// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/synchronization/waitable_event.h" #include "base/synchronization/condition_variable.h" #include "base/synchronization/lock.h" #include "base/message_loop.h" // ----------------------------------------------------------------------------- // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't // support cross-process events (where one process can signal an event which // others are waiting on). Because of this, we can avoid having one thread per // listener in several cases. // // The WaitableEvent maintains a list of waiters, protected by a lock. Each // waiter is either an async wait, in which case we have a Task and the // MessageLoop to run it on, or a blocking wait, in which case we have the // condition variable to signal. // // Waiting involves grabbing the lock and adding oneself to the wait list. Async // waits can be canceled, which means grabbing the lock and removing oneself // from the list. // // Waiting on multiple events is handled by adding a single, synchronous wait to // the wait-list of many events. An event passes a pointer to itself when // firing a waiter and so we can store that pointer to find out which event // triggered. // ----------------------------------------------------------------------------- namespace base { // ----------------------------------------------------------------------------- // This is just an abstract base class for waking the two types of waiters // ----------------------------------------------------------------------------- WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled) : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) { } WaitableEvent::~WaitableEvent() { } void WaitableEvent::Reset() { base::AutoLock locked(kernel_->lock_); kernel_->signaled_ = false; } void WaitableEvent::Signal() { base::AutoLock locked(kernel_->lock_); if (kernel_->signaled_) return; if (kernel_->manual_reset_) { SignalAll(); kernel_->signaled_ = true; } else { // In the case of auto reset, if no waiters were woken, we remain // signaled. if (!SignalOne()) kernel_->signaled_ = true; } } bool WaitableEvent::IsSignaled() { base::AutoLock locked(kernel_->lock_); const bool result = kernel_->signaled_; if (result && !kernel_->manual_reset_) kernel_->signaled_ = false; return result; } // ----------------------------------------------------------------------------- // Synchronous waits // ----------------------------------------------------------------------------- // This is a synchronous waiter. The thread is waiting on the given condition // variable and the fired flag in this object. // ----------------------------------------------------------------------------- class SyncWaiter : public WaitableEvent::Waiter { public: SyncWaiter() : fired_(false), signaling_event_(NULL), lock_(), cv_(&lock_) { } bool Fire(WaitableEvent* signaling_event) { base::AutoLock locked(lock_); if (fired_) return false; fired_ = true; signaling_event_ = signaling_event; cv_.Broadcast(); // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on // the blocking thread's stack. There is no |delete this;| in Fire. The // SyncWaiter object is destroyed when it goes out of scope. return true; } WaitableEvent* signaling_event() const { return signaling_event_; } // --------------------------------------------------------------------------- // These waiters are always stack allocated and don't delete themselves. Thus // there's no problem and the ABA tag is the same as the object pointer. // --------------------------------------------------------------------------- bool Compare(void* tag) { return this == tag; } // --------------------------------------------------------------------------- // Called with lock held. // --------------------------------------------------------------------------- bool fired() const { return fired_; } // --------------------------------------------------------------------------- // During a TimedWait, we need a way to make sure that an auto-reset // WaitableEvent doesn't think that this event has been signaled between // unlocking it and removing it from the wait-list. Called with lock held. // --------------------------------------------------------------------------- void Disable() { fired_ = true; } base::Lock* lock() { return &lock_; } base::ConditionVariable* cv() { return &cv_; } private: bool fired_; WaitableEvent* signaling_event_; // The WaitableEvent which woke us base::Lock lock_; base::ConditionVariable cv_; }; bool WaitableEvent::Wait() { return TimedWait(TimeDelta::FromSeconds(-1)); } bool WaitableEvent::TimedWait(const TimeDelta& max_time) { const Time end_time(Time::Now() + max_time); const bool finite_time = max_time.ToInternalValue() >= 0; kernel_->lock_.Acquire(); if (kernel_->signaled_) { if (!kernel_->manual_reset_) { // In this case we were signaled when we had no waiters. Now that // someone has waited upon us, we can automatically reset. kernel_->signaled_ = false; } kernel_->lock_.Release(); return true; } SyncWaiter sw; sw.lock()->Acquire(); Enqueue(&sw); kernel_->lock_.Release(); // We are violating locking order here by holding the SyncWaiter lock but not // the WaitableEvent lock. However, this is safe because we don't lock @lock_ // again before unlocking it. for (;;) { const Time current_time(Time::Now()); if (sw.fired() || (finite_time && current_time >= end_time)) { const bool return_value = sw.fired(); // We can't acquire @lock_ before releasing the SyncWaiter lock (because // of locking order), however, in between the two a signal could be fired // and @sw would accept it, however we will still return false, so the // signal would be lost on an auto-reset WaitableEvent. Thus we call // Disable which makes sw::Fire return false. sw.Disable(); sw.lock()->Release(); kernel_->lock_.Acquire(); kernel_->Dequeue(&sw, &sw); kernel_->lock_.Release(); return return_value; } if (finite_time) { const TimeDelta