// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/trace_event/trace_event_impl.h" #include #include "base/base_switches.h" #include "base/bind.h" #include "base/command_line.h" #include "base/debug/leak_annotations.h" #include "base/float_util.h" #include "base/format_macros.h" #include "base/json/string_escape.h" #include "base/lazy_instance.h" #include "base/memory/singleton.h" #include "base/message_loop/message_loop.h" #include "base/process/process_metrics.h" #include "base/stl_util.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/string_tokenizer.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/strings/utf_string_conversions.h" #include "base/synchronization/cancellation_flag.h" #include "base/synchronization/waitable_event.h" #include "base/sys_info.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "base/threading/platform_thread.h" #include "base/threading/thread_id_name_manager.h" #include "base/time/time.h" #include "base/trace_event/trace_event.h" #include "base/trace_event/trace_event_synthetic_delay.h" #if defined(OS_WIN) #include "base/trace_event/trace_event_win.h" #endif class DeleteTraceLogForTesting { public: static void Delete() { Singleton>::OnExit(0); } }; // The thread buckets for the sampling profiler. BASE_EXPORT TRACE_EVENT_API_ATOMIC_WORD g_trace_state[3]; namespace base { namespace trace_event { namespace { // The overhead of TraceEvent above this threshold will be reported in the // trace. const int kOverheadReportThresholdInMicroseconds = 50; // String options that can be used to initialize TraceOptions. const char kRecordUntilFull[] = "record-until-full"; const char kRecordContinuously[] = "record-continuously"; const char kRecordAsMuchAsPossible[] = "record-as-much-as-possible"; const char kTraceToConsole[] = "trace-to-console"; const char kEnableSampling[] = "enable-sampling"; const char kEnableSystrace[] = "enable-systrace"; // Controls the number of trace events we will buffer in-memory // before throwing them away. const size_t kTraceBufferChunkSize = TraceBufferChunk::kTraceBufferChunkSize; const size_t kTraceEventVectorBigBufferChunks = 512000000 / kTraceBufferChunkSize; const size_t kTraceEventVectorBufferChunks = 256000 / kTraceBufferChunkSize; const size_t kTraceEventRingBufferChunks = kTraceEventVectorBufferChunks / 4; const size_t kTraceEventBatchChunks = 1000 / kTraceBufferChunkSize; // Can store results for 30 seconds with 1 ms sampling interval. const size_t kMonitorTraceEventBufferChunks = 30000 / kTraceBufferChunkSize; // ECHO_TO_CONSOLE needs a small buffer to hold the unfinished COMPLETE events. const size_t kEchoToConsoleTraceEventBufferChunks = 256; const int kThreadFlushTimeoutMs = 3000; #if !defined(OS_NACL) // These categories will cause deadlock when ECHO_TO_CONSOLE. crbug.com/325575. const char kEchoToConsoleCategoryFilter[] = "-ipc,-task"; #endif const char kSyntheticDelayCategoryFilterPrefix[] = "DELAY("; #define MAX_CATEGORY_GROUPS 100 // Parallel arrays g_category_groups and g_category_group_enabled are separate // so that a pointer to a member of g_category_group_enabled can be easily // converted to an index into g_category_groups. This allows macros to deal // only with char enabled pointers from g_category_group_enabled, and we can // convert internally to determine the category name from the char enabled // pointer. const char* g_category_groups[MAX_CATEGORY_GROUPS] = { "toplevel", "tracing already shutdown", "tracing categories exhausted; must increase MAX_CATEGORY_GROUPS", "__metadata", // For reporting trace_event overhead. For thread local event buffers only. "trace_event_overhead"}; // The enabled flag is char instead of bool so that the API can be used from C. unsigned char g_category_group_enabled[MAX_CATEGORY_GROUPS] = { 0 }; // Indexes here have to match the g_category_groups array indexes above. const int g_category_already_shutdown = 1; const int g_category_categories_exhausted = 2; const int g_category_metadata = 3; const int g_category_trace_event_overhead = 4; const int g_num_builtin_categories = 5; // Skip default categories. base::subtle::AtomicWord g_category_index = g_num_builtin_categories; // The name of the current thread. This is used to decide if the current // thread name has changed. We combine all the seen thread names into the // output name for the thread. LazyInstance >::Leaky g_current_thread_name = LAZY_INSTANCE_INITIALIZER; TimeTicks ThreadNow() { return TimeTicks::IsThreadNowSupported() ? TimeTicks::ThreadNow() : TimeTicks(); } class TraceBufferRingBuffer : public TraceBuffer { public: TraceBufferRingBuffer(size_t max_chunks) : max_chunks_(max_chunks), recyclable_chunks_queue_(new size_t[queue_capacity()]), queue_head_(0), queue_tail_(max_chunks), current_iteration_index_(0), current_chunk_seq_(1) { chunks_.reserve(max_chunks); for (size_t i = 0; i < max_chunks; ++i) recyclable_chunks_queue_[i] = i; } scoped_ptr GetChunk(size_t* index) override { // Because the number of threads is much less than the number of chunks, // the queue should never be empty. DCHECK(!QueueIsEmpty()); *index = recyclable_chunks_queue_[queue_head_]; queue_head_ = NextQueueIndex(queue_head_); current_iteration_index_ = queue_head_; if (*index >= chunks_.size()) chunks_.resize(*index + 1); TraceBufferChunk* chunk = chunks_[*index]; chunks_[*index] = NULL; // Put NULL in the slot of a in-flight chunk. if (chunk) chunk->Reset(current_chunk_seq_++); else chunk = new TraceBufferChunk(current_chunk_seq_++); return scoped_ptr(chunk); } void ReturnChunk(size_t index, scoped_ptr chunk) override { // When this method is called, the queue should not be full because it // can contain all chunks including the one to be returned. DCHECK(!QueueIsFull()); DCHECK(chunk); DCHECK_LT(index, chunks_.size()); DCHECK(!chunks_[index]); chunks_[index] = chunk.release(); recyclable_chunks_queue_[queue_tail_] = index; queue_tail_ = NextQueueIndex(queue_tail_); } bool IsFull() const override { return false; } size_t Size() const override { // This is approximate because not all of the chunks are full. return chunks_.size() * kTraceBufferChunkSize; } size_t Capacity() const override { return max_chunks_ * kTraceBufferChunkSize; } TraceEvent* GetEventByHandle(TraceEventHandle handle) override { if (handle.chunk_index >= chunks_.size()) return NULL; TraceBufferChunk* chunk = chunks_[handle.chunk_index]; if (!chunk || chunk->seq() != handle.chunk_seq) return NULL; return chunk->GetEventAt(handle.event_index); } const TraceBufferChunk* NextChunk() override { if (chunks_.empty()) return NULL; while (current_iteration_index_ != queue_tail_) { size_t chunk_index = recyclable_chunks_queue_[current_iteration_index_]; current_iteration_index_ = NextQueueIndex(current_iteration_index_); if (chunk_index >= chunks_.size()) // Skip uninitialized chunks. continue; DCHECK(chunks_[chunk_index]); return chunks_[chunk_index]; } return NULL; } scoped_ptr CloneForIteration() const override { scoped_ptr cloned_buffer(new ClonedTraceBuffer()); for (size_t queue_index = queue_head_; queue_index != queue_tail_; queue_index = NextQueueIndex(queue_index)) { size_t chunk_index = recyclable_chunks_queue_[queue_index]; if (chunk_index >= chunks_.size()) // Skip uninitialized chunks. continue; TraceBufferChunk* chunk = chunks_[chunk_index]; cloned_buffer->chunks_.push_back(chunk ? chunk->Clone().release() : NULL); } return cloned_buffer.Pass(); } private: class ClonedTraceBuffer : public TraceBuffer { public: ClonedTraceBuffer() : current_iteration_index_(0) {} // The only implemented method. const TraceBufferChunk* NextChunk() override { return current_iteration_index_ < chunks_.size() ? chunks_[current_iteration_index_++] : NULL; } scoped_ptr GetChunk(size_t* index) override { NOTIMPLEMENTED(); return scoped_ptr(); } void ReturnChunk(size_t index, scoped_ptr) override { NOTIMPLEMENTED(); } bool IsFull() const override { return false; } size_t Size() const override { return 0; } size_t Capacity() const override { return 0; } TraceEvent* GetEventByHandle(TraceEventHandle handle) override { return NULL; } scoped_ptr CloneForIteration() const override { NOTIMPLEMENTED(); return scoped_ptr(); } size_t current_iteration_index_; ScopedVector chunks_; }; bool QueueIsEmpty() const { return queue_head_ == queue_tail_; } size_t QueueSize() const { return queue_tail_ > queue_head_ ? queue_tail_ - queue_head_ : queue_tail_ + queue_capacity() - queue_head_; } bool QueueIsFull() const { return QueueSize() == queue_capacity() - 1; } size_t queue_capacity() const { // One extra space to help distinguish full state and empty state. return max_chunks_ + 1; } size_t NextQueueIndex(size_t index) const { index++; if (index >= queue_capacity()) index = 0; return index; } size_t max_chunks_; ScopedVector chunks_; scoped_ptr recyclable_chunks_queue_; size_t queue_head_; size_t queue_tail_; size_t current_iteration_index_; uint32 current_chunk_seq_; DISALLOW_COPY_AND_ASSIGN(TraceBufferRingBuffer); }; class TraceBufferVector : public TraceBuffer { public: TraceBufferVector(size_t max_chunks) : in_flight_chunk_count_(0), current_iteration_index_(0), max_chunks_(max_chunks) { chunks_.reserve(max_chunks_); } scoped_ptr GetChunk(size_t* index) override { // This function may be called when adding normal events or indirectly from // AddMetadataEventsWhileLocked(). We can not DECHECK(!IsFull()) because