// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <windows.h> #include <mmsystem.h> #include <process.h> #include "base/platform_thread.h" #include "base/time.h" #include "testing/gtest/include/gtest/gtest.h" using base::Time; using base::TimeDelta; using base::TimeTicks; namespace { class MockTimeTicks : public TimeTicks { public: static DWORD Ticker() { return static_cast<int>(InterlockedIncrement(&ticker_)); } static void InstallTicker() { old_tick_function_ = SetMockTickFunction(&Ticker); ticker_ = -5; } static void UninstallTicker() { SetMockTickFunction(old_tick_function_); } private: static volatile LONG ticker_; static TickFunctionType old_tick_function_; }; volatile LONG MockTimeTicks::ticker_; MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_; HANDLE g_rollover_test_start; unsigned __stdcall RolloverTestThreadMain(void* param) { int64 counter = reinterpret_cast<int64>(param); DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE); EXPECT_EQ(rv, WAIT_OBJECT_0); TimeTicks last = TimeTicks::Now(); for (int index = 0; index < counter; index++) { TimeTicks now = TimeTicks::Now(); int64 milliseconds = (now - last).InMilliseconds(); // This is a tight loop; we could have looped faster than our // measurements, so the time might be 0 millis. EXPECT_GE(milliseconds, 0); EXPECT_LT(milliseconds, 250); last = now; } return 0; } } // namespace TEST(TimeTicks, WinRollover) { // The internal counter rolls over at ~49days. We'll use a mock // timer to test this case. // Basic test algorithm: // 1) Set clock to rollover - N // 2) Create N threads // 3) Start the threads // 4) Each thread loops through TimeTicks() N times // 5) Each thread verifies integrity of result. const int kThreads = 8; // Use int64 so we can cast into a void* without a compiler warning. const int64 kChecks = 10; // It takes a lot of iterations to reproduce the bug! // (See bug 1081395) for (int loop = 0; loop < 4096; loop++) { // Setup MockTimeTicks::InstallTicker(); g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0); HANDLE threads[kThreads]; for (int index = 0; index < kThreads; index++) { void* argument = reinterpret_cast<void*>(kChecks); unsigned thread_id; threads[index] = reinterpret_cast<HANDLE>( _beginthreadex(NULL, 0, RolloverTestThreadMain, argument, 0, &thread_id)); EXPECT_NE((HANDLE)NULL, threads[index]); } // Start! SetEvent(g_rollover_test_start); // Wait for threads to finish for (int index = 0; index < kThreads; index++) { DWORD rv = WaitForSingleObject(threads[index], INFINITE); EXPECT_EQ(rv, WAIT_OBJECT_0); } CloseHandle(g_rollover_test_start); // Teardown MockTimeTicks::UninstallTicker(); } } TEST(TimeTicks, SubMillisecondTimers) { // HighResNow doesn't work on some systems. Since the product still works // even if it doesn't work, it makes this entire test questionable. if (!TimeTicks::IsHighResClockWorking()) return; const int kRetries = 1000; bool saw_submillisecond_timer = false; // Run kRetries attempts to see a sub-millisecond timer. for (int index = 0; index < 1000; index++) { TimeTicks last_time = TimeTicks::HighResNow(); TimeDelta delta; // Spin until the clock has detected a change. do { delta = TimeTicks::HighResNow() - last_time; } while (delta.InMicroseconds() == 0); if (delta.InMicroseconds() < 1000) { saw_submillisecond_timer = true; break; } } EXPECT_TRUE(saw_submillisecond_timer); } TEST(TimeTicks, TimeGetTimeCaps) { // Test some basic assumptions that we expect about how timeGetDevCaps works. TIMECAPS caps; MMRESULT status = timeGetDevCaps(&caps, sizeof(caps)); EXPECT_EQ(TIMERR_NOERROR, status); if (status != TIMERR_NOERROR) { printf("Could not get timeGetDevCaps\n"); return; } EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, caps.wPeriodMax); } TEST(TimeTicks, QueryPerformanceFrequency) { // Test some basic assumptions that we expect about QPC. LARGE_INTEGER frequency; BOOL rv = QueryPerformanceFrequency(&frequency); EXPECT_EQ(TRUE, rv); EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz printf("QueryPerformanceFrequency is %5.2fMHz\n", frequency.QuadPart / 1000000.0); } TEST(TimeTicks, TimerPerformance) { // Verify that various timer mechanisms can always complete quickly. // Note: This is a somewhat arbitrary test. const int kLoops = 10000; // Due to the fact that these run on bbots, which are horribly slow, // we can't really make any guarantees about minimum runtime. // Really, we want these to finish in ~10ms, and that is generous. const int kMaxTime = 35; // Maximum acceptible milliseconds for test. typedef TimeTicks (*TestFunc)(); struct TestCase { TestFunc func; char *description; }; // Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time) // in order to create a single test case list. COMPILE_ASSERT(sizeof(TimeTicks) == sizeof(Time), test_only_works_with_same_sizes); TestCase cases[] = { { reinterpret_cast<TestFunc>(Time::Now), "Time::Now" }, { TimeTicks::Now, "TimeTicks::Now" }, { TimeTicks::HighResNow, "TimeTicks::HighResNow" }, { NULL, "" } }; int test_case = 0; while (cases[test_case].func) { TimeTicks start = TimeTicks::HighResNow(); for (int index = 0; index < kLoops; index++) cases[test_case].func(); TimeTicks stop = TimeTicks::HighResNow(); // Turning off the check for acceptible delays. Without this check, // the test really doesn't do much other than measure. But the // measurements are still useful for testing timers on various platforms. // The reason to remove the check is because the tests run on many // buildbots, some of which are VMs. These machines can run horribly // slow, and there is really no value for checking against a max timer. //EXPECT_LT((stop - start).InMilliseconds(), kMaxTime); printf("%s: %1.2fus per call\n", cases[test_case].description, (stop - start).InMillisecondsF() * 1000 / kLoops); test_case++; } } TEST(TimeTicks, Drift) { const int kIterations = 100; int64 total_drift = 0; for (int i = 0; i < kIterations; ++i) { int64 drift_microseconds = TimeTicks::GetQPCDriftMicroseconds(); // Make sure the drift never exceeds our limit. EXPECT_LT(drift_microseconds, 50000); // Sleep for a few milliseconds (note that it means 1000 microseconds). // If we check the drift too frequently, it's going to increase // monotonically, making our measurement less realistic. PlatformThread::Sleep((i % 2 == 0) ? 1 : 2); total_drift += drift_microseconds; } // Sanity check. We expect some time drift to occur, especially across // the number of iterations we do. However, if the QPC is disabled, this // is not measuring anything (drift is zero in that case). EXPECT_LT(0, total_drift); printf("average time drift in microseconds: %lld\n", total_drift / kIterations); }