// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/trace_event/process_memory_dump.h" #include #include #include "base/process/process_metrics.h" #include "base/trace_event/process_memory_totals.h" #include "base/trace_event/trace_event_argument.h" #if defined(OS_POSIX) #include #endif namespace base { namespace trace_event { namespace { const char kEdgeTypeOwnership[] = "ownership"; std::string GetSharedGlobalAllocatorDumpName( const MemoryAllocatorDumpGuid& guid) { return "global/" + guid.ToString(); } } // namespace #if defined(COUNT_RESIDENT_BYTES_SUPPORTED) // static size_t ProcessMemoryDump::CountResidentBytes(void* start_address, size_t mapped_size) { const size_t page_size = GetPageSize(); const uintptr_t start_pointer = reinterpret_cast(start_address); DCHECK_EQ(0u, start_pointer % page_size); // This function allocates a char vector of size number of pages in the given // mapped_size. To avoid allocating a large array, the memory is split into // chunks. Maximum size of vector allocated, will be // kPageChunkSize / page_size. const size_t kMaxChunkSize = 32 * 1024 * 1024; size_t offset = 0; size_t total_resident_size = 0; int result = 0; while (offset < mapped_size) { void* chunk_start = reinterpret_cast(start_pointer + offset); const size_t chunk_size = std::min(mapped_size - offset, kMaxChunkSize); const size_t page_count = (chunk_size + page_size - 1) / page_size; size_t resident_page_count = 0; #if defined(OS_MACOSX) || defined(OS_IOS) std::vector vec(page_count + 1); // mincore in MAC does not fail with EAGAIN. result = mincore(chunk_start, chunk_size, vec.data()); if (result) break; for (size_t i = 0; i < page_count; i++) resident_page_count += vec[i] & MINCORE_INCORE ? 1 : 0; #else // defined(OS_MACOSX) || defined(OS_IOS) std::vector vec(page_count + 1); int error_counter = 0; // HANDLE_EINTR tries for 100 times. So following the same pattern. do { result = mincore(chunk_start, chunk_size, vec.data()); } while (result == -1 && errno == EAGAIN && error_counter++ < 100); if (result) break; for (size_t i = 0; i < page_count; i++) resident_page_count += vec[i]; #endif // defined(OS_MACOSX) || defined(OS_IOS) total_resident_size += resident_page_count * page_size; offset += kMaxChunkSize; } DCHECK_EQ(0, result); if (result) { total_resident_size = 0; LOG(ERROR) << "mincore() call failed. The resident size is invalid"; } return total_resident_size; } #endif // defined(COUNT_RESIDENT_BYTES_SUPPORTED) ProcessMemoryDump::ProcessMemoryDump( const scoped_refptr& session_state) : has_process_totals_(false), has_process_mmaps_(false), session_state_(session_state) { } ProcessMemoryDump::~ProcessMemoryDump() { } MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump( const std::string& absolute_name) { MemoryAllocatorDump* mad = new MemoryAllocatorDump(absolute_name, this); AddAllocatorDumpInternal(mad); // Takes ownership of |mad|. return mad; } MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump( const std::string& absolute_name, const MemoryAllocatorDumpGuid& guid) { MemoryAllocatorDump* mad = new MemoryAllocatorDump(absolute_name, this, guid); AddAllocatorDumpInternal(mad); // Takes ownership of |mad|. return mad; } void ProcessMemoryDump::AddAllocatorDumpInternal(MemoryAllocatorDump* mad) { DCHECK_EQ(0ul, allocator_dumps_.count(mad->absolute_name())); allocator_dumps_storage_.push_back(mad); allocator_dumps_[mad->absolute_name()] = mad; } MemoryAllocatorDump* ProcessMemoryDump::GetAllocatorDump( const std::string& absolute_name) const { auto it = allocator_dumps_.find(absolute_name); return it == allocator_dumps_.end() ? nullptr : it->second; } MemoryAllocatorDump* ProcessMemoryDump::GetOrCreateAllocatorDump( const std::string& absolute_name) { MemoryAllocatorDump* mad = GetAllocatorDump(absolute_name); return mad ? mad : CreateAllocatorDump(absolute_name); } MemoryAllocatorDump* ProcessMemoryDump::CreateSharedGlobalAllocatorDump( const MemoryAllocatorDumpGuid& guid) { // A shared allocator dump can be shared within a process and the guid could // have been created already. MemoryAllocatorDump* allocator_dump = GetSharedGlobalAllocatorDump(guid); return allocator_dump ? allocator_dump : CreateAllocatorDump( GetSharedGlobalAllocatorDumpName(guid), guid); } MemoryAllocatorDump* ProcessMemoryDump::GetSharedGlobalAllocatorDump( const MemoryAllocatorDumpGuid& guid) const { return GetAllocatorDump(GetSharedGlobalAllocatorDumpName(guid)); } void ProcessMemoryDump::AddHeapDump(const std::string& absolute_name, scoped_refptr heap_dump) { DCHECK_EQ(0ul, heap_dumps_.count(absolute_name)); heap_dumps_[absolute_name] = heap_dump; } void ProcessMemoryDump::Clear() { if (has_process_totals_) { process_totals_.Clear(); has_process_totals_ = false; } if (has_process_mmaps_) { process_mmaps_.Clear(); has_process_mmaps_ = false; } allocator_dumps_storage_.clear(); allocator_dumps_.clear(); allocator_dumps_edges_.clear(); heap_dumps_.clear(); } void ProcessMemoryDump::TakeAllDumpsFrom(ProcessMemoryDump* other) { DCHECK(!other->has_process_totals() && !other->has_process_mmaps()); // Moves the ownership of all MemoryAllocatorDump(s) contained in |other| // into this ProcessMemoryDump. for (MemoryAllocatorDump* mad : other->allocator_dumps_storage_) { // Check that we don't merge duplicates. DCHECK_EQ(0ul, allocator_dumps_.count(mad->absolute_name())); allocator_dumps_storage_.push_back(mad); allocator_dumps_[mad->absolute_name()] = mad; } other->allocator_dumps_storage_.weak_clear(); other->allocator_dumps_.clear(); // Move all the edges. allocator_dumps_edges_.insert(allocator_dumps_edges_.end(), other->allocator_dumps_edges_.begin(), other->allocator_dumps_edges_.end()); other->allocator_dumps_edges_.clear(); heap_dumps_.insert(other->heap_dumps_.begin(), other->heap_dumps_.end()); other->heap_dumps_.clear(); } void ProcessMemoryDump::AsValueInto(TracedValue* value) const { if (has_process_totals_) { value->BeginDictionary("process_totals"); process_totals_.AsValueInto(value); value->EndDictionary(); } if (has_process_mmaps_) { value->BeginDictionary("process_mmaps"); process_mmaps_.AsValueInto(value); value->EndDictionary(); } if (allocator_dumps_storage_.size() > 0) { value->BeginDictionary("allocators"); for (const MemoryAllocatorDump* allocator_dump : allocator_dumps_storage_) allocator_dump->AsValueInto(value); value->EndDictionary(); } if (heap_dumps_.size() > 0) { value->BeginDictionary("heaps"); for (const auto& name_and_dump : heap_dumps_) value->SetValueWithCopiedName(name_and_dump.first, *name_and_dump.second); value->EndDictionary(); // "heaps" } value->BeginArray("allocators_graph"); for (const MemoryAllocatorDumpEdge& edge : allocator_dumps_edges_) { value->BeginDictionary(); value->SetString("source", edge.source.ToString()); value->SetString("target", edge.target.ToString()); value->SetInteger("importance", edge.importance); value->SetString("type", edge.type); value->EndDictionary(); } value->EndArray(); } void ProcessMemoryDump::AddOwnershipEdge(const MemoryAllocatorDumpGuid& source, const MemoryAllocatorDumpGuid& target, int importance) { allocator_dumps_edges_.push_back( {source, target, importance, kEdgeTypeOwnership}); } void ProcessMemoryDump::AddOwnershipEdge( const MemoryAllocatorDumpGuid& source, const MemoryAllocatorDumpGuid& target) { AddOwnershipEdge(source, target, 0 /* importance */); } void ProcessMemoryDump::AddSuballocation(const MemoryAllocatorDumpGuid& source, const std::string& target_node_name) { std::string child_mad_name = target_node_name + "/__" + source.ToString(); MemoryAllocatorDump* target_child_mad = CreateAllocatorDump(child_mad_name); AddOwnershipEdge(source, target_child_mad->guid()); } } // namespace trace_event } // namespace base