// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time.h" #include #include #include #include #include "base/basictypes.h" #include "base/logging.h" #if defined(OS_ANDROID) #include "base/os_compat_android.h" #elif defined(OS_NACL) #include "base/os_compat_nacl.h" #endif namespace base { #if defined(OS_ANDROID) #define _POSIX_MONOTONIC_CLOCK 1 #endif struct timespec TimeDelta::ToTimeSpec() const { int64 microseconds = InMicroseconds(); time_t seconds = 0; if (microseconds >= Time::kMicrosecondsPerSecond) { seconds = InSeconds(); microseconds -= seconds * Time::kMicrosecondsPerSecond; } struct timespec result = {seconds, static_cast(microseconds * Time::kNanosecondsPerMicrosecond)}; return result; } #if !defined(OS_MACOSX) // The Time routines in this file use standard POSIX routines, or almost- // standard routines in the case of timegm. We need to use a Mach-specific // function for TimeTicks::Now() on Mac OS X. // Time ----------------------------------------------------------------------- // Windows uses a Gregorian epoch of 1601. We need to match this internally // so that our time representations match across all platforms. See bug 14734. // irb(main):010:0> Time.at(0).getutc() // => Thu Jan 01 00:00:00 UTC 1970 // irb(main):011:0> Time.at(-11644473600).getutc() // => Mon Jan 01 00:00:00 UTC 1601 static const int64 kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600); static const int64 kWindowsEpochDeltaMilliseconds = kWindowsEpochDeltaSeconds * Time::kMillisecondsPerSecond; // static const int64 Time::kWindowsEpochDeltaMicroseconds = kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; // Some functions in time.cc use time_t directly, so we provide an offset // to convert from time_t (Unix epoch) and internal (Windows epoch). // static const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; // static Time Time::Now() { struct timeval tv; struct timezone tz = { 0, 0 }; // UTC if (gettimeofday(&tv, &tz) != 0) { DCHECK(0) << "Could not determine time of day"; LOG_ERRNO(ERROR) << "Call to gettimeofday failed."; // Return null instead of uninitialized |tv| value, which contains random // garbage data. This may result in the crash seen in crbug.com/147570. return Time(); } // Combine seconds and microseconds in a 64-bit field containing microseconds // since the epoch. That's enough for nearly 600 centuries. Adjust from // Unix (1970) to Windows (1601) epoch. return Time((tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec) + kWindowsEpochDeltaMicroseconds); } // static Time Time::NowFromSystemTime() { // Just use Now() because Now() returns the system time. return Now(); } void Time::Explode(bool is_local, Exploded* exploded) const { // Time stores times with microsecond resolution, but Exploded only carries // millisecond resolution, so begin by being lossy. Adjust from Windows // epoch (1601) to Unix epoch (1970); int64 microseconds = us_ - kWindowsEpochDeltaMicroseconds; // The following values are all rounded towards -infinity. int64 milliseconds; // Milliseconds since epoch. time_t seconds; // Seconds since epoch. int millisecond; // Exploded millisecond value (0-999). if (microseconds >= 0) { // Rounding towards -infinity <=> rounding towards 0, in this case. milliseconds = microseconds / kMicrosecondsPerMillisecond; seconds = milliseconds / kMillisecondsPerSecond; millisecond = milliseconds % kMillisecondsPerSecond; } else { // Round these *down* (towards -infinity). milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) / kMicrosecondsPerMillisecond; seconds = (milliseconds - kMillisecondsPerSecond + 1) / kMillisecondsPerSecond; // Make this nonnegative (and between 0 and 999 inclusive). millisecond = milliseconds % kMillisecondsPerSecond; if (millisecond < 0) millisecond += kMillisecondsPerSecond; } struct tm timestruct; if (is_local) localtime_r(&seconds, ×truct); else gmtime_r(&seconds, ×truct); exploded->year = timestruct.tm_year + 1900; exploded->month = timestruct.tm_mon + 1; exploded->day_of_week = timestruct.tm_wday; exploded->day_of_month = timestruct.tm_mday; exploded->hour = timestruct.tm_hour; exploded->minute = timestruct.tm_min; exploded->second = timestruct.tm_sec; exploded->millisecond = millisecond; } // static Time Time::FromExploded(bool is_local, const Exploded& exploded) { struct tm timestruct; timestruct.tm_sec = exploded.second; timestruct.tm_min = exploded.minute; timestruct.tm_hour = exploded.hour; timestruct.tm_mday = exploded.day_of_month; timestruct.tm_mon = exploded.month - 1; timestruct.tm_year = exploded.year - 