// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "base/threading/platform_thread.h" #include "base/time.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" using base::Time; using base::TimeDelta; using base::TimeTicks; // Specialized test fixture allowing time strings without timezones to be // tested by comparing them to a known time in the local zone. // See also pr_time_unittests.cc class TimeTest : public testing::Test { protected: virtual void SetUp() { // Use mktime to get a time_t, and turn it into a PRTime by converting // seconds to microseconds. Use 15th Oct 2007 12:45:00 local. This // must be a time guaranteed to be outside of a DST fallback hour in // any timezone. struct tm local_comparison_tm = { 0, // second 45, // minute 12, // hour 15, // day of month 10 - 1, // month 2007 - 1900, // year 0, // day of week (ignored, output only) 0, // day of year (ignored, output only) -1 // DST in effect, -1 tells mktime to figure it out }; time_t converted_time = mktime(&local_comparison_tm); ASSERT_GT(converted_time, 0); comparison_time_local_ = Time::FromTimeT(converted_time); // time_t representation of 15th Oct 2007 12:45:00 PDT comparison_time_pdt_ = Time::FromTimeT(1192477500); } Time comparison_time_local_; Time comparison_time_pdt_; }; // Test conversions to/from time_t and exploding/unexploding. TEST_F(TimeTest, TimeT) { // C library time and exploded time. time_t now_t_1 = time(NULL); struct tm tms; #if defined(OS_WIN) localtime_s(&tms, &now_t_1); #elif defined(OS_POSIX) localtime_r(&now_t_1, &tms); #endif // Convert to ours. Time our_time_1 = Time::FromTimeT(now_t_1); Time::Exploded exploded; our_time_1.LocalExplode(&exploded); // This will test both our exploding and our time_t -> Time conversion. EXPECT_EQ(tms.tm_year + 1900, exploded.year); EXPECT_EQ(tms.tm_mon + 1, exploded.month); EXPECT_EQ(tms.tm_mday, exploded.day_of_month); EXPECT_EQ(tms.tm_hour, exploded.hour); EXPECT_EQ(tms.tm_min, exploded.minute); EXPECT_EQ(tms.tm_sec, exploded.second); // Convert exploded back to the time struct. Time our_time_2 = Time::FromLocalExploded(exploded); EXPECT_TRUE(our_time_1 == our_time_2); time_t now_t_2 = our_time_2.ToTimeT(); EXPECT_EQ(now_t_1, now_t_2); EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT()); EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT()); // Conversions of 0 should stay 0. EXPECT_EQ(0, Time().ToTimeT()); EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue()); } TEST_F(TimeTest, FromExplodedWithMilliseconds) { // Some platform implementations of FromExploded are liable to drop // milliseconds if we aren't careful. Time now = Time::NowFromSystemTime(); Time::Exploded exploded1 = {0}; now.UTCExplode(&exploded1); exploded1.millisecond = 500; Time time = Time::FromUTCExploded(exploded1); Time::Exploded exploded2 = {0}; time.UTCExplode(&exploded2); EXPECT_EQ(exploded1.millisecond, exploded2.millisecond); } TEST_F(TimeTest, ZeroIsSymmetric) { Time zero_time(Time::FromTimeT(0)); EXPECT_EQ(0, zero_time.ToTimeT()); EXPECT_EQ(0.0, zero_time.ToDoubleT()); } TEST_F(TimeTest, LocalExplode) { Time a = Time::Now(); Time::Exploded exploded; a.LocalExplode(&exploded); Time b = Time::FromLocalExploded(exploded); // The exploded structure doesn't have microseconds, and on Mac & Linux, the // internal OS conversion uses seconds, which will cause truncation. So we // can only make sure that the delta is within one second. EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); } TEST_F(TimeTest, UTCExplode) { Time a = Time::Now(); Time::Exploded exploded; a.UTCExplode(&exploded); Time b = Time::FromUTCExploded(exploded); EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); } TEST_F(TimeTest, LocalMidnight) { Time::Exploded exploded; Time::Now().LocalMidnight().LocalExplode(&exploded); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); } TEST_F(TimeTest, ParseTimeTest1) { time_t current_time = 0; time(¤t_time); const int BUFFER_SIZE = 64; struct tm local_time = {0}; char time_buf[BUFFER_SIZE] = {0}; #if defined(OS_WIN) localtime_s(&local_time, ¤t_time); asctime_s(time_buf, arraysize(time_buf), &local_time); #elif defined(OS_POSIX) localtime_r(¤t_time, &local_time); asctime_r(&local_time, time_buf); #endif Time parsed_time; EXPECT_TRUE(Time::FromString(time_buf, &parsed_time)); EXPECT_EQ(current_time, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTest2) { Time parsed_time; EXPECT_TRUE(Time::FromString("Mon, 15 Oct 2007 19:45:00 GMT", &parsed_time)); EXPECT_EQ(comparison_time_pdt_, parsed_time); } TEST_F(TimeTest, ParseTimeTest3) { Time parsed_time; EXPECT_TRUE(Time::FromString("15 Oct 07 12:45:00", &parsed_time)); EXPECT_EQ(comparison_time_local_, parsed_time); } TEST_F(TimeTest, ParseTimeTest4) { Time parsed_time; EXPECT_TRUE(Time::FromString("15 Oct 07 19:45 GMT", &parsed_time)); EXPECT_EQ(comparison_time_pdt_, parsed_time); } TEST_F(TimeTest, ParseTimeTest5) { Time parsed_time; EXPECT_TRUE(Time::FromString("Mon Oct 15 12:45 