// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Windows Timer Primer // // A good article: http://www.ddj.com/windows/184416651 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 // // The default windows timer, GetSystemTimeAsFileTime is not very precise. // It is only good to ~15.5ms. // // QueryPerformanceCounter is the logical choice for a high-precision timer. // However, it is known to be buggy on some hardware. Specifically, it can // sometimes "jump". On laptops, QPC can also be very expensive to call. // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower // on laptops. A unittest exists which will show the relative cost of various // timers on any system. // // The next logical choice is timeGetTime(). timeGetTime has a precision of // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other // applications on the system. By default, precision is only 15.5ms. // Unfortunately, we don't want to call timeBeginPeriod because we don't // want to affect other applications. Further, on mobile platforms, use of // faster multimedia timers can hurt battery life. See the intel // article about this here: // http://softwarecommunity.intel.com/articles/eng/1086.htm // // To work around all this, we're going to generally use timeGetTime(). We // will only increase the system-wide timer if we're not running on battery // power. #include "base/time/time.h" #pragma comment(lib, "winmm.lib") #include #include #include "base/basictypes.h" #include "base/cpu.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/synchronization/lock.h" using base::Time; using base::TimeDelta; using base::TimeTicks; namespace { // From MSDN, FILETIME "Contains a 64-bit value representing the number of // 100-nanosecond intervals since January 1, 1601 (UTC)." int64 FileTimeToMicroseconds(const FILETIME& ft) { // Need to bit_cast to fix alignment, then divide by 10 to convert // 100-nanoseconds to milliseconds. This only works on little-endian // machines. return bit_cast(ft) / 10; } void MicrosecondsToFileTime(int64 us, FILETIME* ft) { DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not " "representable in FILETIME"; // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will // handle alignment problems. This only works on little-endian machines. *ft = bit_cast(us * 10); } int64 CurrentWallclockMicroseconds() { FILETIME ft; ::GetSystemTimeAsFileTime(&ft); return FileTimeToMicroseconds(ft); } // Time between resampling the un-granular clock for this API. 60 seconds. const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; int64 initial_time = 0; TimeTicks initial_ticks; void InitializeClock() { initial_ticks = TimeTicks::Now(); initial_time = CurrentWallclockMicroseconds(); } // The two values that ActivateHighResolutionTimer uses to set the systemwide // timer interrupt frequency on Windows. It controls how precise timers are // but also has a big impact on battery life. const int kMinTimerIntervalHighResMs = 1; const int kMinTimerIntervalLowResMs = 4; // Track if kMinTimerIntervalHighResMs or kMinTimerIntervalLowResMs is active. bool g_high_res_timer_enabled = false; // How many times the high resolution timer has been called. uint32_t g_high_res_timer_count = 0; // The lock to control access to the above two variables. base::LazyInstance::Leaky g_high_res_lock = LAZY_INSTANCE_INITIALIZER; } // namespace // Time ----------------------------------------------------------------------- // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding // 1700, 1800, and 1900. // static const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000); // static Time Time::Now() { if (initial_time == 0) InitializeClock(); // We implement time using the high-resolution timers so that we can get // timeouts which are smaller than 10-15ms. If we just used // CurrentWallclockMicroseconds(), we'd have the less-granular timer. // // To make this work, we initialize the clock (initial_time) and the // counter (initial_ctr). To compute the initial time, we can check // the number of ticks that have elapsed, and compute the delta. // // To avoid any drift, we periodically resync the counters to the system // clock. while (true) { TimeTicks ticks = TimeTicks::Now(); // Calculate the time elapsed since we started our timer TimeDelta elapsed = ticks - initial_ticks; // Check if enough time has elapsed that we need to resync the clock. if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { InitializeClock(); continue; } return Time(elapsed + Time(initial_time)); } } // static Time Time::NowFromSystemTime() { // Force resync. InitializeClock(); return Time(initial_time); } // static Time Time::FromFileTime(FILETIME ft) { if (bit_cast(ft) == 0) return Time(); if (ft.dwHighDateTime == std::numeric_limits::max() && ft.dwLowDateTime == std::numeric_limits::max()) return Max(); return Time(FileTimeToMicroseconds(ft)); } FILETIME Time::ToFileTime() const { if (is_null()) return bit_cast(0); if (is_max()) { FILETIME result; result.dwHighDateTime = std::numeric_limits::max(); result.dwLowDateTime = std::numeric_limits::max(); return result; } FILETIME utc_ft; MicrosecondsToFileTime(us_, &utc_ft); return utc_ft; } // static void Time::EnableHighResolutionTimer(bool enable) { base::AutoLock lock(g_high_res_lock.Get()); if (g_high_res_timer_enabled == enable) return; g_high_res_timer_enabled = enable; if (!g_high_res_timer_count) return; // Since g_high_res_timer_count != 0, an ActivateHighResolutionTimer(true) // was called which called timeBeginPeriod with g_high_res_timer_enabled // with a value which is the opposite of |enable|. With that information we // call timeEndPeriod with the same value used in timeBeginPeriod and // therefore undo the period effect. if (enable) { timeEndPeriod(kMinTimerIntervalLowResMs); timeBeginPeriod(kMinTimerIntervalHighResMs); } else { timeEndPeriod(kMinTimerIntervalHighResMs); timeBeginPeriod(kMinTimerIntervalLowResMs); } } // static bool Time::ActivateHighResolutionTimer(bool activating) { // We only do work on the transition from zero to one or one to zero so we // can easily undo the effect (if necessary) when EnableHighResolutionTimer is // called. const uint32_t max = std::numeric_limits::max(); base::AutoLock lock(g_high_res_lock.Get()); UINT period = g_high_res_timer_enabled ? kMinTimerIntervalHighResMs : kMinTimerIntervalLowResMs; if (activating) { DCHECK_NE(g_high_res_timer_count, max); ++g_high_res_timer_count; if (g_high_res_timer_count == 1) timeBeginPeriod(period); } else { DCHECK_NE(g_high_res_timer_count, 0u); --g_high_res_timer_count; if (g_high_res_timer_count == 0) timeEndPeriod(period); } return (period == kMinTimerIntervalHighResMs); } // static bool Time::IsHighResolutionTimerInUse() { base::AutoLock lock(g_high_res_lock.Get()); return g_high_res_timer_enabled && g_high_res_timer_count > 0; } // static Time Time::FromExploded(bool is_local, const Exploded& exploded) { // Create the system struct representing our exploded time. It will either be // in local time or UTC. SYSTEMTIME st; st.wYear = static_cast(exploded.year); st.wMonth = static_cast(exploded.month); st.wDayOfWeek = static_cast(exploded.day_of_week); st.wDay = static_cast(exploded.day_of_month); st.wHour = static_cast(exploded.hour); st.wMinute = static_cast(exploded.minute); st.wSecond = static_cast(exploded.second); st.wMilliseconds = static_cast(exploded.millisecond); FILETIME ft; bool success = true; // Ensure that it's in UTC. if (is_local) { SYSTEMTIME utc_st; success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) && SystemTimeToFileTime(&utc_st, &ft); } else { success = !!SystemTimeToFileTime(&st, &ft); } if (!success) { NOTREACHED() << "Unable to convert time"; return Time(0); } return Time(FileTimeToMicroseconds(ft)); } void Time::Explode(bool is_local, Exploded* exploded) const { if (us_ < 0LL) { // We are not able to convert it to FILETIME. ZeroMemory(exploded, sizeof(*exploded)); return; } // FILETIME in UTC. FILETIME utc_ft; MicrosecondsToFileTime(us_, &utc_ft); // FILETIME in local time if necessary. bool success = true; // FILETIME in SYSTEMTIME (exploded). SYSTEMTIME st = {0}; if (is_local) { SYSTEMTIME utc_st; // We don't use FileTimeToLocalFileTime here, since it uses the current // settings for the time zone and daylight saving time. Therefore, if it is // daylight saving time, it will take daylight saving time into account, // even if the time you are converting is in standard time. success = FileTimeToSystemTime(&utc_ft, &utc_st) && SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st); } else { success = !!FileTimeToSystemTime(&utc_ft, &st); } if (!success) { NOTREACHED() << "Unable to convert time, don't know why"; ZeroMemory(exploded, sizeof(*exploded)); return; } exploded->year = st.wYear; exploded->month = st.wMonth; exploded->day_of_week = st.wDayOfWeek; exploded->day_of_month = st.wDay; exploded->hour = st.wHour; exploded->minute = st.wMinute; exploded->second = st.wSecond; exploded->millisecond = st.wMilliseconds; } // TimeTicks ------------------------------------------------------------------ namespace { // We define a wrapper to adapt between the __stdcall and __cdecl call of the // mock function, and to avoid a static constructor. Assigning an import to a // function pointer directly would require setup code to fetch from the IAT. DWORD timeGetTimeWrapper() { return timeGetTime(); } DWORD (*g_tick_function)(void) = &timeGetTimeWrapper; // Accumulation of time lost due to rollover (in milliseconds). int64 g_rollover_ms = 0; // The last timeGetTime value we saw, to detect rollover. DWORD g_last_seen_now = 0; // Lock protecting rollover_ms and last_seen_now. // Note: this is a global object, and we usually avoid these. However, the time // code is low-level, and we don't want to use Singletons here (it would be too // easy to use a Singleton without even knowing it, and that may lead to many // gotchas). Its impact on startup time should be negligible due to low-level // nature of time code. base::Lock g_rollover_lock; // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic // because it returns the number of milliseconds since Windows has started, // which will roll over the 32-bit value every ~49 days. We try to track // rollover ourselves, which works if TimeTicks::Now() is called at least every // 49 days. TimeTicks RolloverProtectedNow() { base::AutoLock locked(g_rollover_lock); // We should hold the lock while calling tick_function to make sure that // we keep last_seen_now stay correctly in sync. DWORD now = g_tick_function(); if (now < g_last_seen_now) g_rollover_ms += 0x100000000I64; // ~49.7 days. g_last_seen_now = now; return TimeTicks() + TimeDelta::FromMilliseconds(now + g_rollover_ms); } // Discussion of tick counter options on Windows: // // (1) CPU cycle counter. (Retrieved via RDTSC) // The CPU counter provides the highest resolution time stamp and is the least // expensive to retrieve. However, on older CPUs, two issues can affect its // reliability: First it is maintained per processor and not synchronized // between processors. Also, the counters will change frequency due to thermal // and power changes, and stop in some states. // // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- // resolution (<1 microsecond) time stamp. On most hardware running today, it // auto-detects and uses the constant-rate RDTSC counter to provide extremely // efficient and reliable time stamps. // // On older CPUs where RDTSC is unreliable, it falls back to using more // expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI // PM timer, and can involve system calls; and all this is up to the HAL (with // some help from ACPI). According to // http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the // worst case, it gets the counter from the rollover interrupt on the // programmable interrupt timer. In best cases, the HAL may conclude that the // RDTSC counter runs at a constant frequency, then it uses that instead. On // multiprocessor machines, it will try to verify the values returned from // RDTSC on each processor are consistent with each other, and apply a handful // of workarounds for known buggy hardware. In other words, QPC is supposed to // give consistent results on a multiprocessor computer, but for older CPUs it // can be unreliable due bugs in BIOS or HAL. // // (3) System time. The system time provides a low-resolution (from ~1 to ~15.6 // milliseconds) time stamp but is comparatively less expensive to retrieve and // more reliable. Time::EnableHighResolutionTimer() and // Time::ActivateHighResolutionTimer() can be called to alter the resolution of // this timer; and also other Windows applications can alter it, affecting this // one. using NowFunction = TimeTicks (*)(void); TimeTicks InitialNowFunction(); TimeTicks InitialSystemTraceNowFunction(); // See "threading notes" in InitializeNowFunctionPointers() for details on how // concurrent reads/writes to these globals has been made safe. NowFunction g_now_function = &InitialNowFunction; NowFunction g_system_trace_now_function = &InitialSystemTraceNowFunction; int64 g_qpc_ticks_per_second = 0; // As of January 2015, use of is forbidden in Chromium code. This is // what std::atomic_thread_fence does on Windows on all Intel architectures when // the memory_order argument is anything