes characters in trim_chars from the beginning and end of input. // NOTE: Safe to use the same variable for both input and output. bool TrimString(const std::wstring& input, const wchar_t trim_chars[], std::wstring* output); bool TrimString(const string16& input, const char16 trim_chars[], string16* output); bool TrimString(const std::string& input, const char trim_chars[], std::string* output); // Trims any whitespace from either end of the input string. Returns where // whitespace was found. // The non-wide version has two functions: // * TrimWhitespaceASCII() // This function is for ASCII strings and only looks for ASCII whitespace; // Please choose the best one according to your usage. // NOTE: Safe to use the same variable for both input and output. enum TrimPositions { TRIM_NONE = 0, TRIM_LEADING = 1 << 0, TRIM_TRAILING = 1 << 1, TRIM_ALL = TRIM_LEADING | TRIM_TRAILING, }; TrimPositions TrimWhitespace(const std::wstring& input, TrimPositions positions, std::wstring* output); TrimPositions TrimWhitespace(const string16& input, TrimPositions positions, string16* output); TrimPositions TrimWhitespaceASCII(const std::string& input, TrimPositions positions, std::string* output); // Deprecated. This function is only for backward compatibility and calls // TrimWhitespaceASCII(). TrimPositions TrimWhitespace(const std::string& input, TrimPositions positions, std::string* output); // Searches for CR or LF characters. Removes all contiguous whitespace // strings that contain them. This is useful when trying to deal with text // copied from terminals. // Returns |text|, with the following three transformations: // (1) Leading and trailing whitespace is trimmed. // (2) If |trim_sequences_with_line_breaks| is true, any other whitespace // sequences containing a CR or LF are trimmed. // (3) All other whitespace sequences are converted to single spaces. std::wstring CollapseWhitespace(const std::wstring& text, bool trim_sequences_with_line_breaks); string16 CollapseWhitespace(const string16& text, bool trim_sequences_with_line_breaks); std::string CollapseWhitespaceASCII(const std::string& text, bool trim_sequences_with_line_breaks); // These convert between ASCII (7-bit) and Wide/UTF16 strings. std::string WideToASCII(const std::wstring& wide); std::wstring ASCIIToWide(const base::StringPiece& ascii); std::string UTF16ToASCII(const string16& utf16); string16 ASCIIToUTF16(const base::StringPiece& ascii); // Converts the given wide string to the corresponding Latin1. This will fail // (return false) if any characters are more than 255. bool WideToLatin1(const std::wstring& wide, std::string* latin1); // Returns true if the specified string matches the criteria. How can a wide // string be 8-bit or UTF8? It contains only characters that are < 256 (in the // first case) or characters that use only 8-bits and whose 8-bit // representation looks like a UTF-8 string (the second case). // // Note that IsStringUTF8 checks not only if the input is structrually // valid but also if it doesn't contain any non-character codepoint // (e.g. U+FFFE). It's done on purpose because all the existing callers want // to have the maximum 'discriminating' power from other encodings. If // there's a use case for just checking the structural validity, we have to // add a new function for that. bool IsString8Bit(const std::wstring& str); bool IsStringUTF8(const std::string& str); bool IsStringWideUTF8(const std::wstring& str); bool IsStringASCII(const std::wstring& str); bool IsStringASCII(const base::StringPiece& str); bool IsStringASCII(const string16& str); // ASCII-specific tolower. The standard library's tolower is locale sensitive, // so we don't want to use it here. template inline Char ToLowerASCII(Char c) { return (c >= 'A' && c <= 'Z') ? (c + ('a' - 'A')) : c; } // Converts the elements of the given string. This version uses a pointer to // clearly differentiate it from the non-pointer variant. template inline void StringToLowerASCII(str* s) { for (typename str::iterator i = s->begin(); i != s->end(); ++i) *i = ToLowerASCII(*i); } template inline str StringToLowerASCII(const str& s) { // for std::string and std::wstring str output(s); StringToLowerASCII(&output); return output; } // ASCII-specific toupper. The standard library's toupper is locale sensitive, // so we don't want to use it here. template inline Char ToUpperASCII(Char c) { return (c >= 'a' && c <= 'z') ? (c + ('A' - 'a')) : c; } // Converts the elements of the given string. This version uses a pointer to // clearly differentiate it from the non-pointer variant. template inline void StringToUpperASCII(str* s) { for (typename str::iterator i = s->begin(); i != s->end(); ++i) *i = ToUpperASCII(*i); } template inline str StringToUpperASCII(const str& s) { // for std::string and std::wstring str