PDT 2007", &parsed_time)); EXPECT_EQ(comparison_time_pdt_, parsed_time); } TEST_F(TimeTest, ParseTimeTest6) { Time parsed_time; EXPECT_TRUE(Time::FromString("Monday, Oct 15, 2007 12:45 PM", &parsed_time)); EXPECT_EQ(comparison_time_local_, parsed_time); } TEST_F(TimeTest, ParseTimeTest7) { Time parsed_time; EXPECT_TRUE(Time::FromString("10/15/07 12:45:00 PM", &parsed_time)); EXPECT_EQ(comparison_time_local_, parsed_time); } TEST_F(TimeTest, ParseTimeTest8) { Time parsed_time; EXPECT_TRUE(Time::FromString("15-OCT-2007 12:45pm", &parsed_time)); EXPECT_EQ(comparison_time_local_, parsed_time); } TEST_F(TimeTest, ParseTimeTest9) { Time parsed_time; EXPECT_TRUE(Time::FromString("16 Oct 2007 4:45-JST (Tuesday)", &parsed_time)); EXPECT_EQ(comparison_time_pdt_, parsed_time); } TEST_F(TimeTest, ParseTimeTest10) { Time parsed_time; EXPECT_TRUE(Time::FromString("15/10/07 12:45", &parsed_time)); EXPECT_EQ(parsed_time, comparison_time_local_); } // Test some of edge cases around epoch, etc. TEST_F(TimeTest, ParseTimeTestEpoch0) { Time parsed_time; // time_t == epoch == 0 EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:00 +0100 1970", &parsed_time)); EXPECT_EQ(0, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:00 GMT 1970", &parsed_time)); EXPECT_EQ(0, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpoch1) { Time parsed_time; // time_t == 1 second after epoch == 1 EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:01 +0100 1970", &parsed_time)); EXPECT_EQ(1, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:01 GMT 1970", &parsed_time)); EXPECT_EQ(1, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpoch2) { Time parsed_time; // time_t == 2 seconds after epoch == 2 EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:02 +0100 1970", &parsed_time)); EXPECT_EQ(2, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:02 GMT 1970", &parsed_time)); EXPECT_EQ(2, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpochNeg1) { Time parsed_time; // time_t == 1 second before epoch == -1 EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:59 +0100 1970", &parsed_time)); EXPECT_EQ(-1, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 1969", &parsed_time)); EXPECT_EQ(-1, parsed_time.ToTimeT()); } // If time_t is 32 bits, a date after year 2038 will overflow time_t and // cause timegm() to return -1. The parsed time should not be 1 second // before epoch. TEST_F(TimeTest, ParseTimeTestEpochNotNeg1) { Time parsed_time; EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 2100", &parsed_time)); EXPECT_NE(-1, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpochNeg2) { Time parsed_time; // time_t == 2 seconds before epoch == -2 EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:58 +0100 1970", &parsed_time)); EXPECT_EQ(-2, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:58 GMT 1969", &parsed_time)); EXPECT_EQ(-2, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEpoch1960) { Time parsed_time; // time_t before Epoch, in 1960 EXPECT_TRUE(Time::FromString("Wed Jun 29 19:40:01 +0100 1960", &parsed_time)); EXPECT_EQ(-299999999, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Wed Jun 29 18:40:01 GMT 1960", &parsed_time)); EXPECT_EQ(-299999999, parsed_time.ToTimeT()); EXPECT_TRUE(Time::FromString("Wed Jun 29 17:40:01 GMT 1960", &parsed_time)); EXPECT_EQ(-300003599, parsed_time.ToTimeT()); } TEST_F(TimeTest, ParseTimeTestEmpty) { Time parsed_time; EXPECT_FALSE(Time::FromString("", &parsed_time)); } TEST_F(TimeTest, ParseTimeTestInvalidString) { Time parsed_time; EXPECT_FALSE(Time::FromString("Monday morning 2000", &parsed_time)); } TEST_F(TimeTest, ExplodeBeforeUnixEpoch) { static const int kUnixEpochYear = 1970; // In case this changes (ha!). Time t; Time::Exploded exploded; t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds). EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(999, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 999 milliseconds. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(999, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds). EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(998, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:59. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(59, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1969-12-31 23:59:58 999 milliseconds. EXPECT_EQ(kUnixEpochYear - 1, exploded.year); EXPECT_EQ(12, exploded.month); EXPECT_EQ(31, exploded.day_of_month); EXPECT_EQ(23, exploded.hour); EXPECT_EQ(59, exploded.minute); EXPECT_EQ(58, exploded.second); EXPECT_EQ(999, exploded.millisecond); // Make sure we still handle at/after Unix epoch correctly. t = Time::UnixEpoch(); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-12-31 00:00:00 0 milliseconds. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond). EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:00 1 millisecond. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(1, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1000); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:01. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(1, exploded.second); EXPECT_EQ(0, exploded.millisecond); t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1001); t.UTCExplode(&exploded); EXPECT_TRUE(exploded.HasValidValues()); // Should be 1970-01-01 00:00:01 1 millisecond. EXPECT_EQ(kUnixEpochYear, exploded.year); EXPECT_EQ(1, exploded.month); EXPECT_EQ(1, exploded.day_of_month); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(1, exploded.second); EXPECT_EQ(1, exploded.millisecond); } TEST(TimeTicks, Deltas) { for (int index = 0; index < 50; index++) { TimeTicks ticks_start = TimeTicks::Now(); base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(10)); TimeTicks ticks_stop = TimeTicks::Now(); TimeDelta delta = ticks_stop - ticks_start; // Note: Although we asked for a 10ms sleep, if the // time clock has a finer granularity than the Sleep() // clock, it is quite possible to wakeup early. Here // is how that works: // Time(ms timer) Time(us timer) // 5 5010 // 6 6010 // 7 7010 // 8 8010 // 9 9000 // Elapsed 4ms 3990us // // Unfortunately, our InMilliseconds() function truncates // rather than rounds. We should consider fixing this // so that our averages come out better. EXPECT_GE(delta.InMilliseconds(), 9); EXPECT_GE(delta.InMicroseconds(), 9000); EXPECT_EQ(delta.InSeconds(), 0); } } TEST(TimeTicks, HighResNow) { #if defined(OS_WIN) // HighResNow doesn't work on some systems. Since the product still works // even if it doesn't work, it makes this entire test questionable. if (!TimeTicks::IsHighResClockWorking()) return; #endif // Why do we loop here? // We're trying to measure that intervals increment in a VERY small amount // of time -- less than 15ms. Unfortunately, if we happen to have a // context switch in the middle of our test, the context switch could easily // exceed our limit. So, we iterate on this several times. As long as we're // able to detect the fine-granularity timers at least once, then the test // has succeeded. const int kTargetGranularityUs = 15000; // 15ms bool success = false; int retries = 100; // Arbitrary. TimeDelta delta; while (!success && retries--) { TimeTicks ticks_start = TimeTicks::HighResNow(); // Loop until we can detect that the clock has changed. Non-HighRes timers // will increment in chunks, e.g. 15ms. By spinning until we see a clock // change, we detect the minimum time between measurements. do { delta = TimeTicks::HighResNow() - ticks_start; } while (delta.InMilliseconds() == 0); if (delta.InMicroseconds() <= kTargetGranularityUs) success = true; } // In high resolution mode, we expect to see the clock increment // in intervals less than 15ms. EXPECT_TRUE(success); } TEST(TimeDelta, FromAndIn) { EXPECT_TRUE(TimeDelta::FromDays(2) == TimeDelta::FromHours(48)); EXPECT_TRUE(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180)); EXPECT_TRUE(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120)); EXPECT_TRUE(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000)); EXPECT_TRUE(TimeDelta::FromMilliseconds(2) == TimeDelta::FromMicroseconds(2000)); EXPECT_EQ(13, TimeDelta::FromDays(13).InDays()); EXPECT_EQ(13, TimeDelta::FromHours(13).InHours()); EXPECT_EQ(13, TimeDelta::FromMinutes(13).InMinutes()); EXPECT_EQ(13, TimeDelta::FromSeconds(13).InSeconds()); EXPECT_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF()); EXPECT_EQ(13, TimeDelta::FromMilliseconds(13).InMilliseconds()); EXPECT_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF()); EXPECT_EQ(13, TimeDelta::FromMicroseconds(13).InMicroseconds()); } #if defined(OS_POSIX) TEST(TimeDelta, TimeSpecConversion) { struct timespec result = TimeDelta::FromSeconds(0).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 0); EXPECT_EQ(result.tv_nsec, 0); result = TimeDelta::FromSeconds(1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 1); EXPECT_EQ(result.tv_nsec, 0); result = TimeDelta::FromMicroseconds(1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 0); EXPECT_EQ(result.tv_nsec, 1000); result = TimeDelta::FromMicroseconds( Time::kMicrosecondsPerSecond + 1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 1); EXPECT_EQ(result.tv_nsec, 1000); } #endif // OS_POSIX // Our internal time format is serialized in things like databases, so it's // important that it's consistent across all our platforms. We use the 1601 // Windows epoch as the internal format across all platforms. TEST(TimeDelta, WindowsEpoch) { Time::Exploded exploded; exploded.year = 1970; exploded.month = 1; exploded.day_of_week = 0; // Should be unusued. exploded.day_of_month = 1; exploded.hour = 0; exploded.minute = 0; exploded.second = 0; exploded.millisecond = 0; Time t = Time::FromUTCExploded(exploded); // Unix 1970 epoch. EXPECT_EQ(GG_INT64_C(11644473600000000), t.ToInternalValue()); // We can't test 1601 epoch, since the system time functions on Linux // only compute years starting from 1900. }