we // have to add the metadata events and flush thread-local buffers even if // the buffer is full. *index = chunks_.size(); chunks_.push_back(NULL); // Put NULL in the slot of a in-flight chunk. ++in_flight_chunk_count_; // + 1 because zero chunk_seq is not allowed. return scoped_ptr( new TraceBufferChunk(static_cast(*index) + 1)); } void ReturnChunk(size_t index, scoped_ptr chunk) override { DCHECK_GT(in_flight_chunk_count_, 0u); DCHECK_LT(index, chunks_.size()); DCHECK(!chunks_[index]); --in_flight_chunk_count_; chunks_[index] = chunk.release(); } bool IsFull() const override { return chunks_.size() >= max_chunks_; } size_t Size() const override { // This is approximate because not all of the chunks are full. return chunks_.size() * kTraceBufferChunkSize; } size_t Capacity() const override { return max_chunks_ * kTraceBufferChunkSize; } TraceEvent* GetEventByHandle(TraceEventHandle handle) override { if (handle.chunk_index >= chunks_.size()) return NULL; TraceBufferChunk* chunk = chunks_[handle.chunk_index]; if (!chunk || chunk->seq() != handle.chunk_seq) return NULL; return chunk->GetEventAt(handle.event_index); } const TraceBufferChunk* NextChunk() override { while (current_iteration_index_ < chunks_.size()) { // Skip in-flight chunks. const TraceBufferChunk* chunk = chunks_[current_iteration_index_++]; if (chunk) return chunk; } return NULL; } scoped_ptr CloneForIteration() const override { NOTIMPLEMENTED(); return scoped_ptr(); } private: size_t in_flight_chunk_count_; size_t current_iteration_index_; size_t max_chunks_; ScopedVector chunks_; DISALLOW_COPY_AND_ASSIGN(TraceBufferVector); }; template void InitializeMetadataEvent(TraceEvent* trace_event, int thread_id, const char* metadata_name, const char* arg_name, const T& value) { if (!trace_event) return; int num_args = 1; unsigned char arg_type; unsigned long long arg_value; ::trace_event_internal::SetTraceValue(value, &arg_type, &arg_value); trace_event->Initialize(thread_id, TimeTicks(), TimeTicks(), TRACE_EVENT_PHASE_METADATA, &g_category_group_enabled[g_category_metadata], metadata_name, ::trace_event_internal::kNoEventId, num_args, &arg_name, &arg_type, &arg_value, NULL, TRACE_EVENT_FLAG_NONE); } class AutoThreadLocalBoolean { public: explicit AutoThreadLocalBoolean(ThreadLocalBoolean* thread_local_boolean) : thread_local_boolean_(thread_local_boolean) { DCHECK(!thread_local_boolean_->Get()); thread_local_boolean_->Set(true); } ~AutoThreadLocalBoolean() { thread_local_boolean_->Set(false); } private: ThreadLocalBoolean* thread_local_boolean_; DISALLOW_COPY_AND_ASSIGN(AutoThreadLocalBoolean); }; } // namespace void TraceBufferChunk::Reset(uint32 new_seq) { for (size_t i = 0; i < next_free_; ++i) chunk_[i].Reset(); next_free_ = 0; seq_ = new_seq; } TraceEvent* TraceBufferChunk::AddTraceEvent(size_t* event_index) { DCHECK(!IsFull()); *event_index = next_free_++; return &chunk_[*event_index]; } scoped_ptr TraceBufferChunk::Clone() const { scoped_ptr cloned_chunk(new TraceBufferChunk(seq_)); cloned_chunk->next_free_ = next_free_; for (size_t i = 0; i < next_free_; ++i) cloned_chunk->chunk_[i].CopyFrom(chunk_[i]); return cloned_chunk.Pass(); } // A helper class that allows the lock to be acquired in the middle of the scope // and unlocks at the end of scope if locked. class TraceLog::OptionalAutoLock { public: explicit OptionalAutoLock(Lock& lock) : lock_(lock), locked_(false) { } ~OptionalAutoLock() { if (locked_) lock_.Release(); } void EnsureAcquired() { if (!locked_) { lock_.Acquire(); locked_ = true; } } private: Lock& lock_; bool locked_; DISALLOW_COPY_AND_ASSIGN(OptionalAutoLock); }; // Use this function instead of TraceEventHandle constructor to keep the // overhead of ScopedTracer (trace_event.h) constructor minimum. void MakeHandle(uint32 chunk_seq, size_t chunk_index, size_t event_index, TraceEventHandle* handle) { DCHECK(chunk_seq); DCHECK(chunk_index < (1u << 16)); DCHECK(event_index < (1u << 16)); handle->chunk_seq = chunk_seq; handle->chunk_index = static_cast(chunk_index); handle->event_index = static_cast(event_index); } //////////////////////////////////////////////////////////////////////////////// // // TraceEvent // //////////////////////////////////////////////////////////////////////////////// namespace { size_t GetAllocLength(const char* str) { return str ? strlen(str) + 1 : 0; } // Copies |*member| into |*buffer|, sets |*member| to point to this new // location, and then advances |*buffer| by the amount written. void CopyTraceEventParameter(char** buffer, const char** member, const char* end) { if (*member) { size_t written = strlcpy(*buffer, *member, end - *buffer) + 1; DCHECK_LE(static_cast(written), end - *buffer); *member = *buffer; *buffer += written; } } } // namespace TraceEvent::TraceEvent() : duration_(TimeDelta::FromInternalValue(-1)), id_(0u), category_group_enabled_(NULL), name_(NULL), thread_id_(0), phase_(TRACE_EVENT_PHASE_BEGIN), flags_(0) { for (int i = 0; i < kTraceMaxNumArgs; ++i) arg_names_[i] = NULL; memset(arg_values_, 0, sizeof(arg_values_)); } TraceEvent::~TraceEvent() { } void TraceEvent::CopyFrom(const TraceEvent& other) { timestamp_ = other.timestamp_; thread_timestamp_ = other.thread_timestamp_; duration_ = other.duration_; id_ = other.id_; category_group_enabled_ = other.category_group_enabled_; name_ = other.name_; thread_id_ = other.thread_id_; phase_ = other.phase_; flags_ = other.flags_; parameter_copy_storage_ = other.parameter_copy_storage_; for (int i = 0; i < kTraceMaxNumArgs; ++i) { arg_names_[i] = other.arg_names_[i]; arg_types_[i] = other.arg_types_[i]; arg_values_[i] = other.arg_values_[i]; convertable_values_[i] = other.convertable_values_[i]; } } void TraceEvent::Initialize( int thread_id, TimeTicks timestamp, TimeTicks thread_timestamp, char phase, const unsigned char* category_group_enabled, const char* name, unsigned long long id, int num_args, const char** arg_names, const unsigned char* arg_types, const unsigned long long* arg_values, const scoped_refptr* convertable_values, unsigned char flags) { timestamp_ = timestamp; thread_timestamp_ = thread_timestamp; duration_ = TimeDelta::FromInternalValue(-1); id_ = id; category_group_enabled_ = category_group_enabled; name_ = name; thread_id_ = thread_id; phase_ = phase; flags_ = flags; // Clamp num_args since it may have been set by a third_party library. num_args = (num_args > kTraceMaxNumArgs) ? kTraceMaxNumArgs : num_args; int i = 0; for (; i < num_args; ++i) { arg_names_[i] = arg_names[i]; arg_types_[i] = arg_types[i]; if (arg_types[i] == TRACE_VALUE_TYPE_CONVERTABLE) convertable_values_[i] = convertable_values[i]; else arg_values_[i].as_uint = arg_values[i]; } for (; i < kTraceMaxNumArgs; ++i) { arg_names_[i] = NULL; arg_values_[i].as_uint = 0u; convertable_values_[i] = NULL; arg_types_[i] = TRACE_VALUE_TYPE_UINT; } bool copy = !!(flags & TRACE_EVENT_FLAG_COPY); size_t alloc_size = 0; if (copy) { alloc_size += GetAllocLength(name); for (i = 0; i < num_args; ++i) { alloc_size += GetAllocLength(arg_names_[i]); if (arg_types_[i] == TRACE_VALUE_TYPE_STRING) arg_types_[i] = TRACE_VALUE_TYPE_COPY_STRING; } } bool arg_is_copy[kTraceMaxNumArgs]; for (i = 0; i < num_args; ++i) { // No copying of convertable types, we retain ownership. if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE) continue; // We only take a copy of arg_vals if they are of type COPY_STRING. arg_is_copy[i] = (arg_types_[i] == TRACE_VALUE_TYPE_COPY_STRING); if (arg_is_copy[i]) alloc_size += GetAllocLength(arg_values_[i].as_string); } if (alloc_size) { parameter_copy_storage_ = new RefCountedString; parameter_copy_storage_->data().resize(alloc_size); char* ptr = string_as_array(¶meter_copy_storage_->data()); const char* end = ptr + alloc_size; if (copy) { CopyTraceEventParameter(&ptr, &name_, end); for (i = 0; i < num_args; ++i) { CopyTraceEventParameter(&ptr, &arg_names_[i], end); } } for (i = 0; i < num_args; ++i) { if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE) continue; if (arg_is_copy[i]) CopyTraceEventParameter(&ptr, &arg_values_[i].as_string, end); } DCHECK_EQ(end, ptr) << "Overrun by " << ptr - end; } } void TraceEvent::Reset() { // Only reset fields that won't be initialized in Initialize(), or that may // hold references to other objects. duration_ = TimeDelta::FromInternalValue(-1); parameter_copy_storage_ = NULL; for (int i = 0; i < kTraceMaxNumArgs; ++i) convertable_values_[i] = NULL; } void TraceEvent::UpdateDuration(const TimeTicks& now, const TimeTicks& thread_now) { DCHECK(duration_.ToInternalValue() == -1); duration_ = now - timestamp_; thread_duration_ = thread_now - thread_timestamp_; } // static void TraceEvent::AppendValueAsJSON(unsigned char type, TraceEvent::TraceValue value, std::string* out) { switch (type) { case TRACE_VALUE_TYPE_BOOL: *out += value.as_bool ? "true" : "false"; break; case TRACE_VALUE_TYPE_UINT: StringAppendF(out, "%" PRIu64, static_cast(value.as_uint)); break; case TRACE_VALUE_TYPE_INT: StringAppendF(out, "%" PRId64, static_cast(value.as_int)); break; case TRACE_VALUE_TYPE_DOUBLE: { // FIXME: base/json/json_writer.cc is using the same code, // should be made into a common method. std::string real; double val = value.as_double; if (IsFinite(val)) { real = DoubleToString(val); // Ensure that the number has a .0 if there's no decimal or 'e'. This // makes sure that when we read the JSON back, it's