1900; timestruct.tm_wday = exploded.day_of_week; // mktime/timegm ignore this timestruct.tm_yday = 0; // mktime/timegm ignore this timestruct.tm_isdst = -1; // attempt to figure it out #if !defined(OS_NACL) && !defined(OS_SOLARIS) timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore timestruct.tm_zone = NULL; // not a POSIX field, so mktime/timegm ignore #endif time_t seconds; if (is_local) seconds = mktime(×truct); else seconds = timegm(×truct); int64 milliseconds; // Handle overflow. Clamping the range to what mktime and timegm might // return is the best that can be done here. It's not ideal, but it's better // than failing here or ignoring the overflow case and treating each time // overflow as one second prior to the epoch. if (seconds == -1 && (exploded.year < 1969 || exploded.year > 1970)) { // If exploded.year is 1969 or 1970, take -1 as correct, with the // time indicating 1 second prior to the epoch. (1970 is allowed to handle // time zone and DST offsets.) Otherwise, return the most future or past // time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC. // // The minimum and maximum representible times that mktime and timegm could // return are used here instead of values outside that range to allow for // proper round-tripping between exploded and counter-type time // representations in the presence of possible truncation to time_t by // division and use with other functions that accept time_t. // // When representing the most distant time in the future, add in an extra // 999ms to avoid the time being less than any other possible value that // this function can return. if (exploded.year < 1969) { milliseconds = std::numeric_limits::min() * kMillisecondsPerSecond; } else { milliseconds = (std::numeric_limits::max() * kMillisecondsPerSecond) + kMillisecondsPerSecond - 1; } } else { milliseconds = seconds * kMillisecondsPerSecond + exploded.millisecond; } // Adjust from Unix (1970) to Windows (1601) epoch. return Time((milliseconds * kMicrosecondsPerMillisecond) + kWindowsEpochDeltaMicroseconds); } // TimeTicks ------------------------------------------------------------------ // FreeBSD 6 has CLOCK_MONOLITHIC but defines _POSIX_MONOTONIC_CLOCK to -1. #if (defined(OS_POSIX) && \ defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \ defined(OS_BSD) || defined(OS_ANDROID) // static TimeTicks TimeTicks::Now() { uint64_t absolute_micro; struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) { NOTREACHED() << "clock_gettime(CLOCK_MONOTONIC) failed."; return TimeTicks(); } absolute_micro = (static_cast(ts.tv_sec) * Time::kMicrosecondsPerSecond) + (static_cast(ts.tv_nsec) / Time::kNanosecondsPerMicrosecond); return TimeTicks(absolute_micro); } #else // _POSIX_MONOTONIC_CLOCK #error No usable tick clock function on this platform. #endif // _POSIX_MONOTONIC_CLOCK // static TimeTicks TimeTicks::HighResNow() { return Now(); } #if defined(OS_CHROMEOS) // Force definition of the system trace clock; it is a chromeos-only api // at the moment and surfacing it in the right place requires mucking // with glibc et al. #define CLOCK_SYSTEM_TRACE 11 // static TimeTicks TimeTicks::NowFromSystemTraceTime() { uint64_t absolute_micro; struct timespec ts; if (clock_gettime(CLOCK_SYSTEM_TRACE, &ts) != 0) { // NB: fall-back for a chrome os build running on linux return HighResNow(); } absolute_micro = (static_cast(ts.tv_sec) * Time::kMicrosecondsPerSecond) + (static_cast(ts.tv_nsec) / Time::kNanosecondsPerMicrosecond); return TimeTicks(absolute_micro); } #else // !defined(OS_CHROMEOS) // static TimeTicks TimeTicks::NowFromSystemTraceTime() { return HighResNow(); } #endif // defined(OS_CHROMEOS) #endif // !OS_MACOSX // static Time Time::FromTimeVal(struct timeval t) { DCHECK_LT(t.tv_usec, static_cast(Time::kMicrosecondsPerSecond)); DCHECK_GE(t.tv_usec, 0); if (t.tv_usec == 0 && t.tv_sec == 0) return Time(); if (t.tv_usec == static_cast(Time::kMicrosecondsPerSecond) - 1 && t.tv_sec == std::numeric_limits::max()) return Max(); return Time( (static_cast(t.tv_sec) * Time::kMicrosecondsPerSecond) + t.tv_usec + kTimeTToMicrosecondsOffset); } struct timeval Time::ToTimeVal() const { struct timeval result; if (is_null()) { result.tv_sec = 0; result.tv_usec = 0; return result; } if (is_max()) { result.tv_sec = std::numeric_limits::max(); result.tv_usec = static_cast(Time::kMicrosecondsPerSecond) - 1; return result; } int64 us = us_ - kTimeTToMicrosecondsOffset; result.tv_sec = us / Time::kMicrosecondsPerSecond; result.tv_usec = us % Time::kMicrosecondsPerSecond; return result; } } // namespace base