but std::memory_order_seq_cst: #define ATOMIC_THREAD_FENCE(memory_order) _ReadWriteBarrier(); TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) { // Ensure that the assignment to |g_qpc_ticks_per_second|, made in // InitializeNowFunctionPointers(), has happened by this point. ATOMIC_THREAD_FENCE(memory_order_acquire); DCHECK_GT(g_qpc_ticks_per_second, 0); // If the QPC Value is below the overflow threshold, we proceed with // simple multiply and divide. if (qpc_value < Time::kQPCOverflowThreshold) { return TimeDelta::FromMicroseconds( qpc_value * Time::kMicrosecondsPerSecond / g_qpc_ticks_per_second); } // Otherwise, calculate microseconds in a round about manner to avoid // overflow and precision issues. int64 whole_seconds = qpc_value / g_qpc_ticks_per_second; int64 leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second); return TimeDelta::FromMicroseconds( (whole_seconds * Time::kMicrosecondsPerSecond) + ((leftover_ticks * Time::kMicrosecondsPerSecond) / g_qpc_ticks_per_second)); } TimeTicks QPCNow() { LARGE_INTEGER now; QueryPerformanceCounter(&now); return TimeTicks() + QPCValueToTimeDelta(now.QuadPart); } bool IsBuggyAthlon(const base::CPU& cpu) { // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable. return cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15; } void InitializeNowFunctionPointers() { LARGE_INTEGER ticks_per_sec = {0}; if (!QueryPerformanceFrequency(&ticks_per_sec)) ticks_per_sec.QuadPart = 0; // If Windows cannot provide a QPC implementation, both Now() and // NowFromSystemTraceTime() must use the low-resolution clock. // // If the QPC implementation is expensive and/or unreliable, Now() will use // the low-resolution clock, but NowFromSystemTraceTime() will use the QPC (in // the hope that it is still useful for tracing purposes). A CPU lacking a // non-stop time counter will cause Windows to provide an alternate QPC // implementation that works, but is expensive to use. Certain Athlon CPUs are // known to make the QPC implementation unreliable. // // Otherwise, both Now functions can use the high-resolution QPC clock. As of // 4 January 2015, ~68% of users fall within this category. NowFunction now_function; NowFunction system_trace_now_function; base::CPU cpu; if (ticks_per_sec.QuadPart <= 0) { now_function = system_trace_now_function = &RolloverProtectedNow; } else if (!cpu.has_non_stop_time_stamp_counter() || IsBuggyAthlon(cpu)) { now_function = &RolloverProtectedNow; system_trace_now_function = &QPCNow; } else { now_function = system_trace_now_function = &QPCNow; } // Threading note 1: In an unlikely race condition, it's possible for two or // more threads to enter InitializeNowFunctionPointers() in parallel. This is // not a problem since all threads should end up writing out the same values // to the global variables. // // Threading note 2: A release fence is placed here to ensure, from the // perspective of other threads using the function pointers, that the // assignment to |g_qpc_ticks_per_second| happens before the function pointers // are changed. g_qpc_ticks_per_second = ticks_per_sec.QuadPart; ATOMIC_THREAD_FENCE(memory_order_release); g_now_function = now_function; g_system_trace_now_function = system_trace_now_function; } TimeTicks InitialNowFunction() { InitializeNowFunctionPointers(); return g_now_function(); } TimeTicks InitialSystemTraceNowFunction() { InitializeNowFunctionPointers(); return g_system_trace_now_function(); } } // namespace // static TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction( TickFunctionType ticker) { base::AutoLock locked(g_rollover_lock); TickFunctionType old = g_tick_function; g_tick_function = ticker; g_rollover_ms = 0; g_last_seen_now = 0; return old; } // static TimeTicks TimeTicks::Now() { return g_now_function(); } // static bool TimeTicks::IsHighResolution() { if (g_now_function == &InitialNowFunction) InitializeNowFunctionPointers(); return g_now_function == &QPCNow; } // static TimeTicks TimeTicks::ThreadNow() { NOTREACHED(); return TimeTicks(); } // static TimeTicks TimeTicks::NowFromSystemTraceTime() { return g_system_trace_now_function(); } // static TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) { return TimeTicks() + QPCValueToTimeDelta(qpc_value); } // TimeDelta ------------------------------------------------------------------ // static TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) { return QPCValueToTimeDelta(qpc_value); }