interpreted as a // real rather than an int. if (real.find('.') == std::string::npos && real.find('e') == std::string::npos && real.find('E') == std::string::npos) { real.append(".0"); } // The JSON spec requires that non-integer values in the range (-1,1) // have a zero before the decimal point - ".52" is not valid, "0.52" is. if (real[0] == '.') { real.insert(0, "0"); } else if (real.length() > 1 && real[0] == '-' && real[1] == '.') { // "-.1" bad "-0.1" good real.insert(1, "0"); } } else if (IsNaN(val)){ // The JSON spec doesn't allow NaN and Infinity (since these are // objects in EcmaScript). Use strings instead. real = "\"NaN\""; } else if (val < 0) { real = "\"-Infinity\""; } else { real = "\"Infinity\""; } StringAppendF(out, "%s", real.c_str()); break; } case TRACE_VALUE_TYPE_POINTER: // JSON only supports double and int numbers. // So as not to lose bits from a 64-bit pointer, output as a hex string. StringAppendF(out, "\"0x%" PRIx64 "\"", static_cast( reinterpret_cast( value.as_pointer))); break; case TRACE_VALUE_TYPE_STRING: case TRACE_VALUE_TYPE_COPY_STRING: EscapeJSONString(value.as_string ? value.as_string : "NULL", true, out); break; default: NOTREACHED() << "Don't know how to print this value"; break; } } void TraceEvent::AppendAsJSON(std::string* out) const { int64 time_int64 = timestamp_.ToInternalValue(); int process_id = TraceLog::GetInstance()->process_id(); // Category group checked at category creation time. DCHECK(!strchr(name_, '"')); StringAppendF(out, "{\"pid\":%i,\"tid\":%i,\"ts\":%" PRId64 "," "\"ph\":\"%c\",\"cat\":\"%s\",\"name\":\"%s\",\"args\":{", process_id, thread_id_, time_int64, phase_, TraceLog::GetCategoryGroupName(category_group_enabled_), name_); // Output argument names and values, stop at first NULL argument name. for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i) { if (i > 0) *out += ","; *out += "\""; *out += arg_names_[i]; *out += "\":"; if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE) convertable_values_[i]->AppendAsTraceFormat(out); else AppendValueAsJSON(arg_types_[i], arg_values_[i], out); } *out += "}"; if (phase_ == TRACE_EVENT_PHASE_COMPLETE) { int64 duration = duration_.ToInternalValue(); if (duration != -1) StringAppendF(out, ",\"dur\":%" PRId64, duration); if (!thread_timestamp_.is_null()) { int64 thread_duration = thread_duration_.ToInternalValue(); if (thread_duration != -1) StringAppendF(out, ",\"tdur\":%" PRId64, thread_duration); } } // Output tts if thread_timestamp is valid. if (!thread_timestamp_.is_null()) { int64 thread_time_int64 = thread_timestamp_.ToInternalValue(); StringAppendF(out, ",\"tts\":%" PRId64, thread_time_int64); } // If id_ is set, print it out as a hex string so we don't loose any // bits (it might be a 64-bit pointer). if (flags_ & TRACE_EVENT_FLAG_HAS_ID) StringAppendF(out, ",\"id\":\"0x%" PRIx64 "\"", static_cast(id_)); // Instant events also output their scope. if (phase_ == TRACE_EVENT_PHASE_INSTANT) { char scope = '?'; switch (flags_ & TRACE_EVENT_FLAG_SCOPE_MASK) { case TRACE_EVENT_SCOPE_GLOBAL: scope = TRACE_EVENT_SCOPE_NAME_GLOBAL; break; case TRACE_EVENT_SCOPE_PROCESS: scope = TRACE_EVENT_SCOPE_NAME_PROCESS; break; case TRACE_EVENT_SCOPE_THREAD: scope = TRACE_EVENT_SCOPE_NAME_THREAD; break; } StringAppendF(out, ",\"s\":\"%c\"", scope); } *out += "}"; } void TraceEvent::AppendPrettyPrinted(std::ostringstream* out) const { *out << name_ << "["; *out << TraceLog::GetCategoryGroupName(category_group_enabled_); *out << "]"; if (arg_names_[0]) { *out << ", {"; for (int i = 0; i < kTraceMaxNumArgs && arg_names_[i]; ++i) { if (i > 0) *out << ", "; *out << arg_names_[i] << ":"; std::string value_as_text; if (arg_types_[i] == TRACE_VALUE_TYPE_CONVERTABLE) convertable_values_[i]->AppendAsTraceFormat(&value_as_text); else AppendValueAsJSON(arg_types_[i], arg_values_[i], &value_as_text); *out << value_as_text; } *out << "}"; } } //////////////////////////////////////////////////////////////////////////////// // // TraceResultBuffer // //////////////////////////////////////////////////////////////////////////////// TraceResultBuffer::OutputCallback TraceResultBuffer::SimpleOutput::GetCallback() { return Bind(&SimpleOutput::Append, Unretained(this)); } void TraceResultBuffer::SimpleOutput::Append( const std::string& json_trace_output) { json_output += json_trace_output; } TraceResultBuffer::TraceResultBuffer() : append_comma_(false) { } TraceResultBuffer::~TraceResultBuffer() { } void TraceResultBuffer::SetOutputCallback( const OutputCallback& json_chunk_callback) { output_callback_ = json_chunk_callback; } void TraceResultBuffer::Start() { append_comma_ = false; output_callback_.Run("["); } void TraceResultBuffer::AddFragment(const std::string& trace_fragment) { if (append_comma_) output_callback_.Run(","); append_comma_ = true; output_callback_.Run(trace_fragment); } void TraceResultBuffer::Finish() { output_callback_.Run("]"); } //////////////////////////////////////////////////////////////////////////////// // // TraceSamplingThread // //////////////////////////////////////////////////////////////////////////////// class TraceBucketData; typedef base::Callback TraceSampleCallback; class TraceBucketData { public: TraceBucketData(base::subtle::AtomicWord* bucket, const char* name, TraceSampleCallback callback); ~TraceBucketData(); TRACE_EVENT_API_ATOMIC_WORD* bucket; const char* bucket_name; TraceSampleCallback callback; }; // This object must be created on the IO thread. class TraceSamplingThread : public PlatformThread::Delegate { public: TraceSamplingThread(); ~TraceSamplingThread() override; // Implementation of PlatformThread::Delegate: void ThreadMain() override; static void DefaultSamplingCallback(TraceBucketData* bucekt_data); void Stop(); void WaitSamplingEventForTesting(); private: friend class TraceLog; void GetSamples(); // Not thread-safe. Once the ThreadMain has been called, this can no longer // be called. void RegisterSampleBucket(TRACE_EVENT_API_ATOMIC_WORD* bucket, const char* const name, TraceSampleCallback callback); // Splits a combined "category\0name" into the two component parts. static void ExtractCategoryAndName(const char* combined, const char** category, const char** name); std::vector sample_buckets_; bool thread_running_; CancellationFlag cancellation_flag_; WaitableEvent waitable_event_for_testing_; }; TraceSamplingThread::TraceSamplingThread() : thread_running_(false), waitable_event_for_testing_(false, false) { } TraceSamplingThread::~TraceSamplingThread() { } void TraceSamplingThread::ThreadMain() { PlatformThread::SetName("Sampling Thread"); thread_running_ = true; const int kSamplingFrequencyMicroseconds = 1000; while (!cancellation_flag_.IsSet()) { PlatformThread::Sleep( TimeDelta::FromMicroseconds(kSamplingFrequencyMicroseconds)); GetSamples(); waitable_event_for_testing_.Signal(); } } // static void TraceSamplingThread::DefaultSamplingCallback( TraceBucketData* bucket_data) { TRACE_EVENT_API_ATOMIC_WORD category_and_name = TRACE_EVENT_API_ATOMIC_LOAD(*bucket_data->bucket); if (!category_and_name) return; const char* const combined = reinterpret_cast(category_and_name); const char* category_group; const char* name; ExtractCategoryAndName(combined, &category_group, &name); TRACE_EVENT_API_ADD_TRACE_EVENT(TRACE_EVENT_PHASE_SAMPLE, TraceLog::GetCategoryGroupEnabled(category_group), name, 0, 0, NULL, NULL, NULL, NULL, 0); } void TraceSamplingThread::GetSamples() { for (size_t i = 0; i < sample_buckets_.size(); ++i) { TraceBucketData* bucket_data = &sample_buckets_[i]; bucket_data->callback.Run(bucket_data); } } void TraceSamplingThread::RegisterSampleBucket( TRACE_EVENT_API_ATOMIC_WORD* bucket, const char* const name, TraceSampleCallback callback) { // Access to sample_buckets_ doesn't cause races with the sampling thread // that uses the sample_buckets_, because it is guaranteed that // RegisterSampleBucket is called before the sampling thread is created. DCHECK(!thread_running_); sample_buckets_.push_back(TraceBucketData(bucket, name, callback)); } // static void TraceSamplingThread::ExtractCategoryAndName(const char* combined, const char** category, const char** name) { *category = combined; *name = &combined[strlen(combined) + 1]; } void TraceSamplingThread::Stop() { cancellation_flag_.Set(); } void TraceSamplingThread::WaitSamplingEventForTesting() { waitable_event_for_testing_.Wait(); } TraceBucketData::TraceBucketData(base::subtle::AtomicWord* bucket, const char* name, TraceSampleCallback callback) : bucket(bucket), bucket_name(name), callback(callback) { } TraceBucketData::~TraceBucketData() { } //////////////////////////////////////////////////////////////////////////////// // // TraceOptions // //////////////////////////////////////////////////////////////////////////////// bool TraceOptions::SetFromString(const std::string& options_string) { record_mode = RECORD_UNTIL_FULL; enable_sampling = false; enable_systrace = false; std::vector split; std::vector::iterator iter; base::SplitString(options_string, ',', &split); for (iter = split.begin(); iter != split.end(); ++iter) { if (*iter == kRecordUntilFull) { record_mode = RECORD_UNTIL_FULL; } else if (*iter == kRecordContinuously) { record_mode = RECORD_CONTINUOUSLY; } else if (*iter == kTraceToConsole) { record_mode = ECHO_TO_CONSOLE; } else if (*iter == kRecordAsMuchAsPossible) { record_mode = RECORD_AS_MUCH_AS_POSSIBLE; } else if (*iter == kEnableSampling) { enable_sampling = true; } else if (*iter == kEnableSystrace) { enable_systrace = true; } else { return false; } } return true; } std::string TraceOptions::ToString() const { std::string ret; switch (record_mode) { case RECORD_UNTIL_FULL: ret = kRecordUntilFull; break; case RECORD_CONTINUOUSLY: ret = kRecordContinuously; break; case ECHO_TO_CONSOLE: ret = kTraceToConsole; break; case RECORD_AS_MUCH_AS_POSSIBLE: ret = kRecordAsMuchAsPossible; break; default: NOTREACHED(); } if (enable_sampling) ret = ret + "," + kEnableSampling; if (enable_systrace) ret = ret + "," + kEnableSystrace; return ret; } //////////////////////////////////////////////////////////////////////////////// // // TraceLog // //////////////////////////////////////////////////////////////////////////////// class TraceLog::ThreadLocalEventBuffer : public MessageLoop::DestructionObserver { public: ThreadLocalEventBuffer(TraceLog* trace_log); ~ThreadLocalEventBuffer() override; TraceEvent* AddTraceEvent(TraceEventHandle* handle); void ReportOverhead(const TimeTicks& event_timestamp, const TimeTicks& event_thread_timestamp); TraceEvent* GetEventByHandle(TraceEventHandle handle) { if (!chunk_ || handle.chunk_seq != chunk_->seq() || handle.chunk_index != chunk_index_) return NULL; return chunk_->GetEventAt(handle.event_index); } int generation() const { return generation_; } private: // MessageLoop::DestructionObserver void WillDestroyCurrentMessageLoop() override; void FlushWhileLocked(); void CheckThisIsCurrentBuffer() const { DCHECK(trace_log_->thread_local_event_buffer_.Get() == this); } // Since TraceLog is a leaky singleton, trace_log_ will always be valid // as long as the thread exists. TraceLog* trace_log_; scoped_ptr chunk_; size_t chunk_index_; int event_count_; TimeDelta overhead_; int generation_; DISALLOW_COPY_AND_ASSIGN(ThreadLocalEventBuffer); }; TraceLog::ThreadLocalEventBuffer::ThreadLocalEventBuffer(TraceLog* trace_log) : trace_log_(trace_log), chunk_index_(0), event_count_(0), generation_(trace_log->generation()) { // ThreadLocalEventBuffer is created only if the thread has a message loop, so // the following message_loop won't be NULL. MessageLoop* message_loop = MessageLoop::current(); message_loop->AddDestructionObserver(this); AutoLock lock(trace_log->lock_); trace_log->thread_message_loops_.insert(message_loop); } TraceLog::ThreadLocalEventBuffer::~ThreadLocalEventBuffer() { CheckThisIsCurrentBuffer(); MessageLoop::current()->RemoveDestructionObserver(this); // Zero event_count_ happens in either of the following cases: // - no event generated for the thread; // - the thread has no message loop; // - trace_event_overhead is disabled. if (event_count_) { InitializeMetadataEvent(AddTraceEvent(NULL), static_cast(base::PlatformThread::CurrentId()), "overhead", "average_overhead", overhead_.InMillisecondsF() / event_count_); } { AutoLock lock(trace_log_->lock_); FlushWhileLocked(); trace_log_->thread_message_loops_.erase(MessageLoop::current()); } trace_log_->thread_local_event_buffer_.Set(NULL); } TraceEvent* TraceLog::ThreadLocalEventBuffer::AddTraceEvent( TraceEventHandle* handle) { CheckThisIsCurrentBuffer(); if (chunk_ && chunk_->IsFull()) { AutoLock lock(trace_log_->lock_); FlushWhileLocked(); chunk_.reset(); } if (!chunk_) { AutoLock lock(trace_log_->lock_); chunk_ = trace_log_->logged_events_->GetChunk(&chunk_index_); trace_log_->CheckIfBufferIsFullWhileLocked(); } if (!chunk_) return NULL; size_t event_index; TraceEvent* trace_event = chunk_->AddTraceEvent(&event_index); if (trace_event && handle) MakeHandle(chunk_->seq(), chunk_index_, event_index, handle); return trace_event; } void TraceLog::ThreadLocalEventBuffer::ReportOverhead( const TimeTicks& event_timestamp, const TimeTicks& event_thread_timestamp) { if (!g_category_group_enabled[g_category_trace_event_overhead]) return; CheckThisIsCurrentBuffer(); event_count_++; TimeTicks thread_now = ThreadNow(); TimeTicks now = trace_log_->OffsetNow(); TimeDelta overhead = now - event_timestamp; if (overhead.InMicroseconds() >= kOverheadReportThresholdInMicroseconds) { TraceEvent* trace_event = AddTraceEvent(NULL); if (trace_event) { trace_event->Initialize( static_cast(PlatformThread::CurrentId()), event_timestamp, event_thread_timestamp, TRACE_EVENT_PHASE_COMPLETE, &g_category_group_enabled[g_category_trace_event_overhead], "overhead", 0, 0, NULL, NULL, NULL, NULL, 0); trace_event->UpdateDuration(now, thread_now); } } overhead_ += overhead; } void TraceLog::ThreadLocalEventBuffer::WillDestroyCurrentMessageLoop() { delete this; } void TraceLog::ThreadLocalEventBuffer::FlushWhileLocked() { if (!chunk_) return; trace_log_->lock_.AssertAcquired(); if (trace_log_->CheckGeneration(generation_)) { // Return the chunk to the buffer only if the generation matches. trace_log_->logged_events_->ReturnChunk(chunk_index_, chunk_.Pass()); } // Otherwise this method may be called from the destructor, or TraceLog will // find the generation mismatch and delete this buffer soon. } TraceLogStatus::TraceLogStatus() : event_capacity(0), event_count(0) { } TraceLogStatus::~TraceLogStatus() { } // static TraceLog* TraceLog::GetInstance() { return Singleton >::get(); } TraceLog::TraceLog() : mode_(DISABLED), num_traces_recorded_(0), event_callback_(0), dispatching_to_observer_list_(false), process_sort_index_(0), process_id_hash_(0), process_id_(0), watch_category_(0), trace_options_(kInternalRecordUntilFull), sampling_thread_handle_(0), category_filter_(CategoryFilter::kDefaultCategoryFilterString), event_callback_category_filter_( CategoryFilter::kDefaultCategoryFilterString), thread_shared_chunk_index_(0), generation_(0) { // Trace is enabled or disabled on one thread while other threads are // accessing the enabled flag. We don't care whether edge-case events are // traced or not, so we allow races on the enabled flag to keep the trace // macros fast. // TODO(jbates): ANNOTATE_BENIGN_RACE_SIZED crashes windows TSAN bots: // ANNOTATE_BENIGN_RACE_SIZED(g_category_group_enabled, // sizeof(g_category_group_enabled), // "trace_event category enabled"); for (int i = 0; i < MAX_CATEGORY_GROUPS; ++i) { ANNOTATE_BENIGN_RACE(&g_category_group_enabled[i], "trace_event category enabled"); } #if defined(OS_NACL) // NaCl shouldn't expose the process id. SetProcessID(0); #else SetProcessID(static_cast(GetCurrentProcId())); // NaCl also shouldn't access the command line. if (CommandLine::InitializedForCurrentProcess() && CommandLine::ForCurrentProcess()->HasSwitch(switches::kTraceToConsole)) { std::string filter = CommandLine::ForCurrentProcess()->GetSwitchValueASCII( switches::kTraceToConsole); if (filter.empty()) { filter = kEchoToConsoleCategoryFilter; } else { filter.append(","); filter.append(kEchoToConsoleCategoryFilter); } LOG(ERROR) << "Start " << switches::kTraceToConsole << " with CategoryFilter '" << filter << "'."; SetEnabled(CategoryFilter(filter), RECORDING_MODE, TraceOptions(ECHO_TO_CONSOLE)); } #endif logged_events_.reset(CreateTraceBuffer()); } TraceLog::~TraceLog() { } const unsigned char* TraceLog::GetCategoryGroupEnabled( const char* category_group) { TraceLog* tracelog = GetInstance(); if (!tracelog) { DCHECK(!g_category_group_enabled[g_category_already_shutdown]); return &g_category_group_enabled[g_category_already_shutdown]; } return tracelog->GetCategoryGroupEnabledInternal(category_group); } const char* TraceLog::GetCategoryGroupName( const unsigned char* category_group_enabled) { // Calculate the index of the category group by finding // category_group_enabled in g_category_group_enabled array. uintptr_t category_begin = reinterpret_cast(g_category_group_enabled); uintptr_t category_ptr = reinterpret_cast(category_group_enabled); DCHECK(category_ptr >= category_begin && category_ptr < reinterpret_cast( g_category_group_enabled + MAX_CATEGORY_GROUPS)) << "out of bounds category pointer"; uintptr_t category_index = (category_ptr - category_begin) / sizeof(g_category_group_enabled[0]); return g_category_groups[category_index]; } void TraceLog::UpdateCategoryGroupEnabledFlag(size_t category_index) { unsigned char enabled_flag = 0; const char* category_group = g_category_groups[category_index]; if (mode_ == RECORDING_MODE && category_filter_.IsCategoryGroupEnabled(category_group)) enabled_flag |= ENABLED_FOR_RECORDING; else if (mode_ == MONITORING_MODE && category_filter_.IsCategoryGroupEnabled(category_group)) enabled_flag |= ENABLED_FOR_MONITORING; if (event_callback_ && event_callback_category_filter_.IsCategoryGroupEnabled(category_group)) enabled_flag |= ENABLED_FOR_EVENT_CALLBACK; g_category_group_enabled[category_index] = enabled_flag; } void TraceLog::UpdateCategoryGroupEnabledFlags() { size_t category_index = base::subtle::NoBarrier_Load(&g_category_index); for (size_t i = 0; i < category_index; i++) UpdateCategoryGroupEnabledFlag(i); } void TraceLog::UpdateSyntheticDelaysFromCategoryFilter() { ResetTraceEventSyntheticDelays(); const CategoryFilter::StringList& delays = category_filter_.GetSyntheticDelayValues(); CategoryFilter::StringList::const_iterator ci; for (ci = delays.begin(); ci != delays.end(); ++ci) { StringTokenizer tokens(*ci, ";"); if (!tokens.GetNext()) continue; TraceEventSyntheticDelay* delay = TraceEventSyntheticDelay::Lookup(tokens.token()); while (tokens.GetNext()) { std::string token = tokens.token(); char* duration_end; double target_duration = strtod(token.c_str(), &duration_end); if (duration_end != token.c_str()) { delay->SetTargetDuration(TimeDelta::FromMicroseconds( static_cast(target_duration * 1e6))); } else if (token == "static") { delay->SetMode(TraceEventSyntheticDelay::STATIC); } else if (token == "oneshot") { delay->SetMode(TraceEventSyntheticDelay::ONE_SHOT); } else if (token == "alternating") { delay->SetMode(TraceEventSyntheticDelay::ALTERNATING); } } } } const unsigned char* TraceLog::GetCategoryGroupEnabledInternal( const char* category_group) { DCHECK(!strchr(category_group, '"')) << "Category groups may not contain double quote"; // The g_category_groups is append only, avoid using a lock for the fast path. size_t current_category_index = base::subtle::Acquire_Load(&g_category_index); // Search for pre-existing category group. for (size_t i = 0; i < current_category_index; ++i) { if (strcmp(g_category_groups[i], category_group) == 0) { return &g_category_group_enabled[i]; } } unsigned char* category_group_enabled = NULL; // This is the slow path: the lock is not held in the case above, so more // than one thread could have reached here trying to add the same category. // Only hold to lock when actually appending a new category, and // check the categories groups again. AutoLock lock(lock_); size_t category_index = base::subtle::Acquire_Load(&g_category_index); for (size_t i = 0; i < category_index; ++i) { if (strcmp(g_category_groups[i], category_group) == 0) { return &g_category_group_enabled[i]; } } // Create a new category group. DCHECK(category_index < MAX_CATEGORY_GROUPS) << "must increase MAX_CATEGORY_GROUPS"; if (category_index < MAX_CATEGORY_GROUPS) { // Don't hold on to the category_group pointer, so that we can create // category groups with strings not known at compile time (this is // required by SetWatchEvent). const char* new_group = strdup(category_group); ANNOTATE_LEAKING_OBJECT_PTR(new_group); g_category_groups[category_index] = new_group; DCHECK(!g_category_group_enabled[category_index]); // Note that if both included and excluded patterns in the // CategoryFilter are empty, we exclude nothing, // thereby enabling this category group. UpdateCategoryGroupEnabledFlag(category_index); category_group_enabled = &g_category_group_enabled[category_index]; // Update the max index now. base::subtle::Release_Store(&g_category_index, category_index + 1); } else { category_group_enabled = &g_category_group_enabled[g_category_categories_exhausted]; } return category_group_enabled; } void TraceLog::GetKnownCategoryGroups( std::vector* category_groups) { AutoLock lock(lock_); category_groups->push_back( g_category_groups[g_category_trace_event_overhead]); size_t category_index = base::subtle::NoBarrier_Load(&g_category_index); for (size_t i = g_num_builtin_categories; i < category_index; i++) category_groups->push_back(g_category_groups[i]); } void TraceLog::SetEnabled(const CategoryFilter& category_filter, Mode mode, const TraceOptions& options) { std::vector observer_list; { AutoLock lock(lock_); // Can't enable tracing when Flush() is in progress. DCHECK(!flush_message_loop_proxy_.get()); InternalTraceOptions new_options = GetInternalOptionsFromTraceOptions(options); InternalTraceOptions old_options = trace_options(); if (IsEnabled()) { if (new_options != old_options) { DLOG(ERROR) << "Attempting to re-enable tracing with a different " << "set of options."; } if (mode != mode_) { DLOG(ERROR) << "Attempting to re-enable tracing with a different mode."; } category_filter_.Merge(category_filter); UpdateCategoryGroupEnabledFlags(); return; } if (dispatching_to_observer_list_) { DLOG(ERROR) << "Cannot manipulate TraceLog::Enabled state from an observer."; return; } mode_ = mode; if (new_options != old_options) { subtle::NoBarrier_Store(&trace_options_, new_options); UseNextTraceBuffer(); } num_traces_recorded_++; category_filter_ = CategoryFilter(category_filter); UpdateCategoryGroupEnabledFlags(); UpdateSyntheticDelaysFromCategoryFilter(); if (new_options & kInternalEnableSampling) { sampling_thread_.reset(new TraceSamplingThread); sampling_thread_->RegisterSampleBucket( &g_trace_state[0], "bucket0", Bind(&TraceSamplingThread::DefaultSamplingCallback)); sampling_thread_->RegisterSampleBucket( &g_trace_state[1], "bucket1", Bind(&TraceSamplingThread::DefaultSamplingCallback)); sampling_thread_->RegisterSampleBucket( &g_trace_state[2], "bucket2", Bind(&TraceSamplingThread::DefaultSamplingCallback)); if (!PlatformThread::Create( 0, sampling_thread_.get(), &sampling_thread_handle_)) { DCHECK(false) << "failed to create thread"; } } dispatching_to_observer_list_ = true; observer_list = enabled_state_observer_list_; } // Notify observers outside the lock in case they trigger trace events. for (size_t i = 0; i < observer_list.size(); ++i) observer_list[i]->OnTraceLogEnabled(); { AutoLock lock(lock_); dispatching_to_observer_list_ = false; } } TraceLog::InternalTraceOptions TraceLog::GetInternalOptionsFromTraceOptions( const TraceOptions& options) { InternalTraceOptions ret = options.enable_sampling ? kInternalEnableSampling : kInternalNone; switch (options.record_mode) { case RECORD_UNTIL_FULL: return ret | kInternalRecordUntilFull; case RECORD_CONTINUOUSLY: return ret | kInternalRecordContinuously; case ECHO_TO_CONSOLE: return ret | kInternalEchoToConsole; case RECORD_AS_MUCH_AS_POSSIBLE: return ret | kInternalRecordAsMuchAsPossible; } NOTREACHED(); return kInternalNone; } CategoryFilter TraceLog::GetCurrentCategoryFilter() { AutoLock lock(lock_); return category_filter_; } TraceOptions TraceLog::GetCurrentTraceOptions() const { TraceOptions ret; InternalTraceOptions option = trace_options(); ret.enable_sampling = (option & kInternalEnableSampling) != 0; if (option & kInternalRecordUntilFull) ret.record_mode = RECORD_UNTIL_FULL; else if (option & kInternalRecordContinuously) ret.record_mode = RECORD_CONTINUOUSLY; else if (option & kInternalEchoToConsole) ret.record_mode = ECHO_TO_CONSOLE; else if (option & kInternalRecordAsMuchAsPossible) ret.record_mode = RECORD_AS_MUCH_AS_POSSIBLE; else NOTREACHED(); return ret; } void TraceLog::SetDisabled() { AutoLock lock(lock_); SetDisabledWhileLocked(); } void TraceLog::SetDisabledWhileLocked() { lock_.AssertAcquired(); if (!IsEnabled()) return; if (dispatching_to_observer_list_) { DLOG(ERROR) << "Cannot manipulate TraceLog::Enabled state from an observer."; return; } mode_ = DISABLED; if (sampling_thread_.get()) { // Stop the sampling thread. sampling_thread_->Stop(); lock_.Release(); PlatformThread::Join(sampling_thread_handle_); lock_.Acquire(); sampling_thread_handle_ = PlatformThreadHandle(); sampling_thread_.reset(); } category_filter_.Clear(); subtle::NoBarrier_Store(&watch_category_, 0); watch_event_name_ = ""; UpdateCategoryGroupEnabledFlags(); AddMetadataEventsWhileLocked(); dispatching_to_observer_list_ = true; std::vector observer_list = enabled_state_observer_list_; { // Dispatch to observers outside the lock in case the observer triggers a // trace event. AutoUnlock unlock(lock_); for (size_t i = 0; i < observer_list.size(); ++i) observer_list[i]->OnTraceLogDisabled(); } dispatching_to_observer_list_ = false; } int TraceLog::GetNumTracesRecorded() { AutoLock lock(lock_); if (!IsEnabled()) return -1; return num_traces_recorded_; } void TraceLog::AddEnabledStateObserver(EnabledStateObserver* listener) { enabled_state_observer_list_.push_back(listener); } void TraceLog::RemoveEnabledStateObserver(EnabledStateObserver* listener) { std::vector::iterator it = std::find(enabled_state_observer_list_.begin(), enabled_state_observer_list_.end(), listener); if (it != enabled_state_observer_list_.end()) enabled_state_observer_list_.erase(it); } bool TraceLog::HasEnabledStateObserver(EnabledStateObserver* listener) const { std::vector::const_iterator it = std::find(enabled_state_observer_list_.begin(), enabled_state_observer_list_.end(), listener); return it != enabled_state_observer_list_.end(); } TraceLogStatus TraceLog::GetStatus() const { AutoLock lock(lock_); TraceLogStatus result; result.event_capacity = logged_events_->Capacity(); result.event_count = logged_events_->Size(); return result; } bool TraceLog::BufferIsFull() const { AutoLock lock(lock_); return logged_events_->IsFull(); } TraceBuffer* TraceLog::CreateTraceBuffer() { InternalTraceOptions options = trace_options(); if (options & kInternalRecordContinuously) return new TraceBufferRingBuffer(kTraceEventRingBufferChunks); else if ((options & kInternalEnableSampling) && mode_ == MONITORING_MODE) return new TraceBufferRingBuffer(kMonitorTraceEventBufferChunks); else if (options & kInternalEchoToConsole) return new TraceBufferRingBuffer(kEchoToConsoleTraceEventBufferChunks); else if (options & kInternalRecordAsMuchAsPossible) return CreateTraceBufferVectorOfSize(kTraceEventVectorBigBufferChunks); return CreateTraceBufferVectorOfSize(kTraceEventVectorBufferChunks); } TraceBuffer* TraceLog::CreateTraceBufferVectorOfSize(size_t max_chunks) { return new TraceBufferVector(max_chunks); } TraceEvent* TraceLog::AddEventToThreadSharedChunkWhileLocked( TraceEventHandle* handle, bool check_buffer_is_full) { lock_.AssertAcquired(); if (thread_shared_chunk_ && thread_shared_chunk_->IsFull()) { logged_events_->ReturnChunk(thread_shared_chunk_index_, thread_shared_chunk_.Pass()); } if (!thread_shared_chunk_) { thread_shared_chunk_ = logged_events_->GetChunk( &thread_shared_chunk_index_); if (check_buffer_is_full) CheckIfBufferIsFullWhileLocked(); } if (!thread_shared_chunk_) return NULL; size_t event_index; TraceEvent* trace_event = thread_shared_chunk_->AddTraceEvent(&event_index); if (trace_event && handle) { MakeHandle(thread_shared_chunk_->seq(), thread_shared_chunk_index_, event_index, handle); } return trace_event; } void TraceLog::CheckIfBufferIsFullWhileLocked() { lock_.AssertAcquired(); if (logged_events_->IsFull()) { if (buffer_limit_reached_timestamp_.is_null()) { buffer_limit_reached_timestamp_ = OffsetNow(); } SetDisabledWhileLocked(); } } void TraceLog::SetEventCallbackEnabled(const CategoryFilter& category_filter, EventCallback cb) { AutoLock lock(lock_); subtle::NoBarrier_Store(&event_callback_, reinterpret_cast(cb)); event_callback_category_filter_ = category_filter; UpdateCategoryGroupEnabledFlags(); }; void TraceLog::SetEventCallbackDisabled() { AutoLock lock(lock_); subtle::NoBarrier_Store(&event_callback_, 0); UpdateCategoryGroupEnabledFlags(); } // Flush() works as the following: // 1. Flush() is called in threadA whose message loop is saved in // flush_message_loop_proxy_; // 2. If thread_message_loops_ is not empty, threadA posts task to each message // loop to flush the thread local buffers; otherwise finish the flush; // 3. FlushCurrentThread() deletes the thread local event buffer: // - The last batch of events of the thread are flushed into the main buffer; // - The message loop will be removed from thread_message_loops_; // If this is the last message loop, finish the flush; // 4. If any thread hasn't finish its flush in time, finish the flush. void TraceLog::Flush(const TraceLog::OutputCallback& cb) { if (IsEnabled()) { // Can't flush when tracing is enabled because otherwise PostTask would // - generate more trace events; // - deschedule the calling thread on some platforms causing inaccurate // timing of the trace events. scoped_refptr empty_result = new RefCountedString; if (!cb.is_null()) cb.Run(empty_result, false); LOG(WARNING) << "Ignored TraceLog::Flush called when tracing is enabled"; return; } int generation = this->generation(); // Copy of thread_message_loops_ to be used without locking. std::vector > thread_message_loop_task_runners; { AutoLock lock(lock_); DCHECK(!flush_message_loop_proxy_.get()); flush_message_loop_proxy_ = MessageLoopProxy::current(); DCHECK(!thread_message_loops_.size() || flush_message_loop_proxy_.get()); flush_output_callback_ = cb; if (thread_shared_chunk_) { logged_events_->ReturnChunk(thread_shared_chunk_index_, thread_shared_chunk_.Pass()); } if (thread_message_loops_.size()) { for (hash_set::const_iterator it = thread_message_loops_.begin(); it != thread_message_loops_.end(); ++it) { thread_message_loop_task_runners.push_back((*it)->task_runner()); } } } if (thread_message_loop_task_runners.size()) { for (size_t i = 0; i < thread_message_loop_task_runners.size(); ++i) { thread_message_loop_task_runners[i]->PostTask( FROM_HERE, Bind(&TraceLog::FlushCurrentThread, Unretained(this), generation)); } flush_message_loop_proxy_->PostDelayedTask( FROM_HERE, Bind(&TraceLog::OnFlushTimeout, Unretained(this), generation), TimeDelta::FromMilliseconds(kThreadFlushTimeoutMs)); return; } FinishFlush(generation); } void TraceLog::ConvertTraceEventsToTraceFormat( scoped_ptr logged_events, const TraceLog::OutputCallback& flush_output_callback) { if (flush_output_callback.is_null()) return; // The callback need to be called at least once even if there is no events // to let the caller know the completion of flush. bool has_more_events = true; do { scoped_refptr json_events_str_ptr = new RefCountedString(); for (size_t i = 0; i < kTraceEventBatchChunks; ++i) { const TraceBufferChunk* chunk = logged_events->NextChunk(); if (!chunk) { has_more_events = false; break; } for (size_t j = 0; j < chunk->size(); ++j) { if (i > 0 || j > 0) json_events_str_ptr->data().append(",\n"); chunk->GetEventAt(j)->AppendAsJSON(&(json_events_str_ptr->data())); } } flush_output_callback.Run(json_events_str_ptr, has_more_events); } while (has_more_events); } void TraceLog::FinishFlush(int generation) { scoped_ptr previous_logged_events; OutputCallback flush_output_callback; if (!CheckGeneration(generation)) return; { AutoLock lock(lock_); previous_logged_events.swap(logged_events_); UseNextTraceBuffer(); thread_message_loops_.clear(); flush_message_loop_proxy_ = NULL; flush_output_callback = flush_output_callback_; flush_output_callback_.Reset(); } ConvertTraceEventsToTraceFormat(previous_logged_events.Pass(), flush_output_callback); } // Run in each thread holding a local event buffer. void TraceLog::FlushCurrentThread(int generation) { { AutoLock lock(lock_); if (!CheckGeneration(generation) || !flush_message_loop_proxy_.get()) { // This is late. The corresponding flush has finished. return; } } // This will flush the thread local buffer. delete thread_local_event_buffer_.Get(); AutoLock lock(lock_); if (!CheckGeneration(generation) || !flush_message_loop_proxy_.get() || thread_message_loops_.size()) return; flush_message_loop_proxy_->PostTask( FROM_HERE, Bind(&TraceLog::FinishFlush, Unretained(this), generation)); } void TraceLog::OnFlushTimeout(int generation) { { AutoLock lock(lock_); if (!CheckGeneration(generation) || !flush_message_loop_proxy_.get()) { // Flush has finished before timeout. return; } LOG(WARNING) << "The following threads haven't finished flush in time. " "If this happens stably for some thread, please call " "TraceLog::GetInstance()->SetCurrentThreadBlocksMessageLoop() from " "the thread to avoid its trace events from being lost."; for (hash_set::const_iterator it = thread_message_loops_.begin(); it != thread_message_loops_.end(); ++it) { LOG(WARNING) << "Thread: " << (*it)->thread_name(); } } FinishFlush(generation); } void TraceLog::FlushButLeaveBufferIntact( const TraceLog::OutputCallback& flush_output_callback) { scoped_ptr previous_logged_events; { AutoLock lock(lock_); AddMetadataEventsWhileLocked(); if (thread_shared_chunk_) { // Return the chunk to the main buffer to flush the sampling data. logged_events_->ReturnChunk(thread_shared_chunk_index_, thread_shared_chunk_.Pass()); } previous_logged_events = logged_events_->CloneForIteration().Pass(); } // release lock ConvertTraceEventsToTraceFormat(previous_logged_events.Pass(), flush_output_callback); } void TraceLog::UseNextTraceBuffer() { logged_events_.reset(CreateTraceBuffer()); subtle::NoBarrier_AtomicIncrement(&generation_, 1); thread_shared_chunk_.reset(); thread_shared_chunk_index_ = 0; } TraceEventHandle TraceLog::AddTraceEvent( char phase, const unsigned char* category_group_enabled, const char* name, unsigned long long id, int num_args, const char** arg_names, const unsigned char* arg_types, const unsigned long long* arg_values, const scoped_refptr* convertable_values, unsigned char flags) { int thread_id = static_cast(base::PlatformThread::CurrentId()); base::TimeTicks now = base::TimeTicks::NowFromSystemTraceTime(); return AddTraceEventWithThreadIdAndTimestamp(phase, category_group_enabled, name, id, thread_id, now, num_args, arg_names, arg_types, arg_values, convertable_values, flags); } TraceEventHandle TraceLog::AddTraceEventWithThreadIdAndTimestamp( char phase, const unsigned char* category_group_enabled, const char* name, unsigned long long id, int thread_id, const TimeTicks& timestamp, int num_args, const char** arg_names, const unsigned char* arg_types, const unsigned long long* arg_values, const scoped_refptr* convertable_values, unsigned char flags) { TraceEventHandle handle = { 0, 0, 0 }; if (!*category_group_enabled) return handle; // Avoid re-entrance of AddTraceEvent. This may happen in GPU process when // ECHO_TO_CONSOLE is enabled: AddTraceEvent -> LOG(ERROR) -> // GpuProcessLogMessageHandler -> PostPendingTask -> TRACE_EVENT ... if (thread_is_in_trace_event_.Get()) return handle; AutoThreadLocalBoolean thread_is_in_trace_event(&thread_is_in_trace_event_); DCHECK(name); DCHECK(!timestamp.is_null()); if (flags & TRACE_EVENT_FLAG_MANGLE_ID) id ^= process_id_hash_; TimeTicks offset_event_timestamp = OffsetTimestamp(timestamp); TimeTicks now = OffsetNow(); TimeTicks thread_now = ThreadNow(); ThreadLocalEventBuffer* thread_local_event_buffer = NULL; // A ThreadLocalEventBuffer needs the message loop // - to know when the thread exits; // - to handle the final flush. // For a thread without a message loop or the message loop may be blocked, the // trace events will be added into the main buffer directly. if (!thread_blocks_message_loop_.Get() && MessageLoop::current()) { thread_local_event_buffer = thread_local_event_buffer_.Get(); if (thread_local_event_buffer && !CheckGeneration(thread_local_event_buffer->generation())) { delete thread_local_event_buffer; thread_local_event_buffer = NULL; } if (!thread_local_event_buffer) { thread_local_event_buffer = new ThreadLocalEventBuffer(this); thread_local_event_buffer_.Set(thread_local_event_buffer); } } // Check and update the current thread name only if the event is for the // current thread to avoid locks in most cases. if (thread_id == static_cast(PlatformThread::CurrentId())) { const char* new_name = ThreadIdNameManager::GetInstance()-> GetName(thread_id); // Check if the thread name has been set or changed