// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/test/launcher/test_launcher.h" #include "base/at_exit.h" #include "base/bind.h" #include "base/command_line.h" #include "base/environment.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/files/scoped_file.h" #include "base/format_macros.h" #include "base/hash.h" #include "base/lazy_instance.h" #include "base/location.h" #include "base/logging.h" #include "base/macros.h" #include "base/memory/scoped_ptr.h" #include "base/message_loop/message_loop.h" #include "base/process/kill.h" #include "base/process/launch.h" #include "base/single_thread_task_runner.h" #include "base/strings/pattern.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/string_util.h" #include "base/strings/stringize_macros.h" #include "base/strings/stringprintf.h" #include "base/strings/utf_string_conversions.h" #include "base/test/gtest_util.h" #include "base/test/launcher/test_results_tracker.h" #include "base/test/sequenced_worker_pool_owner.h" #include "base/test/test_switches.h" #include "base/test/test_timeouts.h" #include "base/thread_task_runner_handle.h" #include "base/threading/thread_checker.h" #include "base/time/time.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_POSIX) #include #endif #if defined(OS_MACOSX) #include "base/mac/scoped_nsautorelease_pool.h" #endif #if defined(OS_WIN) #include "base/win/windows_version.h" #endif namespace base { // See https://groups.google.com/a/chromium.org/d/msg/chromium-dev/nkdTP7sstSc/uT3FaE_sgkAJ . using ::operator<<; // The environment variable name for the total number of test shards. const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS"; // The environment variable name for the test shard index. const char kTestShardIndex[] = "GTEST_SHARD_INDEX"; namespace { // Global tag for test runs where the results are incomplete or unreliable // for any reason, e.g. early exit because of too many broken tests. const char kUnreliableResultsTag[] = "UNRELIABLE_RESULTS"; // Maximum time of no output after which we print list of processes still // running. This deliberately doesn't use TestTimeouts (which is otherwise // a recommended solution), because they can be increased. This would defeat // the purpose of this timeout, which is 1) to avoid buildbot "no output for // X seconds" timeout killing the process 2) help communicate status of // the test launcher to people looking at the output (no output for a long // time is mysterious and gives no info about what is happening) 3) help // debugging in case the process hangs anyway. const int kOutputTimeoutSeconds = 15; // Limit of output snippet lines when printing to stdout. // Avoids flooding the logs with amount of output that gums up // the infrastructure. const size_t kOutputSnippetLinesLimit = 5000; // Set of live launch test processes with corresponding lock (it is allowed // for callers to launch processes on different threads). LazyInstance > g_live_processes = LAZY_INSTANCE_INITIALIZER; LazyInstance g_live_processes_lock = LAZY_INSTANCE_INITIALIZER; #if defined(OS_POSIX) // Self-pipe that makes it possible to do complex shutdown handling // outside of the signal handler. int g_shutdown_pipe[2] = { -1, -1 }; void ShutdownPipeSignalHandler(int signal) { HANDLE_EINTR(write(g_shutdown_pipe[1], "q", 1)); } void KillSpawnedTestProcesses() { // Keep the lock until exiting the process to prevent further processes // from being spawned. AutoLock lock(g_live_processes_lock.Get()); fprintf(stdout, "Sending SIGTERM to %" PRIuS " child processes... ", g_live_processes.Get().size()); fflush(stdout); for (std::map::iterator i = g_live_processes.Get().begin(); i != g_live_processes.Get().end(); ++i) { // Send the signal to entire process group. kill((-1) * (i->first), SIGTERM); } fprintf(stdout, "done.\nGiving processes a chance to terminate cleanly... "); fflush(stdout); PlatformThread::Sleep(TimeDelta::FromMilliseconds(500)); fprintf(stdout, "done.