// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/string_util.h" #include <string.h> #include <vector> #include "base/basictypes.h" #include "base/logging.h" #include "base/singleton.h" #include "unicode/ucnv.h" #include "unicode/numfmt.h" #include "unicode/ustring.h" namespace { // ReadUnicodeCharacter -------------------------------------------------------- // Reads a UTF-8 stream, placing the next code point into the given output // |*code_point|. |src| represents the entire string to read, and |*char_index| // is the character offset within the string to start reading at. |*char_index| // will be updated to index the last character read, such that incrementing it // (as in a for loop) will take the reader to the next character. // // Returns true on success. On false, |*code_point| will be invalid. bool ReadUnicodeCharacter(const char* src, int32 src_len, int32* char_index, uint32* code_point_out) { // U8_NEXT expects to be able to use -1 to signal an error, so we must // use a signed type for code_point. But this function returns false // on error anyway, so code_point_out is unsigned. int32 code_point; U8_NEXT(src, *char_index, src_len, code_point); *code_point_out = static_cast<uint32>(code_point); // The ICU macro above moves to the next char, we want to point to the last // char consumed. (*char_index)--; // Validate the decoded value. return U_IS_UNICODE_CHAR(code_point); } // Reads a UTF-16 character. The usage is the same as the 8-bit version above. bool ReadUnicodeCharacter(const char16* src, int32 src_len, int32* char_index, uint32* code_point) { if (U16_IS_SURROGATE(src[*char_index])) { if (!U16_IS_SURROGATE_LEAD(src[*char_index]) || *char_index + 1 >= src_len || !U16_IS_TRAIL(src[*char_index + 1])) { // Invalid surrogate pair. return false; } // Valid surrogate pair. *code_point = U16_GET_SUPPLEMENTARY(src[*char_index], src[*char_index + 1]); (*char_index)++; } else { // Not a surrogate, just one 16-bit word. *code_point = src[*char_index]; } return U_IS_UNICODE_CHAR(*code_point); } #if defined(WCHAR_T_IS_UTF32) // Reads UTF-32 character. The usage is the same as the 8-bit version above. bool ReadUnicodeCharacter(const wchar_t* src, int32 src_len, int32* char_index, uint32* code_point) { // Conversion is easy since the source is 32-bit. *code_point = src[*char_index]; // Validate the value. return U_IS_UNICODE_CHAR(*code_point); } #endif // defined(WCHAR_T_IS_UTF32) // WriteUnicodeCharacter ------------------------------------------------------- // Appends a UTF-8 character to the given 8-bit string. void WriteUnicodeCharacter(uint32 code_point, std::string* output) { if (code_point <= 0x7f) { // Fast path the common case of one byte. output->push_back(code_point); return; } // U8_APPEND_UNSAFE can append up to 4 bytes. int32 char_offset = static_cast<int32>(output->length()); output->resize(char_offset + U8_MAX_LENGTH); U8_APPEND_UNSAFE(&(*output)[0], char_offset, code_point); // U8_APPEND_UNSAFE will advance our pointer past the inserted character, so // it will represent the new length of the string. output->resize(char_offset); } // Appends the given code point as a UTF-16 character to the STL string. void WriteUnicodeCharacter(uint32 code_point, string16* output) { if (U16_LENGTH(code_point) == 1) { // Thie code point is in the Basic Multilingual Plane (BMP). output->push_back(static_cast<char16>(code_point)); } else { // Non-BMP characters use a double-character encoding. int32 char_offset = static_cast<int32>(output->length()); output->resize(char_offset + U16_MAX_LENGTH); U16_APPEND_UNSAFE(&(*output)[0], char_offset, code_point); } } #if defined(WCHAR_T_IS_UTF32) // Appends the given UTF-32 character to the given 32-bit string. inline void WriteUnicodeCharacter(uint32 code_point, std::wstring* output) { // This is the easy case, just append the character. output->push_back(code_point); } #endif // defined(WCHAR_T_IS_UTF32) // Generalized Unicode converter ----------------------------------------------- // Converts the given source