// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/threading/worker_pool_posix.h" #include #include "base/bind.h" #include "base/callback.h" #include "base/synchronization/condition_variable.h" #include "base/synchronization/lock.h" #include "base/threading/platform_thread.h" #include "base/synchronization/waitable_event.h" #include "testing/gtest/include/gtest/gtest.h" namespace base { // Peer class to provide passthrough access to PosixDynamicThreadPool internals. class PosixDynamicThreadPool::PosixDynamicThreadPoolPeer { public: explicit PosixDynamicThreadPoolPeer(PosixDynamicThreadPool* pool) : pool_(pool) {} Lock* lock() { return &pool_->lock_; } ConditionVariable* pending_tasks_available_cv() { return &pool_->pending_tasks_available_cv_; } const std::queue& pending_tasks() const { return pool_->pending_tasks_; } int num_idle_threads() const { return pool_->num_idle_threads_; } ConditionVariable* num_idle_threads_cv() { return pool_->num_idle_threads_cv_.get(); } void set_num_idle_threads_cv(ConditionVariable* cv) { pool_->num_idle_threads_cv_.reset(cv); } private: PosixDynamicThreadPool* pool_; DISALLOW_COPY_AND_ASSIGN(PosixDynamicThreadPoolPeer); }; namespace { // IncrementingTask's main purpose is to increment a counter. It also updates a // set of unique thread ids, and signals a ConditionVariable on completion. // Note that since it does not block, there is no way to control the number of // threads used if more than one IncrementingTask is consecutively posted to the // thread pool, since the first one might finish executing before the subsequent // PostTask() calls get invoked. void IncrementingTask(Lock* counter_lock, int* counter, Lock* unique_threads_lock, std::set* unique_threads) { { base::AutoLock locked(*unique_threads_lock); unique_threads->insert(PlatformThread::CurrentId()); } base::AutoLock locked(*counter_lock); (*counter)++; } // BlockingIncrementingTask is a simple wrapper around IncrementingTask that // allows for waiting at the start of Run() for a WaitableEvent to be signalled. struct BlockingIncrementingTaskArgs { Lock* counter_lock; int* counter; Lock* unique_threads_lock; std::set* unique_threads; Lock* num_waiting_to_start_lock; int* num_waiting_to_start; ConditionVariable* num_waiting_to_start_cv; base::WaitableEvent* start; }; void BlockingIncrementingTask(const BlockingIncrementingTaskArgs& args) { { base::AutoLock num_waiting_to_start_locked(*args.num_waiting_to_start_lock); (*args.num_waiting_to_start)++; } args.num_waiting_to_start_cv->Signal(); args.start->Wait(); IncrementingTask(args.counter_lock, args.counter, args.unique_threads_lock, args.unique_threads); } class PosixDynamicThreadPoolTest : public testing::Test { protected: PosixDynamicThreadPoolTest() : pool_(new base::PosixDynamicThreadPool("dynamic_pool", 60*60)), peer_(pool_.get()), counter_(0), num_waiting_to_start_(0), num_waiting_to_start_cv_(&num_waiting_to_start_lock_), start_(true, false) {} virtual void SetUp() override { peer_.set_num_idle_threads_cv(new ConditionVariable(peer_.lock())); } virtual void TearDown() override { // Wake up the idle threads so they can terminate. if (pool_.get()) pool_->Terminate(); } void WaitForTasksToStart(int num_tasks) { base::AutoLock num_waiting_to_start_locked(num_waiting_to_start_lock_); while (num_waiting_to_start_ < num_tasks) { num_waiting_to_start_cv_.Wait(); } } void WaitForIdleThreads(int num_idle_threads) { base::AutoLock pool_locked(*peer_.lock()); while (peer_.num_idle_threads() < num_idle_threads) { peer_.num_idle_threads_cv()->Wait(); } } base::Closure CreateNewIncrementingTaskCallback() { return base::Bind(&IncrementingTask, &counter_lock_, &counter_, &unique_threads_lock_, &unique_threads_); } base::Closure CreateNewBlockingIncrementingTaskCallback() { BlockingIncrementingTaskArgs args = { &counter_lock_, &counter_, &unique_threads_lock_, &unique_threads_, &num_waiting_to_start_lock_, &num_waiting_to_start_, &num_waiting_to_start_cv_, &start_ }; return base::Bind(&BlockingIncrementingTask, args); } scoped_refptr pool_; base::PosixDynamicThreadPool::PosixDynamicThreadPoolPeer peer_; Lock counter_lock_; int counter_; Lock unique_threads_lock_; std::set unique_threads_; Lock num_waiting_to_start_lock_; int num_waiting_to_start_; ConditionVariable num_waiting_to_start_cv_; base::WaitableEvent start_; }; } // namespace TEST_F(PosixDynamicThreadPoolTest, Basic) { EXPECT_EQ(0, peer_.num_idle_threads()); EXPECT_EQ(0U, unique_threads_.size()); EXPECT_EQ(0U, peer_.pending_tasks().size()); // Add one task and wait for it to be completed. pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback()); WaitForIdleThreads(1); EXPECT_EQ(1U, unique_threads_.size()) << "There should be only one thread allocated for one task."; EXPECT_EQ(1, counter_); } TEST_F(PosixDynamicThreadPoolTest, ReuseIdle) { // Add one task and wait for it to be completed. pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback()); WaitForIdleThreads(1); // Add another 2 tasks. One should reuse the existing worker thread. pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback()); pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback()); WaitForTasksToStart(2); start_.Signal(); WaitForIdleThreads(2); EXPECT_EQ(2U, unique_threads_.size()); EXPECT_EQ(2, peer_.num_idle_threads()); EXPECT_EQ(3, counter_); } TEST_F(PosixDynamicThreadPoolTest, TwoActiveTasks) { // Add two blocking tasks. pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback()); pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback()); EXPECT_EQ(0, counter_) << "Blocking tasks should not have started yet."; WaitForTasksToStart(2); start_.Signal(); WaitForIdleThreads(2); EXPECT_EQ(2U, unique_threads_.size()); EXPECT_EQ(2, peer_.num_idle_threads()) << "Existing threads are now idle."; EXPECT_EQ(2, counter_); } TEST_F(PosixDynamicThreadPoolTest, Complex) { // Add two non blocking tasks and wait for them to finish. pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback()); WaitForIdleThreads(1); // Add two blocking tasks, start them simultaneously, and wait for them to // finish. pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback()); pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback()); WaitForTasksToStart(2); start_.Signal(); WaitForIdleThreads(2); EXPECT_EQ(3, counter_); EXPECT_EQ(2, peer_.num_idle_threads()); EXPECT_EQ(2U, unique_threads_.size()); // Wake up all idle threads so they can exit. { base::AutoLock locked(*peer_.lock()); while (peer_.num_idle_threads() > 0) { peer_.pending_tasks_available_cv()->Signal(); peer_.num_idle_threads_cv()->Wait(); } } // Add another non blocking task. There are no threads to reuse. pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback()); WaitForIdleThreads(1); // The POSIX implementation of PlatformThread::CurrentId() uses pthread_self() // which is not guaranteed to be unique after a thread joins. The OS X // implemntation of pthread_self() returns the address of the pthread_t, which // is merely a malloc()ed pointer stored in the first TLS slot. When a thread // joins and that structure is freed, the block of memory can be put on the // OS free list, meaning the same address could be reused in a subsequent // allocation. This in fact happens when allocating in a loop as this test // does. // // Because there are two concurrent threads, there's at least the guarantee // of having two unique thread IDs in the set. But after those two threads are // joined, the next-created thread can get a re-used ID if the allocation of // the pthread_t structure is taken from the free list. Therefore, there can // be either 2 or 3 unique thread IDs in the set at this stage in the test. EXPECT_TRUE(unique_threads_.size() >= 2 && unique_threads_.size() <= 3) << "unique_threads_.size() = " << unique_threads_.size(); EXPECT_EQ(1, peer_.num_idle_threads()); EXPECT_EQ(4, counter_); } } // namespace base