// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_SYNCHRONIZATION_LOCK_H_ #define BASE_SYNCHRONIZATION_LOCK_H_ #pragma once #include "base/base_export.h" #include "base/synchronization/lock_impl.h" #include "base/threading/platform_thread.h" namespace base { // A convenient wrapper for an OS specific critical section. The only real // intelligence in this class is in debug mode for the support for the // AssertAcquired() method. class BASE_EXPORT Lock { public: #if defined(NDEBUG) // Optimized wrapper implementation Lock() : lock_() {} ~Lock() {} void Acquire() { lock_.Lock(); } void Release() { lock_.Unlock(); } // If the lock is not held, take it and return true. If the lock is already // held by another thread, immediately return false. This must not be called // by a thread already holding the lock (what happens is undefined and an // assertion may fail). bool Try() { return lock_.Try(); } // Null implementation if not debug. void AssertAcquired() const {} #else Lock(); ~Lock() {} // NOTE: Although windows critical sections support recursive locks, we do not // allow this, and we will commonly fire a DCHECK() if a thread attempts to // acquire the lock a second time (while already holding it). void Acquire() { lock_.Lock(); CheckUnheldAndMark(); } void Release() { CheckHeldAndUnmark(); lock_.Unlock(); } bool Try() { bool rv = lock_.Try(); if (rv) { CheckUnheldAndMark(); } return rv; } void AssertAcquired() const; #endif // NDEBUG #if defined(OS_POSIX) // The posix implementation of ConditionVariable needs to be able // to see our lock and tweak our debugging counters, as it releases // and acquires locks inside of pthread_cond_{timed,}wait. // Windows doesn't need to do this as it calls the Lock::* methods. friend class ConditionVariable; #endif private: #if !defined(NDEBUG) // Members and routines taking care of locks assertions. // Note that this checks for recursive locks and allows them // if the variable is set. This is allowed by the underlying implementation // on windows but not on Posix, so we're doing unneeded checks on Posix. // It's worth it to share the code. void CheckHeldAndUnmark(); void CheckUnheldAndMark(); // All private data is implicitly protected by lock_. // Be VERY careful to only access members under that lock. // Determines validity of owning_thread_id_. Needed as we don't have // a null owning_thread_id_ value. bool owned_by_thread_; base::PlatformThreadId owning_thread_id_; #endif // NDEBUG // Platform specific underlying lock implementation. internal::LockImpl lock_; DISALLOW_COPY_AND_ASSIGN(Lock); }; // A helper class that acquires the given Lock while the AutoLock is in scope. class AutoLock { public: explicit AutoLock(Lock& lock) : lock_(lock) { lock_.Acquire(); } ~AutoLock() { lock_.AssertAcquired(); lock_.Release(); } private: Lock& lock_; DISALLOW_COPY_AND_ASSIGN(AutoLock); }; // AutoUnlock is a helper that will Release() the |lock| argument in the // constructor, and re-Acquire() it in the destructor. class AutoUnlock { public: explicit AutoUnlock(Lock& lock) : lock_(lock) { // We require our caller to have the lock. lock_.AssertAcquired(); lock_.Release(); } ~AutoUnlock() { lock_.Acquire(); } private: Lock& lock_; DISALLOW_COPY_AND_ASSIGN(AutoUnlock); }; } // namespace base #endif // BASE_SYNCHRONIZATION_LOCK_H_