max_wait(end_time - current_time); sw.cv()->TimedWait(max_wait); } else { sw.cv()->Wait(); } } } // ----------------------------------------------------------------------------- // Synchronous waiting on multiple objects. static bool // StrictWeakOrdering cmp_fst_addr(const std::pair &a, const std::pair &b) { return a.first < b.first; } // static size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables, size_t count) { DCHECK(count) << "Cannot wait on no events"; // We need to acquire the locks in a globally consistent order. Thus we sort // the array of waitables by address. We actually sort a pairs so that we can // map back to the original index values later. std::vector > waitables; waitables.reserve(count); for (size_t i = 0; i < count; ++i) waitables.push_back(std::make_pair(raw_waitables[i], i)); DCHECK_EQ(count, waitables.size()); sort(waitables.begin(), waitables.end(), cmp_fst_addr); // The set of waitables must be distinct. Since we have just sorted by // address, we can check this cheaply by comparing pairs of consecutive // elements. for (size_t i = 0; i < waitables.size() - 1; ++i) { DCHECK(waitables[i].first != waitables[i+1].first); } SyncWaiter sw; const size_t r = EnqueueMany(&waitables[0], count, &sw); if (r) { // One of the events is already signaled. The SyncWaiter has not been // enqueued anywhere. EnqueueMany returns the count of remaining waitables // when the signaled one was seen, so the index of the signaled event is // @count - @r. return waitables[count - r].second; } // At this point, we hold the locks on all the WaitableEvents and we have // enqueued our waiter in them all. sw.lock()->Acquire(); // Release the WaitableEvent locks in the reverse order for (size_t i = 0; i < count; ++i) { waitables[count - (1 + i)].first->kernel_->lock_.Release(); } for (;;) { if (sw.fired()) break; sw.cv()->Wait(); } sw.lock()->Release(); // The address of the WaitableEvent which fired is stored in the SyncWaiter. WaitableEvent *const signaled_event = sw.signaling_event(); // This will store the index of the raw_waitables which fired. size_t signaled_index = 0; // Take the locks of each WaitableEvent in turn (except the signaled one) and // remove our SyncWaiter from the wait-list for (size_t i = 0; i < count; ++i) { if (raw_waitables[i] != signaled_event) { raw_waitables[i]->kernel_->lock_.Acquire(); // There's no possible ABA issue with the address of the SyncWaiter here // because it lives on the stack. Thus the tag value is just the pointer // value again. raw_waitables[i]->kernel_->Dequeue(&sw, &sw); raw_waitables[i]->kernel_->lock_.Release(); } else { signaled_index = i; } } return signaled_index; } // ----------------------------------------------------------------------------- // If return value == 0: // The locks of the WaitableEvents have been taken in order and the Waiter has // been enqueued in the wait-list of each. None of the WaitableEvents are // currently signaled // else: // None of the WaitableEvent locks are held. The Waiter has not been enqueued // in any of them and the return value is the index of the first WaitableEvent // which was signaled, from the end of the array. // ----------------------------------------------------------------------------- // static size_t WaitableEvent::EnqueueMany (std::pair* waitables, size_t count, Waiter* waiter) { if (!count) return 0; waitables[0].first->kernel_->lock_.Acquire(); if (waitables[0].first->kernel_->signaled_) { if (!waitables[0].first->kernel_->manual_reset_) waitables[0].first->kernel_->signaled_ = false; waitables[0].first->kernel_->lock_.Release(); return count; } const size_t r = EnqueueMany(waitables + 1, count - 1, waiter); if (r) { waitables[0].first->kernel_->lock_.Release(); } else { waitables[0].first->Enqueue(waiter); } return r; } // ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- // Private functions... WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset, bool initially_signaled) : manual_reset_(manual_reset), signaled_(initially_signaled) { } WaitableEvent::WaitableEventKernel::~WaitableEventKernel() { } // ----------------------------------------------------------------------------- // Wake all waiting waiters. Called with lock held. // ----------------------------------------------------------------------------- bool WaitableEvent::SignalAll() { bool signaled_at_least_one = false; for (std::list::iterator i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) { if ((*i)->Fire(this)) signaled_at_least_one = true; } kernel_->waiters_.clear(); return signaled_at_least_one; } // --------------------------------------------------------------------------- // Try to wake a single waiter. Return true if one was woken. Called with lock // held. // --------------------------------------------------------------------------- bool WaitableEvent::SignalOne() { for (;;) { if (kernel_->waiters_.empty()) return false; const bool r = (*kernel_->waiters_.begin())->Fire(this); kernel_->waiters_.pop_front(); if (r) return true; } } // ----------------------------------------------------------------------------- // Add a waiter to the list of those waiting. Called with lock held. // ----------------------------------------------------------------------------- void WaitableEvent::Enqueue(Waiter* waiter) { kernel_->waiters_.push_back(waiter); } // ----------------------------------------------------------------------------- // Remove a waiter from the list of those waiting. Return true if the waiter was // actually removed. Called with lock held. // ----------------------------------------------------------------------------- bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) { for (std::list::iterator i = waiters_.begin(); i != waiters_.end(); ++i) { if (*i == waiter && (*i)->Compare(tag)) { waiters_.erase(i); return true; } } return false; } // ----------------------------------------------------------------------------- } // namespace base