Unicode character type to the given destination // Unicode character type as a STL string. The given input buffer and size // determine the source, and the given output STL string will be replaced by // the result. template<typename SRC_CHAR, typename DEST_STRING> bool ConvertUnicode(const SRC_CHAR* src, size_t src_len, DEST_STRING* output) { output->clear(); // ICU requires 32-bit numbers. bool success = true; int32 src_len32 = static_cast<int32>(src_len); for (int32 i = 0; i < src_len32; i++) { uint32 code_point; if (ReadUnicodeCharacter(src, src_len32, &i, &code_point)) WriteUnicodeCharacter(code_point, output); else success = false; } return success; } // Guesses the length of the output in UTF-8 in bytes, and reserves that amount // of space in the given string. We also assume that the input character types // are unsigned, which will be true for UTF-16 and -32 on our systems. We assume // the string length is greater than zero. template<typename CHAR> void ReserveUTF8Output(const CHAR* src, size_t src_len, std::string* output) { if (src[0] < 0x80) { // Assume that the entire input will be ASCII. output->reserve(src_len); } else { // Assume that the entire input is non-ASCII and will have 3 bytes per char. output->reserve(src_len * 3); } } // Guesses the size of the output buffer (containing either UTF-16 or -32 data) // given some UTF-8 input that will be converted to it. See ReserveUTF8Output. // We assume the source length is > 0. template<typename STRING> void ReserveUTF16Or32Output(const char* src, size_t src_len, STRING* output) { if (static_cast<unsigned char>(src[0]) < 0x80) { // Assume the input is all ASCII, which means 1:1 correspondence. output->reserve(src_len); } else { // Otherwise assume that the UTF-8 sequences will have 2 bytes for each // character. output->reserve(src_len / 2); } } } // namespace // UTF-8 <-> Wide -------------------------------------------------------------- std::string WideToUTF8(const std::wstring& wide) { std::string ret; if (wide.empty()) return ret; // Ignore the success flag of this call, it will do the best it can for // invalid input, which is what we want here. WideToUTF8(wide.data(), wide.length(), &ret); return ret; } bool WideToUTF8(const wchar_t* src, size_t src_len, std::string* output) { if (src_len == 0) { output->clear(); return true; } ReserveUTF8Output(src, src_len, output); return ConvertUnicode<wchar_t, std::string>(src, src_len, output); } std::wstring UTF8ToWide(const StringPiece& utf8) { std::wstring ret; if (utf8.empty()) return ret; UTF8ToWide(utf8.data(), utf8.length(), &ret); return ret; } bool UTF8ToWide(const char* src, size_t src_len, std::wstring* output) { if (src_len == 0) { output->clear(); return true; } ReserveUTF16Or32Output(src, src_len, output); return ConvertUnicode<char, std::wstring>(src, src_len, output); } // UTF-16 <-> Wide ------------------------------------------------------------- #if defined(WCHAR_T_IS_UTF16) // When wide == UTF-16, then conversions are a NOP. string16 WideToUTF16(const std::wstring& wide) { return wide; } bool WideToUTF16(const wchar_t* src, size_t src_len, string16* output) { output->assign(src, src_len); return true; } std::wstring UTF16ToWide(const string16& utf16) { return utf16; } bool UTF16ToWide(const char16* src, size_t src_len, std::wstring* output) { output->assign(src, src_len); return true; } #elif defined(WCHAR_T_IS_UTF32) string16 WideToUTF16(const std::wstring& wide) { string16 ret; if (wide.empty()) return ret; WideToUTF16(wide.data(), wide.length(), &ret); return ret; } bool WideToUTF16(const wchar_t* src, size_t src_len, string16* output) { if (src_len == 0) { output->clear(); return true; } // Assume that normally we won't have any non-BMP characters so the counts // will be the same. output->reserve(src_len); return ConvertUnicode<wchar_t, string16>(src, src_len, output); } std::wstring UTF16ToWide(const string16& utf16) { std::wstring ret; if (utf16.empty()) return ret; UTF16ToWide(utf16.data(), utf16.length(), &ret); return