since the previous // call (if any), but don't bother if the new name is empty. Note this will // not detect a thread name change within the same char* buffer address: we // favor common case performance over corner case correctness. if (new_name != g_current_thread_name.Get().Get() && new_name && *new_name) { g_current_thread_name.Get().Set(new_name); AutoLock thread_info_lock(thread_info_lock_); hash_map::iterator existing_name = thread_names_.find(thread_id); if (existing_name == thread_names_.end()) { // This is a new thread id, and a new name. thread_names_[thread_id] = new_name; } else { // This is a thread id that we've seen before, but potentially with a // new name. std::vector existing_names; Tokenize(existing_name->second, ",", &existing_names); bool found = std::find(existing_names.begin(), existing_names.end(), new_name) != existing_names.end(); if (!found) { if (existing_names.size()) existing_name->second.push_back(','); existing_name->second.append(new_name); } } } } std::string console_message; if (*category_group_enabled & (ENABLED_FOR_RECORDING | ENABLED_FOR_MONITORING)) { OptionalAutoLock lock(lock_); TraceEvent* trace_event = NULL; if (thread_local_event_buffer) { trace_event = thread_local_event_buffer->AddTraceEvent(&handle); } else { lock.EnsureAcquired(); trace_event = AddEventToThreadSharedChunkWhileLocked(&handle, true); } if (trace_event) { trace_event->Initialize(thread_id, offset_event_timestamp, thread_now, phase, category_group_enabled, name, id, num_args, arg_names, arg_types, arg_values, convertable_values, flags); #if defined(OS_ANDROID) trace_event->SendToATrace(); #endif } if (trace_options() & kInternalEchoToConsole) { console_message = EventToConsoleMessage( phase == TRACE_EVENT_PHASE_COMPLETE ? TRACE_EVENT_PHASE_BEGIN : phase, timestamp, trace_event); } } if (console_message.size()) LOG(ERROR) << console_message; if (reinterpret_cast(subtle::NoBarrier_Load( &watch_category_)) == category_group_enabled) { bool event_name_matches; WatchEventCallback watch_event_callback_copy; { AutoLock lock(lock_); event_name_matches = watch_event_name_ == name; watch_event_callback_copy = watch_event_callback_; } if (event_name_matches) { if (!watch_event_callback_copy.is_null()) watch_event_callback_copy.Run(); } } if (*category_group_enabled & ENABLED_FOR_EVENT_CALLBACK) { EventCallback event_callback = reinterpret_cast( subtle::NoBarrier_Load(&event_callback_)); if (event_callback) { event_callback(offset_event_timestamp, phase == TRACE_EVENT_PHASE_COMPLETE ? TRACE_EVENT_PHASE_BEGIN : phase, category_group_enabled, name, id, num_args, arg_names, arg_types, arg_values, flags); } } // Use |now| instead of |offset_event_timestamp| to compute overhead, because // event timestamp may be not the real time that we started to add the event // (e.g. event with zero timestamp or that was generated some time ago). if (thread_local_event_buffer) thread_local_event_buffer->ReportOverhead(now, thread_now); return handle; } // May be called when a COMPELETE event ends and the unfinished event has been // recycled (phase == TRACE_EVENT_PHASE_END and trace_event == NULL). std::string TraceLog::EventToConsoleMessage(unsigned char phase, const TimeTicks& timestamp, TraceEvent* trace_event) { AutoLock thread_info_lock(thread_info_lock_); // The caller should translate TRACE_EVENT_PHASE_COMPLETE to // TRACE_EVENT_PHASE_BEGIN or TRACE_EVENT_END. DCHECK(phase != TRACE_EVENT_PHASE_COMPLETE); TimeDelta duration; int thread_id = trace_event ? trace_event->thread_id() : PlatformThread::CurrentId(); if (phase == TRACE_EVENT_PHASE_END) { duration = timestamp - thread_event_start_times_[thread_id].top(); thread_event_start_times_[thread_id].pop(); } std::string thread_name = thread_names_[thread_id]; if (thread_colors_.find(thread_name) == thread_colors_.end()) thread_colors_[thread_name] = (thread_colors_.size() % 6) + 1; std::ostringstream log; log << base::StringPrintf("%s: \x1b[0;3%dm", thread_name.c_str(), thread_colors_[thread_name]); size_t depth = 0; if (thread_event_start_times_.find(thread_id) != thread_event_start_times_.end()) depth = thread_event_start_times_[thread_id].size(); for (size_t i = 0; i < depth; ++i) log << "| "; if (trace_event) trace_event->AppendPrettyPrinted(&log); if (phase == TRACE_EVENT_PHASE_END) log << base::StringPrintf(" (%.3f ms)", duration.InMillisecondsF()); log << "\x1b[0;m"; if (phase == TRACE_EVENT_PHASE_BEGIN) thread_event_start_times_[thread_id].push(timestamp); return log.str(); } void TraceLog::AddTraceEventEtw(char phase, const char* name, const void* id, const char* extra) { #if defined(OS_WIN) TraceEventETWProvider::Trace(name, phase, id, extra); #endif INTERNAL_TRACE_EVENT_ADD(phase, "ETW Trace Event", name, TRACE_EVENT_FLAG_COPY, "id", id, "extra", extra); } void TraceLog::AddTraceEventEtw(char phase, const char* name, const void* id, const std::string& extra) { #if defined(OS_WIN) TraceEventETWProvider::Trace(name, phase, id, extra); #endif INTERNAL_TRACE_EVENT_ADD(phase, "ETW Trace Event", name, TRACE_EVENT_FLAG_COPY, "id", id, "extra", extra); } void TraceLog::UpdateTraceEventDuration( const unsigned char* category_group_enabled, const char* name, TraceEventHandle handle) { // Avoid re-entrance of AddTraceEvent. This may happen in GPU process when // ECHO_TO_CONSOLE is enabled: AddTraceEvent -> LOG(ERROR) -> // GpuProcessLogMessageHandler -> PostPendingTask -> TRACE_EVENT ... if (thread_is_in_trace_event_.Get()) return; AutoThreadLocalBoolean thread_is_in_trace_event(&thread_is_in_trace_event_); TimeTicks thread_now = ThreadNow(); TimeTicks now = OffsetNow(); std::string console_message; if (*category_group_enabled & ENABLED_FOR_RECORDING) { OptionalAutoLock lock(lock_); TraceEvent* trace_event = GetEventByHandleInternal(handle, &lock); if (trace_event) { DCHECK(trace_event->phase() == TRACE_EVENT_PHASE_COMPLETE); trace_event->UpdateDuration(now, thread_now); #if defined(OS_ANDROID) trace_event->SendToATrace(); #endif } if (trace_options() & kInternalEchoToConsole) { console_message = EventToConsoleMessage(TRACE_EVENT_PHASE_END, now, trace_event); } } if (console_message.size()) LOG(ERROR) << console_message; if (*category_group_enabled & ENABLED_FOR_EVENT_CALLBACK) { EventCallback event_callback = reinterpret_cast( subtle::NoBarrier_Load(&event_callback_)); if (event_callback) { event_callback(now, TRACE_EVENT_PHASE_END, category_group_enabled, name, trace_event_internal::kNoEventId, 0, NULL, NULL, NULL, TRACE_EVENT_FLAG_NONE); } } } void TraceLog::SetWatchEvent(const std::string& category_name, const std::string& event_name, const WatchEventCallback& callback) { const unsigned char* category = GetCategoryGroupEnabled( category_name.c_str()); AutoLock lock(lock_); subtle::NoBarrier_Store(&watch_category_, reinterpret_cast(category)); watch_event_name_ = event_name; watch_event_callback_ = callback; } void TraceLog::CancelWatchEvent() { AutoLock lock(lock_); subtle::NoBarrier_Store(&watch_category_, 0); watch_event_name_ = ""; watch_event_callback_.Reset(); } void TraceLog::AddMetadataEventsWhileLocked() { lock_.AssertAcquired(); #if !defined(OS_NACL) // NaCl shouldn't expose the process id. InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false), 0, "num_cpus", "number", base::SysInfo::NumberOfProcessors()); #endif int current_thread_id = static_cast(base::PlatformThread::CurrentId()); if (process_sort_index_ != 0) { InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false), current_thread_id, "process_sort_index", "sort_index", process_sort_index_); } if (process_name_.size()) { InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false), current_thread_id, "process_name", "name", process_name_); } if (process_labels_.size() > 0) { std::vector labels; for(base::hash_map::iterator it = process_labels_.begin(); it != process_labels_.end(); it++) { labels.push_back(it->second); } InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false), current_thread_id, "process_labels", "labels", JoinString(labels, ',')); } // Thread sort indices. for(hash_map::iterator it = thread_sort_indices_.begin(); it != thread_sort_indices_.end(); it++) { if (it->second == 0) continue; InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false), it->first, "thread_sort_index", "sort_index", it->second); } // Thread names. AutoLock thread_info_lock(thread_info_lock_); for(hash_map::iterator it = thread_names_.begin(); it != thread_names_.end(); it++) { if (it->second.empty()) continue; InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false), it->first, "thread_name", "name", it->second); } // If buffer is full, add a metadata record to report this. if (!buffer_limit_reached_timestamp_.is_null()) { InitializeMetadataEvent(AddEventToThreadSharedChunkWhileLocked(NULL, false), current_thread_id, "trace_buffer_overflowed", "overflowed_at_ts", buffer_limit_reached_timestamp_); } } void TraceLog::WaitSamplingEventForTesting() { if (!sampling_thread_) return; sampling_thread_->WaitSamplingEventForTesting(); } void TraceLog::DeleteForTesting() { DeleteTraceLogForTesting::Delete(); } TraceEvent* TraceLog::GetEventByHandle(TraceEventHandle handle) { return GetEventByHandleInternal(handle, NULL); } TraceEvent* TraceLog::GetEventByHandleInternal(TraceEventHandle handle, OptionalAutoLock* lock) { if (!handle.chunk_seq) return NULL; if (thread_local_event_buffer_.Get()) { TraceEvent* trace_event = thread_local_event_buffer_.Get()->GetEventByHandle(handle); if (trace_event) return trace_event; } // The event has been out-of-control of the thread local buffer. // Try to get the event from the main buffer with a lock. if (lock) lock->EnsureAcquired(); if (thread_shared_chunk_ && handle.chunk_index == thread_shared_chunk_index_) { return handle.chunk_seq == thread_shared_chunk_->seq() ? thread_shared_chunk_->GetEventAt(handle.event_index) : NULL; } return logged_events_->GetEventByHandle(handle); } void TraceLog::SetProcessID(int process_id) { process_id_ = process_id; // Create a FNV hash from the process ID for XORing. // See http://isthe.com/chongo/tech/comp/fnv/ for algorithm details. unsigned long long offset_basis = 14695981039346656037ull; unsigned long long fnv_prime = 1099511628211ull; unsigned long long pid = static_cast(process_id_); process_id_hash_ = (offset_basis ^ pid) * fnv_prime; } void TraceLog::SetProcessSortIndex(int sort_index) { AutoLock lock(lock_); process_sort_index_ = sort_index; } void TraceLog::SetProcessName(const std::string& process_name) { AutoLock lock(lock_); process_name_ = process_name; } void TraceLog::UpdateProcessLabel( int label_id, const std::string& current_label) { if(!current_label.length()) return RemoveProcessLabel(label_id); AutoLock lock(lock_); process_labels_[label_id] = current_label; } void TraceLog::RemoveProcessLabel(int label_id) { AutoLock lock(lock_); base::hash_map::iterator it = process_labels_.find( label_id); if (it == process_labels_.end()) return; process_labels_.erase(it); } void TraceLog::SetThreadSortIndex(PlatformThreadId thread_id, int sort_index) { AutoLock lock(lock_); thread_sort_indices_[static_cast(thread_id)] = sort_index; } void TraceLog::SetTimeOffset(TimeDelta offset) { time_offset_ = offset; } size_t TraceLog::GetObserverCountForTest() const { return enabled_state_observer_list_.size(); } void TraceLog::SetCurrentThreadBlocksMessageLoop() { thread_blocks_message_loop_.Set(true); if (thread_local_event_buffer_.Get()) { // This will flush the thread local buffer. delete thread_local_event_buffer_.Get(); } } bool CategoryFilter::IsEmptyOrContainsLeadingOrTrailingWhitespace( const std::string& str) { return str.empty() || str.at(0) == ' ' || str.at(str.length() - 1) == ' '; } CategoryFilter::CategoryFilter(const std::string& filter_string) { if (!filter_string.empty()) Initialize(filter_string); else Initialize(CategoryFilter::kDefaultCategoryFilterString); } CategoryFilter::CategoryFilter() { Initialize(CategoryFilter::kDefaultCategoryFilterString); } CategoryFilter::CategoryFilter(const CategoryFilter& cf) : included_(cf.included_), disabled_(cf.disabled_), excluded_(cf.excluded_), delays_(cf.delays_) { } CategoryFilter::~CategoryFilter() { } CategoryFilter& CategoryFilter::operator=(const CategoryFilter& rhs) { if (this == &rhs) return *this; included_ = rhs.included_; disabled_ = rhs.disabled_; excluded_ = rhs.excluded_; delays_ = rhs.delays_; return *this; } void CategoryFilter::Initialize(const std::string& filter_string) { // Tokenize list of categories, delimited by ','. StringTokenizer tokens(filter_string, ","); // Add each token to the appropriate list (included_,excluded_). while (tokens.GetNext()) { std::string category = tokens.token(); // Ignore empty categories. if (category.empty()) continue; // Synthetic delays are of the form 'DELAY(delay;option;option;...)'. if (category.find(kSyntheticDelayCategoryFilterPrefix) == 0 && category.at(category.size() - 1) == ')') { category = category.substr( strlen(kSyntheticDelayCategoryFilterPrefix), category.size() - strlen(kSyntheticDelayCategoryFilterPrefix) - 1); size_t name_length = category.find(';'); if (name_length != std::string::npos && name_length > 0 && name_length != category.size() - 1) { delays_.push_back(category); } } else if (category.at(0) == '-') { // Excluded categories start with '-'. // Remove '-' from category string. category = category.substr(1); excluded_.push_back(category); } else if (category.compare(0, strlen(TRACE_DISABLED_BY_DEFAULT("")), TRACE_DISABLED_BY_DEFAULT("")) == 0) { disabled_.push_back(category); } else { included_.push_back(category); } } } void CategoryFilter::WriteString(const StringList& values, std::string* out, bool included) const { bool prepend_comma = !out->empty(); int token_cnt = 0; for (StringList::const_iterator ci = values.begin(); ci != values.end(); ++ci) { if (token_cnt > 0 || prepend_comma) StringAppendF(out, ","); StringAppendF(out, "%s%s", (included ? "" : "-"), ci->c_str()); ++token_cnt; } } void CategoryFilter::WriteString(const StringList& delays, std::string* out) const { bool prepend_comma = !out->empty(); int token_cnt = 0; for (StringList::const_iterator ci = delays.begin(); ci != delays.end(); ++ci) { if (token_cnt > 0 || prepend_comma) StringAppendF(out, ","); StringAppendF(out, "%s%s)", kSyntheticDelayCategoryFilterPrefix, ci->c_str()); ++token_cnt; } } std::string CategoryFilter::ToString() const { std::string filter_string; WriteString(included_, &filter_string, true); WriteString(disabled_, &filter_string, true); WriteString(excluded_, &filter_string, false); WriteString(delays_, &filter_string); return filter_string; } bool CategoryFilter::IsCategoryGroupEnabled( const char* category_group_name) const { // TraceLog should call this method only as part of enabling/disabling // categories. bool had_enabled_by_default = false; DCHECK(category_group_name); CStringTokenizer category_group_tokens( category_group_name, category_group_name + strlen(category_group_name), ","); while (category_group_tokens.GetNext()) { std::string category_group_token = category_group_tokens.token(); // Don't allow empty tokens, nor tokens with leading or trailing space. DCHECK(!CategoryFilter::IsEmptyOrContainsLeadingOrTrailingWhitespace( category_group_token)) << "Disallowed category string"; if (IsCategoryEnabled(category_group_token.c_str())) { return true; } if (!MatchPattern(category_group_token.c_str(), TRACE_DISABLED_BY_DEFAULT("*"))) had_enabled_by_default = true; } // Do a second pass to check for explicitly disabled categories // (those explicitly enabled have priority due to first pass). category_group_tokens.Reset(); while (category_group_tokens.GetNext()) { std::string category_group_token = category_group_tokens.token(); for (StringList::const_iterator ci = excluded_.begin(); ci != excluded_.end(); ++ci) { if (MatchPattern(category_group_token.c_str(), ci->c_str())) return false; } } // If the category group is not excluded, and there are no included patterns // we consider this category group enabled, as long as it had categories // other than disabled-by-default. return included_.empty() && had_enabled_by_default; } bool CategoryFilter::IsCategoryEnabled(const char* category_name) const { StringList::const_iterator ci; // Check the disabled- filters and the disabled-* wildcard first so that a // "*" filter does not include the disabled. for (ci = disabled_.begin(); ci != disabled_.end(); ++ci) { if (MatchPattern(category_name, ci->c_str())) return true; } if (MatchPattern(category_name, TRACE_DISABLED_BY_DEFAULT("*"))) return false; for (ci = included_.begin(); ci != included_.end(); ++ci) { if (MatchPattern(category_name, ci->c_str())) return true; } return false; } bool CategoryFilter::HasIncludedPatterns() const { return !included_.empty(); } void CategoryFilter::Merge(const CategoryFilter& nested_filter) { // Keep included patterns only if both filters have an included entry. // Otherwise, one of the filter was specifying "*" and we want to honour the // broadest filter. if (HasIncludedPatterns() && nested_filter.HasIncludedPatterns()) { included_.insert(included_.end(), nested_filter.included_.begin(), nested_filter.included_.end()); } else { included_.clear(); } disabled_.insert(disabled_.end(), nested_filter.disabled_.begin(), nested_filter.disabled_.end()); excluded_.insert(excluded_.end(), nested_filter.excluded_.begin(), nested_filter.excluded_.end()); delays_.insert(delays_.end(), nested_filter.delays_.begin(), nested_filter.delays_.end()); } void CategoryFilter::Clear() { included_.clear(); disabled_.clear(); excluded_.clear(); } const CategoryFilter::StringList& CategoryFilter::GetSyntheticDelayValues() const { return delays_; } } // namespace trace_event } // namespace base namespace trace_event_internal { ScopedTraceBinaryEfficient::ScopedTraceBinaryEfficient( const char* category_group, const char* name) { // The single atom works because for now the category_group can only be "gpu". DCHECK(strcmp(category_group, "gpu") == 0); static TRACE_EVENT_API_ATOMIC_WORD atomic = 0; INTERNAL_TRACE_EVENT_GET_CATEGORY_INFO_CUSTOM_VARIABLES( category_group, atomic, category_group_enabled_); name_ = name; if (*category_group_enabled_) { event_handle_ = TRACE_EVENT_API_ADD_TRACE_EVENT_WITH_THREAD_ID_AND_TIMESTAMP( TRACE_EVENT_PHASE_COMPLETE, category_group_enabled_, name, trace_event_internal::kNoEventId, static_cast(base::PlatformThread::CurrentId()), base::TimeTicks::NowFromSystemTraceTime(), 0, NULL, NULL, NULL, NULL, TRACE_EVENT_FLAG_NONE); } } ScopedTraceBinaryEfficient::~ScopedTraceBinaryEfficient() { if (*category_group_enabled_) { TRACE_EVENT_API_UPDATE_TRACE_EVENT_DURATION(category_group_enabled_, name_, event_handle_); } } } // namespace trace_event_internal