\n"); fflush(stdout); fprintf(stdout, "Sending SIGKILL to %" PRIuS " child processes... ", g_live_processes.Get().size()); fflush(stdout); for (std::map::iterator i = g_live_processes.Get().begin(); i != g_live_processes.Get().end(); ++i) { // Send the signal to entire process group. kill((-1) * (i->first), SIGKILL); } fprintf(stdout, "done.\n"); fflush(stdout); } // I/O watcher for the reading end of the self-pipe above. // Terminates any launched child processes and exits the process. class SignalFDWatcher : public MessageLoopForIO::Watcher { public: SignalFDWatcher() { } void OnFileCanReadWithoutBlocking(int fd) override { fprintf(stdout, "\nCaught signal. Killing spawned test processes...\n"); fflush(stdout); KillSpawnedTestProcesses(); // The signal would normally kill the process, so exit now. _exit(1); } void OnFileCanWriteWithoutBlocking(int fd) override { NOTREACHED(); } private: DISALLOW_COPY_AND_ASSIGN(SignalFDWatcher); }; #endif // defined(OS_POSIX) // Parses the environment variable var as an Int32. If it is unset, returns // true. If it is set, unsets it then converts it to Int32 before // returning it in |result|. Returns true on success. bool TakeInt32FromEnvironment(const char* const var, int32_t* result) { scoped_ptr env(Environment::Create()); std::string str_val; if (!env->GetVar(var, &str_val)) return true; if (!env->UnSetVar(var)) { LOG(ERROR) << "Invalid environment: we could not unset " << var << ".\n"; return false; } if (!StringToInt(str_val, result)) { LOG(ERROR) << "Invalid environment: " << var << " is not an integer.\n"; return false; } return true; } // Unsets the environment variable |name| and returns true on success. // Also returns true if the variable just doesn't exist. bool UnsetEnvironmentVariableIfExists(const std::string& name) { scoped_ptr env(Environment::Create()); std::string str_val; if (!env->GetVar(name.c_str(), &str_val)) return true; return env->UnSetVar(name.c_str()); } // Returns true if bot mode has been requested, i.e. defaults optimized // for continuous integration bots. This way developers don't have to remember // special command-line flags. bool BotModeEnabled() { scoped_ptr env(Environment::Create()); return CommandLine::ForCurrentProcess()->HasSwitch( switches::kTestLauncherBotMode) || env->HasVar("CHROMIUM_TEST_LAUNCHER_BOT_MODE"); } // Returns command line command line after gtest-specific processing // and applying |wrapper|. CommandLine PrepareCommandLineForGTest(const CommandLine& command_line, const std::string& wrapper) { CommandLine new_command_line(command_line.GetProgram()); CommandLine::SwitchMap switches = command_line.GetSwitches(); // Strip out gtest_repeat flag - this is handled by the launcher process. switches.erase(kGTestRepeatFlag); // Don't try to write the final XML report in child processes. switches.erase(kGTestOutputFlag); for (CommandLine::SwitchMap::const_iterator iter = switches.begin(); iter != switches.end(); ++iter) { new_command_line.AppendSwitchNative((*iter).first, (*iter).second); } // Prepend wrapper after last CommandLine quasi-copy operation. CommandLine // does not really support removing switches well, and trying to do that // on a CommandLine with a wrapper is known to break. // TODO(phajdan.jr): Give it a try to support CommandLine removing switches. #if defined(OS_WIN) new_command_line.PrependWrapper(ASCIIToUTF16(wrapper)); #elif defined(OS_POSIX) new_command_line.PrependWrapper(wrapper); #endif return new_command_line; } // Launches a child process using |command_line|. If the child process is still // running after |timeout|, it is terminated and |*was_timeout| is set to true. // Returns exit code of the process. int LaunchChildTestProcessWithOptions( const CommandLine& command_line, const LaunchOptions& options, int flags, TimeDelta timeout, const TestLauncher::GTestProcessLaunchedCallback& launched_callback, bool* was_timeout) { #if defined(OS_POSIX) // Make sure an option we rely on is present - see LaunchChildGTestProcess. DCHECK(options.new_process_group); #endif LaunchOptions new_options(options); #if defined(OS_WIN) DCHECK(!new_options.job_handle); win::ScopedHandle job_handle; if (flags & TestLauncher::USE_JOB_OBJECTS) { job_handle.Set(CreateJobObject(NULL, NULL)); if (!job_handle.IsValid()) { LOG(ERROR) << "Could not create JobObject."; return -1; } DWORD job_flags = JOB_OBJECT_LIMIT_KILL_ON_JOB_CLOSE; // Allow break-away from job since sandbox and few other places rely on it // on Windows versions prior to Windows 8 (which supports nested jobs). if (win::GetVersion() < win::VERSION_WIN8 && flags & TestLauncher::ALLOW_BREAKAWAY_FROM_JOB) { job_flags |= JOB_OBJECT_LIMIT_BREAKAWAY_OK; } if (!SetJobObjectLimitFlags(job_handle.Get(), job_flags)) { LOG(ERROR) << "Could not SetJobObjectLimitFlags."; return -1; } new_options.job_handle = job_handle.Get(); } #endif // defined(OS_WIN) #if defined(OS_LINUX) // To prevent accidental privilege sharing to an untrusted child, processes // are started with PR_SET_NO_NEW_PRIVS. Do not set that here, since this // new child will be privileged and trusted. new_options.allow_new_privs = true; #endif Process process; { // Note how we grab the lock before the process possibly gets created. // This ensures that when the lock is held, ALL the processes are registered // in the set. AutoLock lock(g_live_processes_lock.Get()); process = LaunchProcess(command_line, new_options); if (!process.IsValid()) return -1; // TODO(rvargas) crbug.com/417532: Don't store process handles. g_live_processes.Get().insert(std::make_pair(process.Handle(), command_line)); } if (!launched_callback.is_null()) launched_callback.Run(process.Handle(), process.Pid()); int exit_code = 0; if (!process.WaitForExitWithTimeout(timeout, &exit_code)) { *was_timeout = true; exit_code = -1; // Set a non-zero exit code to signal a failure. // Ensure that the process terminates. process.Terminate(-1, true); } { // Note how we grab the log before issuing a possibly broad process kill. // Other code parts that grab the log kill processes, so avoid trying // to do that twice and trigger all kinds of log messages. AutoLock lock(g_live_processes_lock.Get()); #if defined(OS_POSIX) if (exit_code != 0) { // On POSIX, in case the test does not exit cleanly, either due to a crash // or due to it timing out, we need to clean up any child processes that // it might have created. On Windows, child processes are automatically // cleaned up using JobObjects. KillProcessGroup(process.Handle()); } #endif g_live_processes.Get().erase(process.Handle()); } return exit_code; } void RunCallback(const TestLauncher::GTestProcessCompletedCallback& callback, int exit_code, const TimeDelta& elapsed_time, bool was_timeout, const std::string& output) { callback.Run(exit_code, elapsed_time, was_timeout, output); } void DoLaunchChildTestProcess( const CommandLine& command_line, TimeDelta timeout, const TestLauncher::LaunchOptions& test_launch_options, bool redirect_stdio, SingleThreadTaskRunner* task_runner, const TestLauncher::GTestProcessCompletedCallback& completed_callback, const TestLauncher::GTestProcessLaunchedCallback& launched_callback) { TimeTicks start_time = TimeTicks::Now(); // Redirect child process output to a file. FilePath output_file; CHECK(CreateTemporaryFile(&output_file)); LaunchOptions options; #if defined(OS_WIN) win::ScopedHandle handle; if (redirect_stdio) { // Make the file handle inheritable by the child. SECURITY_ATTRIBUTES sa_attr; sa_attr.nLength = sizeof(SECURITY_ATTRIBUTES); sa_attr.lpSecurityDescriptor = NULL; sa_attr.bInheritHandle = TRUE; handle.Set(CreateFile(output_file.value().c_str(), GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_DELETE, &sa_attr, OPEN_EXISTING, FILE_ATTRIBUTE_TEMPORARY, NULL)); CHECK(handle.IsValid()); options.inherit_handles = true; options.stdin_handle = INVALID_HANDLE_VALUE; options.stdout_handle = handle.Get(); options.stderr_handle = handle.Get(); } if (test_launch_options.inherit_handles) { if (!options.inherit_handles) { options.inherit_handles = true; options.stdin_handle = nullptr; options.stdout_handle = nullptr; options.stderr_handle = nullptr; } DCHECK(!options.handles_to_inherit); options.handles_to_inherit = test_launch_options.handles_to_inherit; } #elif defined(OS_POSIX) options.new_process_group = true; #if defined(OS_LINUX) options.kill_on_parent_death = true; #endif // defined(OS_LINUX) FileHandleMappingVector fds_mapping; ScopedFD output_file_fd; if (redirect_stdio) { output_file_fd.reset(open(output_file.value().c_str(), O_RDWR)); CHECK(output_file_fd.is_valid()); fds_mapping.push_back(std::make_pair(output_file_fd.get(), STDOUT_FILENO)); fds_mapping.push_back(std::make_pair(output_file_fd.get(), STDERR_FILENO)); options.fds_to_remap = &fds_mapping; } if (test_launch_options.fds_to_remap) { fds_mapping.insert(fds_mapping.end(), test_launch_options.fds_to_remap->begin(), test_launch_options.fds_to_remap->end()); options.fds_to_remap = &fds_mapping; } #endif bool was_timeout = false; int exit_code = LaunchChildTestProcessWithOptions( command_line, options, test_launch_options.flags, timeout, launched_callback, &was_timeout); if (redirect_stdio) { #if defined(OS_WIN) FlushFileBuffers(handle.Get()); handle.Close(); #elif defined(OS_POSIX) output_file_fd.reset(); #endif } std::string output_file_contents; CHECK(ReadFileToString(output_file, &output_file_contents)); if (!DeleteFile(output_file, false)) { // This needs to be non-fatal at least for Windows. LOG(WARNING) << "Failed to delete " << output_file.AsUTF8Unsafe(); } // Run target callback on the thread it was originating from, not on // a worker pool thread. task_runner->PostTask( FROM_HERE, Bind(&RunCallback, completed_callback, exit_code, TimeTicks::Now() - start_time, was_timeout, output_file_contents)); } } // namespace const char kGTestBreakOnFailure[] = "gtest_break_on_failure"; const char kGTestFilterFlag[] = "gtest_filter"; const char kGTestFlagfileFlag[] = "gtest_flagfile"; const char kGTestHelpFlag[] = "gtest_help"; const char kGTestListTestsFlag[] = "gtest_list_tests"; const char kGTestRepeatFlag[] = "gtest_repeat"; const char kGTestRunDisabledTestsFlag[] = "gtest_also_run_disabled_tests"; const char kGTestOutputFlag[] = "gtest_output"; TestLauncherDelegate::~TestLauncherDelegate() { } TestLauncher::TestLauncher(TestLauncherDelegate* launcher_delegate, size_t parallel_jobs) : launcher_delegate_(launcher_delegate), total_shards_(1), shard_index_(0), cycles_(1), test_found_count_(0), test_started_count_(0), test_finished_count_(0), test_success_count_(0), test_broken_count_(0), retry_count_(0), retry_limit_(0), force_run_broken_tests_(false), run_result_(true), watchdog_timer_(FROM_HERE, TimeDelta::FromSeconds(kOutputTimeoutSeconds), this, &TestLauncher::OnOutputTimeout), parallel_jobs_(parallel_jobs) { } TestLauncher::~TestLauncher() {} bool TestLauncher::Run() { if (!Init()) return false; // Value of |cycles_| changes after each iteration. Keep track of the // original value. int requested_cycles = cycles_; #if defined(OS_POSIX) CHECK_EQ(0, pipe(g_shutdown_pipe)); struct sigaction action; memset(&action, 0, sizeof(action)); sigemptyset(&action.sa_mask); action.sa_handler = &ShutdownPipeSignalHandler; CHECK_EQ(0, sigaction(SIGINT, &action, NULL)); CHECK_EQ(0, sigaction(SIGQUIT, &action, NULL)); CHECK_EQ(0, sigaction(SIGTERM, &action, NULL)); MessageLoopForIO::FileDescriptorWatcher controller; SignalFDWatcher watcher; CHECK(MessageLoopForIO::current()->WatchFileDescriptor( g_shutdown_pipe[0], true, MessageLoopForIO::WATCH_READ, &controller, &watcher)); #endif // defined(OS_POSIX) // Start the watchdog timer. watchdog_timer_.Reset(); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, Bind(&TestLauncher::RunTestIteration, Unretained(this))); MessageLoop::current()->Run(); if (requested_cycles != 1) results_tracker_.PrintSummaryOfAllIterations(); MaybeSaveSummaryAsJSON(); return run_result_; } void TestLauncher::LaunchChildGTestProcess( const CommandLine& command_line, const std::string& wrapper, TimeDelta timeout, const LaunchOptions& options, const GTestProcessCompletedCallback& completed_callback, const GTestProcessLaunchedCallback& launched_callback) { DCHECK(thread_checker_.CalledOnValidThread()); // Record the exact command line used to launch the child. CommandLine new_command_line( PrepareCommandLineForGTest(command_line, wrapper)); // When running in parallel mode we need to redirect stdio to avoid mixed-up // output. We also