ret; } bool UTF16ToWide(const char16* src, size_t src_len, std::wstring* output) { if (src_len == 0) { output->clear(); return true; } // Assume that normally we won't have any non-BMP characters so the counts // will be the same. output->reserve(src_len); return ConvertUnicode<char16, std::wstring>(src, src_len, output); } #endif // defined(WCHAR_T_IS_UTF32) // UTF16 <-> UTF8 -------------------------------------------------------------- #if defined(WCHAR_T_IS_UTF32) bool UTF8ToUTF16(const char* src, size_t src_len, string16* output) { if (src_len == 0) { output->clear(); return true; } ReserveUTF16Or32Output(src, src_len, output); return ConvertUnicode<char, string16>(src, src_len, output); } string16 UTF8ToUTF16(const std::string& utf8) { string16 ret; if (utf8.empty()) return ret; // Ignore the success flag of this call, it will do the best it can for // invalid input, which is what we want here. UTF8ToUTF16(utf8.data(), utf8.length(), &ret); return ret; } bool UTF16ToUTF8(const char16* src, size_t src_len, std::string* output) { if (src_len == 0) { output->clear(); return true; } ReserveUTF8Output(src, src_len, output); return ConvertUnicode<char16, std::string>(src, src_len, output); } std::string UTF16ToUTF8(const string16& utf16) { std::string ret; if (utf16.empty()) return ret; // Ignore the success flag of this call, it will do the best it can for // invalid input, which is what we want here. UTF16ToUTF8(utf16.data(), utf16.length(), &ret); return ret; } #elif defined(WCHAR_T_IS_UTF16) // Easy case since we can use the "wide" versions we already wrote above. bool UTF8ToUTF16(const char* src, size_t src_len, string16* output) { return UTF8ToWide(src, src_len, output); } string16 UTF8ToUTF16(const std::string& utf8) { return UTF8ToWide(utf8); } bool UTF16ToUTF8(const char16* src, size_t src_len, std::string* output) { return WideToUTF8(src, src_len, output); } std::string UTF16ToUTF8(const string16& utf16) { return WideToUTF8(utf16); } #endif // Codepage <-> Wide ----------------------------------------------------------- // Convert a unicode string into the specified codepage_name. If the codepage // isn't found, return false. bool WideToCodepage(const std::wstring& wide, const char* codepage_name, OnStringUtilConversionError::Type on_error, std::string* encoded) { encoded->clear(); UErrorCode status = U_ZERO_ERROR; UConverter* converter = ucnv_open(codepage_name, &status); if (!U_SUCCESS(status)) return false; const UChar* uchar_src; int uchar_len; #if defined(WCHAR_T_IS_UTF16) uchar_src = wide.c_str(); uchar_len = static_cast<int>(wide.length()); #elif defined(WCHAR_T_IS_UTF32) // When wchar_t is wider than UChar (16 bits), transform |wide| into a // UChar* string. Size the UChar* buffer to be large enough to hold twice // as many UTF-16 code points as there are UTF-16 characters, in case each // character translates to a UTF-16 surrogate pair, and leave room for a NUL // terminator. std::vector<UChar> wide_uchar(wide.length() * 2 + 1); u_strFromWCS(&wide_uchar[0], wide_uchar.size(), &uchar_len, wide.c_str(), wide.length(), &status); uchar_src = &wide_uchar[0]; DCHECK(U_SUCCESS(status)) << "failed to convert wstring to UChar*"; #endif // defined(WCHAR_T_IS_UTF32) int encoded_max_length = UCNV_GET_MAX_BYTES_FOR_STRING(uchar_len, ucnv_getMaxCharSize(converter)); encoded->resize(encoded_max_length); // Setup our error handler. switch (on_error) { case OnStringUtilConversionError::FAIL: ucnv_setFromUCallBack(converter, UCNV_FROM_U_CALLBACK_STOP, 0, NULL, NULL, &status); break; case OnStringUtilConversionError::SKIP: ucnv_setFromUCallBack(converter, UCNV_FROM_U_CALLBACK_SKIP, 0, NULL, NULL, &status); break; default: NOTREACHED(); } // ucnv_fromUChars returns size not including terminating null int actual_size = ucnv_fromUChars(converter, &(*encoded)[0], encoded_max_length, uchar_src, uchar_len, &status); encoded->resize(actual_size); ucnv_close(converter); if (U_SUCCESS(status)) return true; encoded->clear(); // Make sure the output is empty on error. return