// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This file defines utility functions for working with strings. #ifndef BASE_STRING_UTIL_H__ #define BASE_STRING_UTIL_H__ #include #include #include "base/basictypes.h" // Safe standard library wrappers for all platforms. The Str* variants // operate on NUL-terminated char* strings, like the standard library's str* // functions. // Copy at most (dst_size - 1) characters from src to dest, guaranteeing dst // will be NUL-terminated. If the string is copied without truncation, // returns true. dst is undefined if the string cannot be copied without // truncation, and the function will either return false or cause termination. bool StrCpy(char* dest, const char* src, size_t dst_size); // As with StrCpy, but copies at most the minimum of (dst_size - 1) and // src_size characters. bool StrNCpy(char* dest, const char* src, size_t dst_size, size_t src_size); // Compare up to count characters of s1 and s2 without regard to case using // the current locale; returns 0 if they are equal, 1 if s1 > s2, and -1 if // s2 > s1 according to a lexicographic comparison. int StrNCaseCmp(const char* s1, const char* s2, size_t count); // Wrapper for vsnprintf, snprintf that always NUL-terminates and always // returns the number of characters that would be in an untruncated formatted // string, even when truncation occurs. int VSNPrintF(char* buffer, size_t size, const char* format, va_list arguments); int SNPrintF(char* buffer, size_t size, const char* format, ...); // The Wcs* variants operate on NUL-terminated wchar_t* strings, like the // standard library's wcs* functions. Otherwise, these behave the same as // the Str* variants above. bool WcsCpy(wchar_t* dest, const wchar_t* src, size_t dst_size); bool WcsNCpy(wchar_t* dest, const wchar_t* src, size_t dst_size); int VSWPrintF(wchar_t* buffer, size_t size, const wchar_t* format, va_list arguments); int SWPrintF(wchar_t* buffer, size_t size, const wchar_t* format, ...); // Some of these implementations need to be inlined. #if defined(WIN32) #include "base/string_util_win.h" #elif defined(__APPLE__) #include "base/string_util_mac.h" #else #error Define string operations appropriately for your platform #endif inline int SNPrintF(char* buffer, size_t size, const char* format, ...) { va_list arguments; va_start(arguments, format); int result = VSNPrintF(buffer, size, format, arguments); va_end(arguments); return result; } inline int SWPrintF(wchar_t* buffer, size_t size, const wchar_t* format, ...) { va_list arguments; va_start(arguments, format); int result = VSWPrintF(buffer, size, format, arguments); va_end(arguments); return result; } // Returns a reference to a globally unique empty string that functions can // return. Use this to avoid static construction of strings, not to replace // any and all uses of "std::string()" as nicer-looking sugar. // These functions are threadsafe. const std::string& EmptyString(); const std::wstring& EmptyWString(); extern const wchar_t kWhitespaceWide[]; extern const char kWhitespaceASCII[]; // Names of codepages (charsets) understood by icu. extern const char* const kCodepageUTF8; // Removes characters in trim_chars from the beginning and end of input. // NOTE: Safe to use the same variable for both input and output. bool TrimString(const std::wstring& input, wchar_t trim_chars[], std::wstring* output); bool TrimString(const std::string& input, char trim_chars[], std::string* output); // Trims any whitespace from either end of the input string. Returns where // whitespace was found. The non-wide version of this function only looks for // ASCII whitespace; UTF-8 code-points are not searched for (use the wide // version instead). // NOTE: Safe to use the same variable for both input and output. enum TrimPositions { TRIM_NONE = 0, TRIM_LEADING = 1 << 0, TRIM_TRAILING = 1 << 1, TRIM_ALL = TRIM_LEADING | TRIM_TRAILING, }; TrimPositions TrimWhitespace(const std::wstring& input, TrimPositions positions, std::wstring* output); TrimPositions TrimWhitespace(const std::string& input, TrimPositions positions, std::string* output); // Searches for CR or LF characters. Removes all contiguous whitespace // strings that contain them. This is useful when trying to deal with text // copied from terminals. // Returns |text, with the following three transformations: // (1) Leading and trailing whitespace is trimmed. // (2) If |trim_sequences_with_line_breaks| is true, any other whitespace // sequences containing a CR or LF are trimmed. // (3) All other whitespace sequences are converted to single spaces. std::wstring CollapseWhitespace(const