always redirect on the bots to get the test output into // JSON summary. bool redirect_stdio = (parallel_jobs_ > 1) || BotModeEnabled(); worker_pool_owner_->pool()->PostWorkerTask( FROM_HERE, Bind(&DoLaunchChildTestProcess, new_command_line, timeout, options, redirect_stdio, RetainedRef(ThreadTaskRunnerHandle::Get()), Bind(&TestLauncher::OnLaunchTestProcessFinished, Unretained(this), completed_callback), launched_callback)); } void TestLauncher::OnTestFinished(const TestResult& result) { ++test_finished_count_; bool print_snippet = false; std::string print_test_stdio("auto"); if (CommandLine::ForCurrentProcess()->HasSwitch( switches::kTestLauncherPrintTestStdio)) { print_test_stdio = CommandLine::ForCurrentProcess()->GetSwitchValueASCII( switches::kTestLauncherPrintTestStdio); } if (print_test_stdio == "auto") { print_snippet = (result.status != TestResult::TEST_SUCCESS); } else if (print_test_stdio == "always") { print_snippet = true; } else if (print_test_stdio == "never") { print_snippet = false; } else { LOG(WARNING) << "Invalid value of " << switches::kTestLauncherPrintTestStdio << ": " << print_test_stdio; } if (print_snippet) { std::vector snippet_lines = SplitString( result.output_snippet, "\n", base::KEEP_WHITESPACE, base::SPLIT_WANT_ALL); if (snippet_lines.size() > kOutputSnippetLinesLimit) { size_t truncated_size = snippet_lines.size() - kOutputSnippetLinesLimit; snippet_lines.erase( snippet_lines.begin(), snippet_lines.begin() + truncated_size); snippet_lines.insert(snippet_lines.begin(), ""); } fprintf(stdout, "%s", base::JoinString(snippet_lines, "\n").c_str()); fflush(stdout); } if (result.status == TestResult::TEST_SUCCESS) { ++test_success_count_; } else { tests_to_retry_.insert(result.full_name); } results_tracker_.AddTestResult(result); // TODO(phajdan.jr): Align counter (padding). std::string status_line( StringPrintf("[%" PRIuS "/%" PRIuS "] %s ", test_finished_count_, test_started_count_, result.full_name.c_str())); if (result.completed()) { status_line.append(StringPrintf("(%" PRId64 " ms)", result.elapsed_time.InMilliseconds())); } else if (result.status == TestResult::TEST_TIMEOUT) { status_line.append("(TIMED OUT)"); } else if (result.status == TestResult::TEST_CRASH) { status_line.append("(CRASHED)"); } else if (result.status == TestResult::TEST_SKIPPED) { status_line.append("(SKIPPED)"); } else if (result.status == TestResult::TEST_UNKNOWN) { status_line.append("(UNKNOWN)"); } else { // Fail very loudly so it's not ignored. CHECK(false) << "Unhandled test result status: " << result.status; } fprintf(stdout, "%s\n", status_line.c_str()); fflush(stdout); // We just printed a status line, reset the watchdog timer. watchdog_timer_.Reset(); // Do not waste time on timeouts. We include tests with unknown results here // because sometimes (e.g. hang in between unit tests) that's how a timeout // gets reported. if (result.status == TestResult::TEST_TIMEOUT || result.status == TestResult::TEST_UNKNOWN) { test_broken_count_++; } size_t broken_threshold = std::max(static_cast(20), test_found_count_ / 10); if (!force_run_broken_tests_ && test_broken_count_ >= broken_threshold) { fprintf(stdout, "Too many badly broken tests (%" PRIuS "), exiting now.\n", test_broken_count_); fflush(stdout); #if defined(OS_POSIX) KillSpawnedTestProcesses(); #endif // defined(OS_POSIX) results_tracker_.AddGlobalTag("BROKEN_TEST_EARLY_EXIT"); results_tracker_.AddGlobalTag(kUnreliableResultsTag); MaybeSaveSummaryAsJSON(); exit(1); } if (test_finished_count_ != test_started_count_) return; if (tests_to_retry_.empty() || retry_count_ >= retry_limit_) { OnTestIterationFinished(); return; } if (!force_run_broken_tests_ && tests_to_retry_.size() >= broken_threshold) { fprintf(stdout, "Too many failing tests (%" PRIuS "), skipping retries.