false; } // Converts a string of the given codepage into unicode. // If the codepage isn't found, return false. bool CodepageToWide(const std::string& encoded, const char* codepage_name, OnStringUtilConversionError::Type on_error, std::wstring* wide) { wide->clear(); UErrorCode status = U_ZERO_ERROR; UConverter* converter = ucnv_open(codepage_name, &status); if (!U_SUCCESS(status)) return false; // The worst case is all the input characters are non-BMP (32-bit) ones. size_t uchar_max_length = encoded.length() * 2 + 1; UChar* uchar_dst; #if defined(WCHAR_T_IS_UTF16) uchar_dst = WriteInto(wide, uchar_max_length); #elif defined(WCHAR_T_IS_UTF32) // When wchar_t is wider than UChar (16 bits), convert into a temporary // UChar* buffer. std::vector<UChar> wide_uchar(uchar_max_length); uchar_dst = &wide_uchar[0]; #endif // defined(WCHAR_T_IS_UTF32) // Setup our error handler. switch (on_error) { case OnStringUtilConversionError::FAIL: ucnv_setToUCallBack(converter, UCNV_TO_U_CALLBACK_STOP, 0, NULL, NULL, &status); break; case OnStringUtilConversionError::SKIP: ucnv_setToUCallBack(converter, UCNV_TO_U_CALLBACK_SKIP, 0, NULL, NULL, &status); break; default: NOTREACHED(); } int actual_size = ucnv_toUChars(converter, uchar_dst, static_cast<int>(uchar_max_length), encoded.data(), static_cast<int>(encoded.length()), &status); ucnv_close(converter); if (!U_SUCCESS(status)) { wide->clear(); // Make sure the output is empty on error. return false; } #ifdef WCHAR_T_IS_UTF32 // When wchar_t is wider than UChar (16 bits), it's not possible to wind up // with any more wchar_t elements than UChar elements. ucnv_toUChars // returns the number of UChar elements not including the NUL terminator, so // leave extra room for that. u_strToWCS(WriteInto(wide, actual_size + 1), actual_size + 1, &actual_size, uchar_dst, actual_size, &status); DCHECK(U_SUCCESS(status)) << "failed to convert UChar* to wstring"; #endif // WCHAR_T_IS_UTF32 wide->resize(actual_size); return true; } // Number formatting ----------------------------------------------------------- namespace { struct NumberFormatSingletonTraits : public DefaultSingletonTraits<NumberFormat> { static NumberFormat* New() { UErrorCode status = U_ZERO_ERROR; NumberFormat* formatter = NumberFormat::createInstance(status); DCHECK(U_SUCCESS(status)); return formatter; } // There's no ICU call to destroy a NumberFormat object other than // operator delete, so use the default Delete, which calls operator delete. // This can cause problems if a different allocator is used by this file than // by ICU. }; } // namespace std::wstring FormatNumber(int64 number) { NumberFormat* number_format = Singleton<NumberFormat, NumberFormatSingletonTraits>::get(); if (!number_format) { // As a fallback, just return the raw number in a string. return StringPrintf(L"%lld", number); } UnicodeString ustr; number_format->format(number, ustr); #if defined(WCHAR_T_IS_UTF16) return std::wstring(ustr.getBuffer(), static_cast<std::wstring::size_type>(ustr.length())); #elif defined(WCHAR_T_IS_UTF32) wchar_t buffer[64]; // A int64 is less than 20 chars long, so 64 chars // leaves plenty of room for formating stuff. int length = 0; UErrorCode error = U_ZERO_ERROR; u_strToWCS(buffer, 64, &length, ustr.getBuffer(), ustr.length() , &error); if (U_FAILURE(error)) { NOTREACHED(); // As a fallback, just return the raw number in a string. return StringPrintf(L"%lld", number); } return std::wstring(buffer, static_cast<std::wstring::size_type>(length)); #endif // defined(WCHAR_T_IS_UTF32) } TrimPositions TrimWhitespaceUTF8(const std::string& input, TrimPositions positions, std::string* output) { // This implementation is not so fast since it converts the text encoding // twice. Please feel free to file a bug if this function hurts the // performance of Chrome. DCHECK(IsStringUTF8(input)); std::wstring input_wide = UTF8ToWide(input); std::wstring output_wide; TrimPositions result = TrimWhitespace(input_wide, positions, &output_wide); *output = WideToUTF8(output_wide); return result; }