std::wstring& text, bool trim_sequences_with_line_breaks); // These convert between ASCII (7-bit) and UTF16 strings. std::string WideToASCII(const std::wstring& wide); std::wstring ASCIIToWide(const std::string& ascii); // These convert between UTF8 and UTF16 strings. They are potentially slow, // so avoid unnecessary conversions. Most things should be in UTF16. std::string WideToUTF8(const std::wstring& wide); std::wstring UTF8ToWide(const std::string& utf8); // Converts between wide strings and whatever the native multibyte encoding // is. The native multibyte encoding on English machines will often Latin-1, // but could be ShiftJIS or even UTF-8, among others. // // These functions can be dangerous. Do not use unless you are sure you are // giving them to/getting them from somebody who expects the current platform // 8-bit encoding. std::string WideToNativeMB(const std::wstring& wide); std::wstring NativeMBToWide(const std::string& native_mb); // Defines the error handling modes of WideToCodepage and CodepageToWide. class OnStringUtilConversionError { public: enum Type { // The function will return failure. The output buffer will be empty. FAIL, // The offending characters are skipped and the conversion will proceed as // if they did not exist. SKIP, }; private: OnStringUtilConversionError(); }; // Converts between wide strings and the encoding specified. If the // encoding doesn't exist or the encoding fails (when on_error is FAIL), // returns false. bool WideToCodepage(const std::wstring& wide, const char* codepage_name, OnStringUtilConversionError::Type on_error, std::string* encoded); bool CodepageToWide(const std::string& encoded, const char* codepage_name, OnStringUtilConversionError::Type on_error, std::wstring* wide); // Converts the given wide string to the corresponding Latin1. This will fail // (return false) if any characters are more than 255. bool WideToLatin1(const std::wstring& wide, std::string* latin1); // Returns true if the specified string matches the criteria. How can a wide // string be 8-bit or UTF8? It contains only characters that are < 256 (in the // first case) or characters that use only 8-bits and whose 8-bit // representation looks like a UTF-8 string (the second case). bool IsString8Bit(const std::wstring& str); bool IsStringUTF8(const char* str); bool IsStringWideUTF8(const wchar_t* str); bool IsStringASCII(const std::wstring& str); bool IsStringASCII(const std::string& str); // ASCII-specific tolower. The standard library's tolower is locale sensitive, // so we don't want to use it here. template inline Char ToLowerASCII(Char c) { return (c >= 'A' && c <= 'Z') ? (c + ('a' - 'A')) : c; } // Converts the elements of the given string. This version uses a pointer to // clearly differentiate it from the non-pointer variant. template inline void StringToLowerASCII(str* s) { for (typename str::iterator i = s->begin(); i != s->end(); ++i) *i = ToLowerASCII(*i); } template inline str StringToLowerASCII(const str& s) { // for std::string and std::wstring str output(s); StringToLowerASCII(&output); return output; } // Compare the lower-case form of the given string against the given ASCII // string. This is useful for doing checking if an input string matches some // token, and it is optimized to avoid intermediate string copies. This API is // borrowed from the equivalent APIs in Mozilla. bool LowerCaseEqualsASCII(const std::string& a, const char* b); bool LowerCaseEqualsASCII(const std::wstring& a, const char* b); // Same thing, but with string iterators instead. bool LowerCaseEqualsASCII(std::string::const_iterator a_begin, std::string::const_iterator a_end, const char* b); bool LowerCaseEqualsASCII(std::wstring::const_iterator a_begin, std::wstring::const_iterator a_end, const char* b); bool LowerCaseEqualsASCII(const char* a_begin, const char* a_end, const char* b); bool LowerCaseEqualsASCII(const wchar_t* a_begin, const wchar_t* a_end, const char* b); // Returns true if str starts with search, or false otherwise. // This only works on ASCII strings. bool StartsWithASCII(const std::string& str, const std::string& search, bool case_sensitive); // Determines the type of ASCII character, independent of locale (the C // library versions will change based on locale). template inline bool IsAsciiWhitespace(Char c) { return c == ' ' || c == '\r' || c == '\n' || c == '\t'; } template inline bool IsAsciiAlpha(Char c) { return ((c >= 'A') && (c <= 'Z')) || ((c >= 'a') && (c <= 'z')); } template inline bool IsAsciiDigit(Char c) { return c >= '0' && c <= '9'; } // Returns true if it's a whitespace character. inline bool IsWhitespace(wchar_t