// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "base/time.h" #include "base/string_util.h" #include "base/third_party/nspr/prtime.h" #include "base/logging.h" namespace { // Time between resampling the un-granular clock for this API. 60 seconds. const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; } // namespace // TimeDelta ------------------------------------------------------------------ // static TimeDelta TimeDelta::FromDays(int64 days) { return TimeDelta(days * Time::kMicrosecondsPerDay); } // static TimeDelta TimeDelta::FromHours(int64 hours) { return TimeDelta(hours * Time::kMicrosecondsPerHour); } // static TimeDelta TimeDelta::FromMinutes(int64 minutes) { return TimeDelta(minutes * Time::kMicrosecondsPerMinute); } // static TimeDelta TimeDelta::FromSeconds(int64 secs) { return TimeDelta(secs * Time::kMicrosecondsPerSecond); } // static TimeDelta TimeDelta::FromMilliseconds(int64 ms) { return TimeDelta(ms * Time::kMicrosecondsPerMillisecond); } // static TimeDelta TimeDelta::FromMicroseconds(int64 us) { return TimeDelta(us); } int TimeDelta::InDays() const { return static_cast(delta_ / Time::kMicrosecondsPerDay); } int TimeDelta::InHours() const { return static_cast(delta_ / Time::kMicrosecondsPerHour); } double TimeDelta::InSecondsF() const { return static_cast(delta_) / Time::kMicrosecondsPerSecond; } int64 TimeDelta::InSeconds() const { return delta_ / Time::kMicrosecondsPerSecond; } double TimeDelta::InMillisecondsF() const { return static_cast(delta_) / Time::kMicrosecondsPerMillisecond; } int64 TimeDelta::InMilliseconds() const { return delta_ / Time::kMicrosecondsPerMillisecond; } int64 TimeDelta::InMicroseconds() const { return delta_; } // Time ----------------------------------------------------------------------- int64 Time::initial_time_ = 0; TimeTicks Time::initial_ticks_; // static void Time::InitializeClock() { initial_ticks_ = TimeTicks::Now(); initial_time_ = CurrentWallclockMicroseconds(); } // static Time Time::Now() { if (initial_time_ == 0) InitializeClock(); // We implement time using the high-resolution timers so that we can get // timeouts which are smaller than 10-15ms. If we just used // CurrentWallclockMicroseconds(), we'd have the less-granular timer. // // To make this work, we initialize the clock (initial_time) and the // counter (initial_ctr). To compute the initial time, we can check // the number of ticks that have elapsed, and compute the delta. // // To avoid any drift, we periodically resync the counters to the system // clock. while(true) { TimeTicks ticks = TimeTicks::Now(); // Calculate the time elapsed since we started our timer TimeDelta elapsed = ticks - initial_ticks_; // Check if enough time has elapsed that we need to resync the clock. if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { InitializeClock(); continue; } return elapsed + initial_time_; } } // static Time Time::FromTimeT(time_t tt) { if (tt == 0) return Time(); // Preserve 0 so we can tell it doesn't exist. return (tt * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset; } time_t Time::ToTimeT() const { if (us_ == 0) return 0; // Preserve 0 so we can tell it doesn't exist. return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond; } double Time::ToDoubleT() const { if (us_ == 0) return 0; // Preserve 0 so we can tell it doesn't exist. return (static_cast(us_ - kTimeTToMicrosecondsOffset) / static_cast(kMicrosecondsPerSecond)); } Time Time::LocalMidnight() const { Exploded exploded; LocalExplode(&exploded); exploded.hour = 0; exploded.minute = 0; exploded.second = 0; exploded.millisecond = 0; return FromLocalExploded(exploded); } // static bool Time::FromString(const wchar_t* time_string, Time* parsed_time) { DCHECK((time_string != NULL) && (parsed_time != NULL)); std::string ascii_time_string = WideToUTF8(time_string); if (ascii_time_string.length() == 0) return false; PRTime result_time = 0; PRStatus result = PR_ParseTimeString(ascii_time_string.c_str(), PR_FALSE, &result_time); if (PR_SUCCESS != result) return false; result_time += kTimeTToMicrosecondsOffset; *parsed_time = Time(result_time); return true; }