\n", tests_to_retry_.size()); fflush(stdout); results_tracker_.AddGlobalTag("BROKEN_TEST_SKIPPED_RETRIES"); results_tracker_.AddGlobalTag(kUnreliableResultsTag); OnTestIterationFinished(); return; } retry_count_++; std::vector test_names(tests_to_retry_.begin(), tests_to_retry_.end()); tests_to_retry_.clear(); size_t retry_started_count = launcher_delegate_->RetryTests(this, test_names); if (retry_started_count == 0) { // Signal failure, but continue to run all requested test iterations. // With the summary of all iterations at the end this is a good default. run_result_ = false; OnTestIterationFinished(); return; } fprintf(stdout, "Retrying %" PRIuS " test%s (retry #%" PRIuS ")\n", retry_started_count, retry_started_count > 1 ? "s" : "", retry_count_); fflush(stdout); test_started_count_ += retry_started_count; } bool TestLauncher::Init() { const CommandLine* command_line = CommandLine::ForCurrentProcess(); // Initialize sharding. Command line takes precedence over legacy environment // variables. if (command_line->HasSwitch(switches::kTestLauncherTotalShards) && command_line->HasSwitch(switches::kTestLauncherShardIndex)) { if (!StringToInt( command_line->GetSwitchValueASCII( switches::kTestLauncherTotalShards), &total_shards_)) { LOG(ERROR) << "Invalid value for " << switches::kTestLauncherTotalShards; return false; } if (!StringToInt( command_line->GetSwitchValueASCII( switches::kTestLauncherShardIndex), &shard_index_)) { LOG(ERROR) << "Invalid value for " << switches::kTestLauncherShardIndex; return false; } fprintf(stdout, "Using sharding settings from command line. This is shard %d/%d\n", shard_index_, total_shards_); fflush(stdout); } else { if (!TakeInt32FromEnvironment(kTestTotalShards, &total_shards_)) return false; if (!TakeInt32FromEnvironment(kTestShardIndex, &shard_index_)) return false; fprintf(stdout, "Using sharding settings from environment. This is shard %d/%d\n", shard_index_, total_shards_); fflush(stdout); } if (shard_index_ < 0 || total_shards_ < 0 || shard_index_ >= total_shards_) { LOG(ERROR) << "Invalid sharding settings: we require 0 <= " << kTestShardIndex << " < " << kTestTotalShards << ", but you have " << kTestShardIndex << "=" << shard_index_ << ", " << kTestTotalShards << "=" << total_shards_ << ".\n"; return false; } // Make sure we don't pass any sharding-related environment to the child // processes. This test launcher implements the sharding completely. CHECK(UnsetEnvironmentVariableIfExists("GTEST_TOTAL_SHARDS")); CHECK(UnsetEnvironmentVariableIfExists("GTEST_SHARD_INDEX")); if (command_line->HasSwitch(kGTestRepeatFlag) && !StringToInt(command_line->GetSwitchValueASCII(kGTestRepeatFlag), &cycles_)) { LOG(ERROR) << "Invalid value for " << kGTestRepeatFlag; return false; } if (command_line->HasSwitch(switches::kTestLauncherRetryLimit)) { int retry_limit = -1; if (!StringToInt(command_line->GetSwitchValueASCII( switches::kTestLauncherRetryLimit), &retry_limit) || retry_limit < 0) { LOG(ERROR) << "Invalid value for " << switches::kTestLauncherRetryLimit; return false; } retry_limit_ = retry_limit; } else if (!command_line->HasSwitch(kGTestFilterFlag) || BotModeEnabled()) { // Retry failures 3 times by default if we are running all of the tests or // in bot mode. retry_limit_ = 3; } if (command_line->HasSwitch(switches::kTestLauncherForceRunBrokenTests)) force_run_broken_tests_ = true; if (command_line->HasSwitch(switches::kTestLauncherJobs)) { int jobs = -1; if (!StringToInt(command_line->GetSwitchValueASCII( switches::kTestLauncherJobs), &jobs) || jobs < 0) { LOG(ERROR) << "Invalid value for " << switches::kTestLauncherJobs; return false; } parallel_jobs_ = jobs; } else if (command_line->HasSwitch(kGTestFilterFlag) && !BotModeEnabled()) { // Do not run jobs in parallel by default if we are running a subset of // the tests and if bot mode is off. parallel_jobs_ = 1; } fprintf(stdout, "Using %" PRIuS " parallel jobs.