c) { return wcschr(kWhitespaceWide, c) != NULL; } // TODO(mpcomplete): Decide if we should change these names to KIBI, etc, // or if we should actually use metric units, or leave as is. enum DataUnits { DATA_UNITS_BYTE = 0, DATA_UNITS_KILOBYTE, DATA_UNITS_MEGABYTE, DATA_UNITS_GIGABYTE, }; // Return the unit type that is appropriate for displaying the amount of bytes // passed in. DataUnits GetByteDisplayUnits(int64 bytes); // Return a byte string in human-readable format, displayed in units appropriate // specified by 'units', with an optional unit suffix. // Ex: FormatBytes(512, DATA_UNITS_KILOBYTE, true) => "0.5 KB" // Ex: FormatBytes(10*1024, DATA_UNITS_MEGABYTE, false) => "0.1" std::wstring FormatBytes(int64 bytes, DataUnits units, bool show_units); // As above, but with "/s" units. // Ex: FormatSpeed(512, DATA_UNITS_KILOBYTE, true) => "0.5 KB/s" // Ex: FormatSpeed(10*1024, DATA_UNITS_MEGABYTE, false) => "0.1" std::wstring FormatSpeed(int64 bytes, DataUnits units, bool show_units); // Return a number formated with separators in the user's locale way. // Ex: FormatNumber(1234567) => 1,234,567 std::wstring FormatNumber(int64 number); // Starting at |start_offset| (usually 0), look through |str| and replace all // instances of |find_this| with |replace_with|. // // This does entire substrings; use std::replace in for single // characters, for example: // std::replace(str.begin(), str.end(), 'a', 'b'); void ReplaceSubstringsAfterOffset(std::wstring* str, std::wstring::size_type start_offset, const std::wstring& find_this, const std::wstring& replace_with); void ReplaceSubstringsAfterOffset(std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with); // Specialized string-conversion functions. std::string Uint64ToString(uint64 value); std::string IntToString(int value); std::string Int64ToString(int64 value); std::wstring Int64ToWString(int64 value); std::wstring IntToWString(int value); // Perform a best-effort conversion of the input string to a numeric type, // setting |*output| to the result of the conversion. Returns true for // "perfect" conversions; returns false in the following cases: // - Overflow/underflow. |*output| will be set to the maximum value supported // by the data type. // - Trailing characters in the string after parsing the number. |*output| // will be set to the value of the number that was parsed. // - No characters parseable as a number at the beginning of the string. // |*output| will be set to 0. // - Empty string. |*output| will be set to 0. bool StringToInt(const std::string& input, int* output); bool StringToInt(const std::wstring& input, int* output); bool StringToInt64(const std::string& input, int64* output); bool StringToInt64(const std::wstring& input, int64* output); bool HexStringToInt(const std::string& input, int* output); bool HexStringToInt(const std::wstring& input, int* output); // Convenience forms of the above, when the caller is uninterested in the // boolean return value. These return only the |*output| value from the // above conversions: a best-effort conversion when possible, otherwise, 0. int StringToInt(const std::string& value); int StringToInt(const std::wstring& value); int64 StringToInt64(const std::string& value); int64 StringToInt64(const std::wstring& value); int HexStringToInt(const std::string& value); int HexStringToInt(const std::wstring& value); // Return a C++ string given printf-like input. std::string StringPrintf(const char* format, ...); std::wstring StringPrintf(const wchar_t* format, ...); // Store result into a supplied string and return it const std::string& SStringPrintf(std::string* dst, const char* format, ...); const std::wstring& SStringPrintf(std::wstring* dst, const wchar_t* format, ...); // Append result to a supplied string void StringAppendF(std::string* dst, const char* format, ...); void StringAppendF(std::wstring* dst, const wchar_t* format, ...); // Lower-level routine that takes a va_list and appends to a specified // string. All other routines are just convenience wrappers around it. void StringAppendV(std::string* dst, const char* format, va_list ap); void StringAppendV(std::wstring* dst, const wchar_t* format, va_list ap); // This is mpcomplete's pattern for saving a string copy when dealing with // a function that writes results into a wchar_t[] and wanting the result to // end up in a std::wstring. It ensures that the std::wstring's internal // buffer has enough room to store the characters to be written into it, and // sets its .length() attribute to the right value. // // The reserve() call allocates the memory required to hold the string // plus a terminating