// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time/time.h" #include #include #include #include #include #include #include #include #include "base/basictypes.h" #include "base/logging.h" #include "base/mac/mach_logging.h" #include "base/mac/scoped_cftyperef.h" #include "base/mac/scoped_mach_port.h" namespace { uint64_t ComputeCurrentTicks() { #if defined(OS_IOS) // On iOS mach_absolute_time stops while the device is sleeping. Instead use // now - KERN_BOOTTIME to get a time difference that is not impacted by clock // changes. KERN_BOOTTIME will be updated by the system whenever the system // clock change. struct timeval boottime; int mib[2] = {CTL_KERN, KERN_BOOTTIME}; size_t size = sizeof(boottime); int kr = sysctl(mib, arraysize(mib), &boottime, &size, NULL, 0); DCHECK_EQ(KERN_SUCCESS, kr); base::TimeDelta time_difference = base::Time::Now() - (base::Time::FromTimeT(boottime.tv_sec) + base::TimeDelta::FromMicroseconds(boottime.tv_usec)); return time_difference.InMicroseconds(); #else uint64_t absolute_micro; static mach_timebase_info_data_t timebase_info; if (timebase_info.denom == 0) { // Zero-initialization of statics guarantees that denom will be 0 before // calling mach_timebase_info. mach_timebase_info will never set denom to // 0 as that would be invalid, so the zero-check can be used to determine // whether mach_timebase_info has already been called. This is // recommended by Apple's QA1398. kern_return_t kr = mach_timebase_info(&timebase_info); MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info"; } // mach_absolute_time is it when it comes to ticks on the Mac. Other calls // with less precision (such as TickCount) just call through to // mach_absolute_time. // timebase_info converts absolute time tick units into nanoseconds. Convert // to microseconds up front to stave off overflows. absolute_micro = mach_absolute_time() / base::Time::kNanosecondsPerMicrosecond * timebase_info.numer / timebase_info.denom; // Don't bother with the rollover handling that the Windows version does. // With numer and denom = 1 (the expected case), the 64-bit absolute time // reported in nanoseconds is enough to last nearly 585 years. return absolute_micro; #endif // defined(OS_IOS) } uint64_t ComputeThreadTicks() { #if defined(OS_IOS) NOTREACHED(); return 0; #else base::mac::ScopedMachSendRight thread(mach_thread_self()); mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t thread_info_data; if (thread.get() == MACH_PORT_NULL) { DLOG(ERROR) << "Failed to get mach_thread_self()"; return 0; } kern_return_t kr = thread_info( thread, THREAD_BASIC_INFO, reinterpret_cast(&thread_info_data), &thread_info_count); MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info"; return (thread_info_data.user_time.seconds * base::Time::kMicrosecondsPerSecond) + thread_info_data.user_time.microseconds; #endif // defined(OS_IOS) } } // namespace namespace base { // The Time routines in this file use Mach and CoreFoundation APIs, since the // POSIX definition of time_t in Mac OS X wraps around after 2038--and // there are already cookie expiration dates, etc., past that time out in // the field. Using CFDate prevents that problem, and using mach_absolute_time // for TimeTicks gives us nice high-resolution interval timing. // Time ----------------------------------------------------------------------- // Core Foundation uses a double second count since 2001-01-01 00:00:00 UTC. // The UNIX epoch is 1970-01-01 00:00:00 UTC. // Windows uses a Gregorian epoch of 1601. We need to match this internally // so that our time representations match across all platforms. See bug 14734. // irb(main):010:0> Time.at(0).getutc() // => Thu Jan 01 00:00:00 UTC 1970 // irb(main):011:0> Time.at(-11644473600).getutc() // => Mon Jan 01 00:00:00 UTC 1601 static const int64 kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600); // static const int64 Time::kWindowsEpochDeltaMicroseconds = kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; // Some functions in time.cc use time_t directly, so we provide an offset // to convert from time_t (Unix epoch) and internal (Windows epoch). // static const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; // static Time Time::Now() { return FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); } // static Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { COMPILE_ASSERT(std::numeric_limits::has_infinity, numeric_limits_infinity_is_undefined_when_not_has_infinity); if (t == 0) return Time(); // Consider 0 as a null Time. if (t == std::numeric_limits::infinity()) return Max(); return Time(static_cast( (t + kCFAbsoluteTimeIntervalSince1970) * kMicrosecondsPerSecond) + kWindowsEpochDeltaMicroseconds); } CFAbsoluteTime Time::ToCFAbsoluteTime() const { COMPILE_ASSERT(std::numeric_limits::has_infinity, numeric_limits_infinity_is_undefined_when_not_has_infinity); if (is_null()) return 0; // Consider 0 as a null Time. if (is_max()) return std::numeric_limits::infinity(); return (static_cast(us_ - kWindowsEpochDeltaMicroseconds) / kMicrosecondsPerSecond) - kCFAbsoluteTimeIntervalSince1970; } // static Time Time::NowFromSystemTime() { // Just use Now() because Now() returns the system time. return Now(); } // static Time Time::FromExploded(bool is_local, const Exploded& exploded) { CFGregorianDate date; date.second = exploded.second + exploded.millisecond / static_cast(kMillisecondsPerSecond); date.minute = exploded.minute; date.hour = exploded.hour; date.day = exploded.day_of_month; date.month = exploded.month; date.year = exploded.year; base::ScopedCFTypeRef time_zone( is_local ? CFTimeZoneCopySystem() : NULL); CFAbsoluteTime seconds = CFGregorianDateGetAbsoluteTime(date, time_zone) + kCFAbsoluteTimeIntervalSince1970; return Time(static_cast(seconds * kMicrosecondsPerSecond) + kWindowsEpochDeltaMicroseconds); } void Time::Explode(bool is_local, Exploded* exploded) const { // Avoid rounding issues, by only putting the integral number of seconds // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|). int64 microsecond = us_ % kMicrosecondsPerSecond; if (microsecond < 0) microsecond += kMicrosecondsPerSecond; CFAbsoluteTime seconds = ((us_ - microsecond) / kMicrosecondsPerSecond) - kWindowsEpochDeltaSeconds - kCFAbsoluteTimeIntervalSince1970; base::ScopedCFTypeRef time_zone( is_local ? CFTimeZoneCopySystem() : NULL); CFGregorianDate date = CFAbsoluteTimeGetGregorianDate(seconds, time_zone); // 1 = Monday, ..., 7 = Sunday. int cf_day_of_week = CFAbsoluteTimeGetDayOfWeek(seconds, time_zone); exploded->year = date.year; exploded->month = date.month; exploded->day_of_week = cf_day_of_week % 7; exploded->day_of_month = date.day; exploded->hour = date.hour; exploded->minute = date.minute; // Make sure seconds are rounded down towards -infinity. exploded->second = floor(date.second); // Calculate milliseconds ourselves, since we rounded the |seconds|, making // sure to round towards -infinity. exploded->millisecond = (microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond : (microsecond - kMicrosecondsPerMillisecond + 1) / kMicrosecondsPerMillisecond; } // TimeTicks ------------------------------------------------------------------ // static TimeTicks TimeTicks::Now() { return TimeTicks(ComputeCurrentTicks()); } // static TimeTicks TimeTicks::HighResNow() { return Now(); } // static bool TimeTicks::IsHighResNowFastAndReliable() { return true; } // static TimeTicks TimeTicks::ThreadNow() { return TimeTicks(ComputeThreadTicks()); } // static TimeTicks TimeTicks::NowFromSystemTraceTime() { return HighResNow(); } } // namespace base