\n", parallel_jobs_); fflush(stdout); worker_pool_owner_.reset( new SequencedWorkerPoolOwner(parallel_jobs_, "test_launcher")); if (command_line->HasSwitch(switches::kTestLauncherFilterFile) && command_line->HasSwitch(kGTestFilterFlag)) { LOG(ERROR) << "Only one of --test-launcher-filter-file and --gtest_filter " << "at a time is allowed."; return false; } if (command_line->HasSwitch(switches::kTestLauncherFilterFile)) { base::FilePath filter_file_path = base::MakeAbsoluteFilePath( command_line->GetSwitchValuePath(switches::kTestLauncherFilterFile)); std::string filter; if (!ReadFileToString(filter_file_path, &filter)) { LOG(ERROR) << "Failed to read the filter file."; return false; } std::vector filter_lines = SplitString( filter, "\n", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); for (const std::string& filter_line : filter_lines) { if (filter_line.empty() || filter_line[0] == '#') continue; if (filter_line[0] == '-') negative_test_filter_.push_back(filter_line.substr(1)); else positive_test_filter_.push_back(filter_line); } } else { // Split --gtest_filter at '-', if there is one, to separate into // positive filter and negative filter portions. std::string filter = command_line->GetSwitchValueASCII(kGTestFilterFlag); size_t dash_pos = filter.find('-'); if (dash_pos == std::string::npos) { positive_test_filter_ = SplitString( filter, ":", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); } else { // Everything up to the dash. positive_test_filter_ = SplitString( filter.substr(0, dash_pos), ":", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); // Everything after the dash. negative_test_filter_ = SplitString( filter.substr(dash_pos + 1), ":", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); } } if (!launcher_delegate_->GetTests(&tests_)) { LOG(ERROR) << "Failed to get list of tests."; return false; } if (!results_tracker_.Init(*command_line)) { LOG(ERROR) << "Failed to initialize test results tracker."; return 1; } #if defined(NDEBUG) results_tracker_.AddGlobalTag("MODE_RELEASE"); #else results_tracker_.AddGlobalTag("MODE_DEBUG"); #endif // Operating systems (sorted alphabetically). // Note that they can deliberately overlap, e.g. OS_LINUX is a subset // of OS_POSIX. #if defined(OS_ANDROID) results_tracker_.AddGlobalTag("OS_ANDROID"); #endif #if defined(OS_BSD) results_tracker_.AddGlobalTag("OS_BSD"); #endif #if defined(OS_FREEBSD) results_tracker_.AddGlobalTag("OS_FREEBSD"); #endif #if defined(OS_IOS) results_tracker_.AddGlobalTag("OS_IOS"); #endif #if defined(OS_LINUX) results_tracker_.AddGlobalTag("OS_LINUX"); #endif #if defined(OS_MACOSX) results_tracker_.AddGlobalTag("OS_MACOSX"); #endif #if defined(OS_NACL) results_tracker_.AddGlobalTag("OS_NACL"); #endif #if defined(OS_OPENBSD) results_tracker_.AddGlobalTag("OS_OPENBSD"); #endif #if defined(OS_POSIX) results_tracker_.AddGlobalTag("OS_POSIX"); #endif #if defined(OS_SOLARIS) results_tracker_.AddGlobalTag("OS_SOLARIS"); #endif #if defined(OS_WIN) results_tracker_.AddGlobalTag("OS_WIN"); #endif // CPU-related tags. #if defined(ARCH_CPU_32_BITS) results_tracker_.AddGlobalTag("CPU_32_BITS"); #endif #if defined(ARCH_CPU_64_BITS) results_tracker_.AddGlobalTag("CPU_64_BITS"); #endif return true; } void TestLauncher::RunTests() { std::vector test_names; for (size_t i = 0; i < tests_.size(); i++) { std::string test_name = FormatFullTestName( tests_[i].test_case_name, tests_[i].test_name); results_tracker_.AddTest(test_name, tests_[i].file, tests_[i].line); const CommandLine* command_line = CommandLine::ForCurrentProcess(); if (test_name.find("DISABLED") != std::string::npos) { results_tracker_.AddDisabledTest(test_name); // Skip disabled tests unless explicitly requested. if (!command_line->HasSwitch(kGTestRunDisabledTestsFlag)) continue; } if (!launcher_delegate_->ShouldRunTest( tests_[i].test_case_name, tests_[i].test_name)) { continue; } // Count tests in the binary, before we apply filter and sharding. test_found_count_++; // Skip the test that doesn't match the filter (if given). if (!positive_test_filter_.empty()) { bool found = false; for (size_t k = 0; k < positive_test_filter_.size(); ++k) { if (MatchPattern(test_name, positive_test_filter_[k])) { found = true; break; } } if (!found) continue; } bool excluded = false; for (size_t k = 0; k < negative_test_filter_.size(); ++k) { if (MatchPattern(test_name, negative_test_filter_[k])) { excluded = true; break; } } if (excluded) continue; if (Hash(test_name) % total_shards_ != static_cast(shard_index_)) continue; test_names.push_back(test_name); } test_started_count_ = launcher_delegate_->RunTests(this, test_names); if (test_started_count_ == 0) { fprintf(stdout, "0 tests run\n"); fflush(stdout); // No tests have actually been started, so kick off the next iteration. ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, Bind(&TestLauncher::RunTestIteration, Unretained(this))); } } void TestLauncher::RunTestIteration() { const bool stop_on_failure = CommandLine::ForCurrentProcess()->HasSwitch(kGTestBreakOnFailure); if (cycles_ == 0 || (stop_on_failure && test_success_count_ != test_finished_count_)) { MessageLoop::current()->QuitWhenIdle(); return; } // Special value "-1" means "repeat indefinitely". cycles_ = (cycles_ == -1) ? cycles_ : cycles_ - 1; test_found_count_ = 0; test_started_count_ = 0; test_finished_count_ = 0; test_success_count_ = 0; test_broken_count_ = 0; retry_count_ = 0; tests_to_retry_.clear(); results_tracker_.OnTestIterationStarting(); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, Bind(&TestLauncher::RunTests, Unretained(this))); } void TestLauncher::MaybeSaveSummaryAsJSON() { const CommandLine* command_line = CommandLine::ForCurrentProcess(); if (command_line->HasSwitch(switches::kTestLauncherSummaryOutput)) { FilePath summary_path(command_line->GetSwitchValuePath( switches::kTestLauncherSummaryOutput)); if (!results_tracker_.SaveSummaryAsJSON(summary_path)) { LOG(ERROR) << "Failed to save test launcher output summary."; } } } void TestLauncher::OnLaunchTestProcessFinished( const GTestProcessCompletedCallback& callback, int exit_code, const TimeDelta& elapsed_time, bool was_timeout, const std::string& output) { DCHECK(thread_checker_.CalledOnValidThread()); callback.Run(exit_code, elapsed_time, was_timeout, output); } void TestLauncher::OnTestIterationFinished() { TestResultsTracker::TestStatusMap tests_by_status( results_tracker_.GetTestStatusMapForCurrentIteration()); if (!tests_by_status[TestResult::TEST_UNKNOWN].empty()) results_tracker_.AddGlobalTag(kUnreliableResultsTag); // When we retry tests, success is determined by having nothing more // to retry (everything eventually passed), as opposed to having // no failures at all. if (tests_to_retry_.empty()) { fprintf(stdout, "SUCCESS: all tests passed.\n"); fflush(stdout); } else { // Signal failure, but continue to run all requested test iterations. // With the summary of all iterations at the end this is a good default. run_result_ = false; } results_tracker_.PrintSummaryOfCurrentIteration(); // Kick off the next iteration. ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, Bind(&TestLauncher::RunTestIteration, Unretained(this))); } void TestLauncher::OnOutputTimeout() { DCHECK(thread_checker_.CalledOnValidThread()); AutoLock lock(g_live_processes_lock.Get()); fprintf(stdout, "Still waiting for the following processes to finish:\n"); for (std::map::iterator i = g_live_processes.Get().begin(); i != g_live_processes.Get().end(); ++i) { #if defined(OS_WIN) fwprintf(stdout, L"\t%s\n", i->second.GetCommandLineString().c_str()); #else fprintf(stdout, "\t%s\n", i->second.GetCommandLineString().c_str()); #endif } fflush(stdout); // Arm the timer again - otherwise it would fire only once. watchdog_timer_.Reset(); } std::string GetTestOutputSnippet(const TestResult& result, const std::string& full_output) { size_t run_pos = full_output.find(std::string("[ RUN ] ") + result.full_name); if (run_pos == std::string::npos) return std::string(); size_t end_pos = full_output.find(std::string("[ FAILED ] ") + result.full_name, run_pos); // Only clip the snippet to the "OK" message if the test really // succeeded. It still might have e.g. crashed after printing it. if (end_pos == std::string::npos && result.status == TestResult::TEST_SUCCESS) { end_pos = full_output.find(std::string("[ OK ] ") + result.full_name, run_pos); } if (end_pos != std::string::npos) { size_t newline_pos = full_output.find("\n", end_pos); if (newline_pos != std::string::npos) end_pos = newline_pos + 1; } std::string snippet(full_output.substr(run_pos)); if (end_pos != std::string::npos) snippet = full_output.substr(run_pos, end_pos - run_pos); return snippet; } } // namespace base