output(s); StringToUpperASCII(&output); return output; } // Compare the lower-case form of the given string against the given ASCII // string. This is useful for doing checking if an input string matches some // token, and it is optimized to avoid intermediate string copies. This API is // borrowed from the equivalent APIs in Mozilla. bool LowerCaseEqualsASCII(const std::string& a, const char* b); bool LowerCaseEqualsASCII(const std::wstring& a, const char* b); bool LowerCaseEqualsASCII(const string16& a, const char* b); // Same thing, but with string iterators instead. bool LowerCaseEqualsASCII(std::string::const_iterator a_begin, std::string::const_iterator a_end, const char* b); bool LowerCaseEqualsASCII(std::wstring::const_iterator a_begin, std::wstring::const_iterator a_end, const char* b); bool LowerCaseEqualsASCII(string16::const_iterator a_begin, string16::const_iterator a_end, const char* b); bool LowerCaseEqualsASCII(const char* a_begin, const char* a_end, const char* b); bool LowerCaseEqualsASCII(const wchar_t* a_begin, const wchar_t* a_end, const char* b); bool LowerCaseEqualsASCII(const char16* a_begin, const char16* a_end, const char* b); // Performs a case-sensitive string compare. The behavior is undefined if both // strings are not ASCII. bool EqualsASCII(const string16& a, const base::StringPiece& b); // Returns true if str starts with search, or false otherwise. bool StartsWithASCII(const std::string& str, const std::string& search, bool case_sensitive); bool StartsWith(const std::wstring& str, const std::wstring& search, bool case_sensitive); bool StartsWith(const string16& str, const string16& search, bool case_sensitive); // Returns true if str ends with search, or false otherwise. bool EndsWith(const std::string& str, const std::string& search, bool case_sensitive); bool EndsWith(const std::wstring& str, const std::wstring& search, bool case_sensitive); bool EndsWith(const string16& str, const string16& search, bool case_sensitive); // Determines the type of ASCII character, independent of locale (the C // library versions will change based on locale). template inline bool IsAsciiWhitespace(Char c) { return c == ' ' || c == '\r' || c == '\n' || c == '\t'; } template inline bool IsAsciiAlpha(Char c) { return ((c >= 'A') && (c <= 'Z')) || ((c >= 'a') && (c <= 'z')); } template inline bool IsAsciiDigit(Char c) { return c >= '0' && c <= '9'; } // Returns true if it's a whitespace character. inline bool IsWhitespace(wchar_t c) { return wcschr(kWhitespaceWide, c) != NULL; } // TODO(mpcomplete): Decide if we should change these names to KIBI, etc, // or if we should actually use metric units, or leave as is. enum DataUnits { DATA_UNITS_BYTE = 0, DATA_UNITS_KILOBYTE, DATA_UNITS_MEGABYTE, DATA_UNITS_GIGABYTE, }; // Return the unit type that is appropriate for displaying the amount of bytes // passed in. DataUnits GetByteDisplayUnits(int64 bytes); // Return a byte string in human-readable format, displayed in units appropriate // specified by 'units', with an optional unit suffix. // Ex: FormatBytes(512, DATA_UNITS_KILOBYTE, true) => "0.5 KB" // Ex: FormatBytes(10*1024, DATA_UNITS_MEGABYTE, false) => "0.1" std::wstring FormatBytes(int64 bytes, DataUnits units, bool show_units); // As above, but with "/s" units. // Ex: FormatSpeed(512, DATA_UNITS_KILOBYTE, true) => "0.5 KB/s" // Ex: FormatSpeed(10*1024, DATA_UNITS_MEGABYTE, false) => "0.1" std::wstring FormatSpeed(int64 bytes, DataUnits units, bool show_units); // Return a number formated with separators in the user's locale way. // Ex: FormatNumber(1234567) => 1,234,567 std::wstring FormatNumber(int64 number); // Starting at |start_offset| (usually 0), replace the first instance of // |find_this| with |replace_with|. void ReplaceFirstSubstringAfterOffset(string16* str, string16::size_type start_offset, const string16& find_this, const string16& replace_with); void ReplaceFirstSubstringAfterOffset(std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with); // Starting at |start_offset| (usually 0), look through |str| and replace all // instances of |find_this| with |replace_with|. // // This does entire substrings; use std::replace in for single // characters, for example: // std::replace(str.begin(), str.end(), 'a', 'b'); void ReplaceSubstringsAfterOffset(string16* str, string16::size_type start_offset, const string16& find_this, const string16& replace_with); void ReplaceSubstringsAfterOffset(std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with); // Specialized string-conversion functions. std::string IntToString(int value); std::wstring IntToWString(int value); string16 IntToString16(int value); std::string UintToString(unsigned int value); std::wstring UintToWString(unsigned int value); string16 UintToString16(unsigned int value); std::string Int64ToString(int64 