null. This is done because resize() isn't // guaranteed to reserve space for the null. The resize() call is // simply the only way to change the string's 'length' member. // // XXX-performance: the call to wide.resize() takes linear time, since it fills // the string's buffer with nulls. I call it to change the length of the // string (needed because writing directly to the buffer doesn't do this). // Perhaps there's a constant-time way to change the string's length. template inline char_type* WriteInto( std::basic_string, std::allocator >* str, size_t length_including_null) { str->reserve(length_including_null); str->resize(length_including_null - 1); return &((*str)[0]); } //----------------------------------------------------------------------------- // CharTraits is provides wrappers with common function names for char/wchar_t // specific CRT functions. template struct CharTraits { }; template <> struct CharTraits { static inline size_t length(const char* s) { return strlen(s); } static inline bool copy(char* dst, size_t dst_size, const char* s) { return StrCpy(dst, s, dst_size); } static inline bool copy_num(char* dst, size_t dst_size, const char* s, size_t s_len) { if (dst_size < (s_len + 1)) return false; memcpy(dst, s, s_len); dst[s_len] = '\0'; return true; } }; template <> struct CharTraits { static inline size_t length(const wchar_t* s) { return wcslen(s); } static inline bool copy(wchar_t* dst, size_t dst_size, const wchar_t* s) { return WcsCpy(dst, s, dst_size); } static inline bool copy_num(wchar_t* dst, size_t dst_size, const wchar_t* s, size_t s_len) { if (dst_size < (s_len + 1)) return false; memcpy(dst, s, s_len * sizeof(wchar_t)); dst[s_len] = '\0'; return true; } }; //----------------------------------------------------------------------------- // Function objects to aid in comparing/searching strings. template struct CaseInsensitiveCompare { public: bool operator()(Char x, Char y) const { return tolower(x) == tolower(y); } }; template struct CaseInsensitiveCompareASCII { public: bool operator()(Char x, Char y) const { return ToLowerASCII(x) == ToLowerASCII(y); } }; //----------------------------------------------------------------------------- // Splits |str| into a vector of strings delimited by |s|. Append the results // into |r| as they appear. If several instances of |s| are contiguous, or if // |str| begins with or ends with |s|, then an empty string is inserted. // // Every substring is trimmed of any leading or trailing white space. void SplitString(const std::wstring& str, wchar_t s, std::vector* r); void SplitString(const std::string& str, char s, std::vector* r); // The same as SplitString, but don't trim white space. void SplitStringDontTrim(const std::wstring& str, wchar_t s, std::vector* r); void SplitStringDontTrim(const std::string& str, char s, std::vector* r); // WARNING: this uses whitespace as defined by the HTML5 spec. If you need // a function similar to this but want to trim all types of whitespace, then // factor this out into a function that takes a string containing the characters // that are treated as whitespace. // // Splits the string along whitespace (where whitespace is the five space // characters defined by HTML 5). Each contiguous block of non-whitespace // characters is added to result. void SplitStringAlongWhitespace(const std::wstring& str, std::vector* result); // Replace $1-$2-$3 in the format string with |a| and |b| respectively. // Additionally, $$ is replaced by $. The offset/offsets parameter here can be // NULL. std::wstring ReplaceStringPlaceholders(const std::wstring& format_string, const std::wstring& a, size_t* offset); std::wstring ReplaceStringPlaceholders(const std::wstring& format_string, const std::wstring& a, const std::wstring& b, std::vector* offsets); std::wstring ReplaceStringPlaceholders(const std::wstring& format_string, const std::wstring& a, const std::wstring& b, const std::wstring& c, std::vector* offsets); std::wstring ReplaceStringPlaceholders(const std::wstring& format_string, const std::wstring& a, const std::wstring& b, const std::wstring& c, const std::wstring& d, std::vector* offsets); // Returns true if the string passed in matches the pattern. The pattern // string can contain wildcards like * and ? // TODO(iyengar) This function may not work correctly for CJK strings as // it does individual character matches. // The backslash character (\) is an escape character for * and ? bool MatchPattern(const std::wstring& string, const std::wstring& pattern); bool MatchPattern(const std::string& string, const std::string& pattern); #endif // BASE_STRING_UTIL_H__