value); std::wstring Int64ToWString(int64 value); std::string Uint64ToString(uint64 value); std::wstring Uint64ToWString(uint64 value); // The DoubleToString methods convert the double to a string format that // ignores the locale. If you want to use locale specific formatting, use ICU. std::string DoubleToString(double value); std::wstring DoubleToWString(double value); // Perform a best-effort conversion of the input string to a numeric type, // setting |*output| to the result of the conversion. Returns true for // "perfect" conversions; returns false in the following cases: // - Overflow/underflow. |*output| will be set to the maximum value supported // by the data type. // - Trailing characters in the string after parsing the number. |*output| // will be set to the value of the number that was parsed. // - No characters parseable as a number at the beginning of the string. // |*output| will be set to 0. // - Empty string. |*output| will be set to 0. bool StringToInt(const std::string& input, int* output); bool StringToInt(const string16& input, int* output); bool StringToInt64(const std::string& input, int64* output); bool StringToInt64(const string16& input, int64* output); bool HexStringToInt(const std::string& input, int* output); bool HexStringToInt(const string16& input, int* output); // Similar to the previous functions, except that output is a vector of bytes. // |*output| will contain as many bytes as were successfully parsed prior to the // error. There is no overflow, but input.size() must be evenly divisible by 2. // Leading 0x or +/- are not allowed. bool HexStringToBytes(const std::string& input, std::vector* output); bool HexStringToBytes(const string16& input, std::vector* output); // For floating-point conversions, only conversions of input strings in decimal // form are defined to work. Behavior with strings representing floating-point // numbers in hexadecimal, and strings representing non-fininte values (such as // NaN and inf) is undefined. Otherwise, these behave the same as the integral // variants. This expects the input string to NOT be specific to the locale. // If your input is locale specific, use ICU to read the number. bool StringToDouble(const std::string& input, double* output); bool StringToDouble(const string16& input, double* output); // Convenience forms of the above, when the caller is uninterested in the // boolean return value. These return only the |*output| value from the // above conversions: a best-effort conversion when possible, otherwise, 0. int StringToInt(const std::string& value); int StringToInt(const string16& value); int64 StringToInt64(const std::string& value); int64 StringToInt64(const string16& value); int HexStringToInt(const std::string& value); int HexStringToInt(const string16& value); double StringToDouble(const std::string& value); double StringToDouble(const string16& value); // Return a C++ string given printf-like input. std::string StringPrintf(const char* format, ...); std::wstring StringPrintf(const wchar_t* format, ...); // Store result into a supplied string and return it const std::string& SStringPrintf(std::string* dst, const char* format, ...); const std::wstring& SStringPrintf(std::wstring* dst, const wchar_t* format, ...); // Append result to a supplied string void StringAppendF(std::string* dst, const char* format, ...); void StringAppendF(std::wstring* dst, const wchar_t* format, ...); // Lower-level routine that takes a va_list and appends to a specified // string. All other routines are just convenience wrappers around it. void StringAppendV(std::string* dst, const char* format, va_list ap); void StringAppendV(std::wstring* dst, const wchar_t* format, va_list ap); // This is mpcomplete's pattern for saving a string copy when dealing with // a function that writes results into a wchar_t[] and wanting the result to // end up in a std::wstring. It ensures that the std::wstring's internal // buffer has enough room to store the characters to be written into it, and // sets its .length() attribute to the right value. // // The reserve() call allocates the memory required to hold the string // plus a terminating null. This is done because resize() isn't // guaranteed to reserve space for the null. The resize() call is // simply the only way to change the string's 'length' member. // // XXX-performance: the call to wide.resize() takes linear time, since it fills // the string's buffer with nulls. I call it to change the length of the // string (needed because writing directly to the buffer doesn't do this). // Perhaps there's a constant-time way to change the string's length. template inline typename string_type::value_type* WriteInto(string_type* str, size_t length_with_null) { str->reserve(length_with_null); str->resize(length_with_null - 1); return &((*str)[0]); } //----------------------------------------------------------------------------- // Function objects to aid in comparing/searching strings. template struct CaseInsensitiveCompare { public: bool operator()(Char x, Char y) const { // TODO(darin): Do we really want to do locale sensitive comparisons here? // See http://crbug.com/24917 return tolower(x) == tolower(y); } }; template struct CaseInsensitiveCompareASCII { public: bool operator()(Char x, Char y) const { return ToLowerASCII(x) == ToLowerASCII(y); } }; //----------------------------------------------------------------------------- // Splits |str| into a vector of strings delimited by |s|. Append the results // into |r| as they appear. If several instances of |s| are contiguous, or if // |str| begins with or ends with |s|, then an empty string is inserted. // // Every substring is trimmed of any leading or trailing white space. void SplitString(const std::wstring& str, wchar_t s, std::vector* r); void SplitString(const string16& str, char16 s, std::vector* r); void SplitString(const std::string& str, char s, std::vector* r); // The same as SplitString, but don't trim white space. void SplitStringDontTrim(const std::wstring& str, wchar_t s, std::vector* r); void SplitStringDontTrim(const string16& str, char16 s, std::vector* r); void SplitStringDontTrim(const std::string& str, char s, std::vector* r); // Does the opposite of SplitString(). std::wstring JoinString(const std::vector& parts, wchar_t s); string16 JoinString(const std::vector& parts, char16 s); std::string JoinString(const std::vector& parts, char s); // WARNING: this uses whitespace as defined by the HTML5 spec. If you need // a function similar to this but want to trim all types of whitespace, then // factor this out into a function that takes a string containing the characters // that are treated as whitespace. // // Splits the string along whitespace (where whitespace is the five space // characters defined by HTML 5). Each contiguous block of non-whitespace // characters is added to result. void SplitStringAlongWhitespace(const std::wstring& str, std::vector* result); void SplitStringAlongWhitespace(const string16& str, std::vector* result); void SplitStringAlongWhitespace(const std::string& str, std::vector* result); // Replace $1-$2-$3..$9 in the format string with |a|-|b|-|c|..|i| respectively. // Additionally, $$ is replaced by $. The offsets parameter here can // be NULL. This only allows you to use up to nine replacements. string16 ReplaceStringPlaceholders(const string16& format_string, const std::vector& subst, std::vector* offsets); std::string ReplaceStringPlaceholders(const base::StringPiece& format_string, const std::vector& subst, std::vector* offsets); // Single-string shortcut for ReplaceStringHolders. string16 ReplaceStringPlaceholders(const string16& format_string, const string16& a, size_t* offset); // If the size of |input| is more than |max_len|, this function returns true and // |input| is shortened into |output| by removing chars in the middle (they are // replaced with up to 3 dots, as size permits). // Ex: ElideString(L"Hello", 10, &str) puts Hello in str and returns false. // ElideString(L"Hello my name is Tom", 10, &str) puts "Hell...Tom" in str and // returns true. bool ElideString(const std::wstring& input, int max_len, std::wstring* output); // Returns true if the string passed in matches the pattern. The pattern // string can contain wildcards like * and ? // TODO(iyengar) This function may not work correctly for CJK strings as // it does individual character matches. // The backslash character (\) is an escape character for * and ? bool MatchPattern(const std::wstring& string, const std::wstring& pattern); bool MatchPattern(const std::string& string, const std::string& pattern); // Returns a hex string representation of a binary buffer. // The returned hex string will be in upper case. // This function does not check if |size| is within reasonable limits since // it's written with trusted data in mind. // If you suspect that the data you want to format might be large, // the absolute max size for |size| should be is // std::numeric_limits::max() / 2 std::string HexEncode(const void* bytes, size_t size); // Hack to convert any char-like type to its unsigned counterpart. // For example, it will convert char, signed char and unsigned char to unsigned // char. template struct ToUnsigned { typedef T Unsigned; }; template<> struct ToUnsigned { typedef unsigned char Unsigned; }; template<> struct ToUnsigned { typedef unsigned char Unsigned; }; template<> struct ToUnsigned { #if defined(WCHAR_T_IS_UTF16) typedef unsigned short Unsigned; #elif defined(WCHAR_T_IS_UTF32) typedef uint32 Unsigned; #endif }; template<> struct ToUnsigned { typedef unsigned short Unsigned; }; #endif // BASE_STRING_UTIL_H_