// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/tracked_objects.h" #include #include "base/format_macros.h" #include "base/message_loop.h" #include "base/string_util.h" #include "base/stringprintf.h" #include "base/threading/thread_restrictions.h" using base::TimeDelta; namespace tracked_objects { // A TLS slot to the TrackRegistry for the current thread. // static base::ThreadLocalStorage::Slot ThreadData::tls_index_(base::LINKER_INITIALIZED); // A global state variable to prevent repeated initialization during tests. // static AutoTracking::State AutoTracking::state_ = AutoTracking::kNeverBeenRun; //------------------------------------------------------------------------------ // Death data tallies durations when a death takes place. void DeathData::RecordDeath(const TimeDelta& duration) { ++count_; life_duration_ += duration; int64 milliseconds = duration.InMilliseconds(); square_duration_ += milliseconds * milliseconds; } int DeathData::AverageMsDuration() const { return static_cast(life_duration_.InMilliseconds() / count_); } double DeathData::StandardDeviation() const { double average = AverageMsDuration(); double variance = static_cast(square_duration_)/count_ - average * average; return sqrt(variance); } void DeathData::AddDeathData(const DeathData& other) { count_ += other.count_; life_duration_ += other.life_duration_; square_duration_ += other.square_duration_; } void DeathData::Write(std::string* output) const { if (!count_) return; if (1 == count_) { base::StringAppendF(output, "(1)Life in %dms ", AverageMsDuration()); } else { base::StringAppendF(output, "(%d)Lives %dms/life ", count_, AverageMsDuration()); } } void DeathData::Clear() { count_ = 0; life_duration_ = TimeDelta(); square_duration_ = 0; } //------------------------------------------------------------------------------ BirthOnThread::BirthOnThread(const Location& location) : location_(location), birth_thread_(ThreadData::current()) { } //------------------------------------------------------------------------------ Births::Births(const Location& location) : BirthOnThread(location), birth_count_(1) { } //------------------------------------------------------------------------------ // ThreadData maintains the central data for all births and death. // static ThreadData* ThreadData::first_ = NULL; // static base::Lock ThreadData::list_lock_; // static ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED; ThreadData::ThreadData() : next_(NULL) { // This shouldn't use the MessageLoop::current() LazyInstance since this might // be used on a non-joinable thread. // http://crbug.com/62728 base::ThreadRestrictions::ScopedAllowSingleton scoped_allow_singleton; message_loop_ = MessageLoop::current(); } ThreadData::~ThreadData() {} // static ThreadData* ThreadData::current() { if (!tls_index_.initialized()) return NULL; ThreadData* registry = static_cast(tls_index_.Get()); if (!registry) { // We have to create a new registry for ThreadData. bool too_late_to_create = false; { registry = new ThreadData; base::AutoLock lock(list_lock_); // Use lock to insure we have most recent status. if (!IsActive()) { too_late_to_create = true; } else { // Use lock to insert into list. registry->next_ = first_; first_ = registry; } } // Release lock. if (too_late_to_create) { delete registry; registry = NULL; } else { tls_index_.Set(registry); } } return registry; } // static void ThreadData::WriteHTML(const std::string& query, std::string* output) { if (!ThreadData::IsActive()) return; // Not yet initialized. DCHECK(ThreadData::current()); DataCollector collected_data; // Gather data. collected_data.AddListOfLivingObjects(); // Add births that are still alive. // Data Gathering is complete. Now to sort/process/render. DataCollector::Collection* collection = collected_data.collection(); // Create filtering and sort comparison object. Comparator comparator; comparator.ParseQuery(query); // Filter out acceptable (matching) instances. DataCollector::Collection match_array; for (DataCollector::Collection::iterator it = collection->begin(); it != collection->end(); ++it) { if (comparator.Acceptable(*it)) match_array.push_back(*it); } comparator.Sort(&match_array); WriteHTMLTotalAndSubtotals(match_array, comparator, output); comparator.Clear(); // Delete tiebreaker_ instances. output->append(""); const char* help_string = "The following are the keywords that can be used to" "sort and aggregate the data, or to select data.
    " "
  • count Number of instances seen." "
  • duration Duration in ms from construction to descrution." "
  • birth Thread on which the task was constructed." "
  • death Thread on which the task was run and deleted." "
  • file File in which the task was contructed." "
  • function Function in which the task was constructed." "
  • line Line number of the file in which the task was constructed." "

" "As examples:
    " "
  • about:tasks/file would sort the above data by file, and" " aggregate data on a per-file basis." "
  • about:tasks/file=Dns would only list data for tasks constructed" " in a file containing the text |Dns|." "
  • about:tasks/birth/death would sort the above list by birth" " thread, and then by death thread, and would aggregate data for each pair" " of lifetime events." "
" " The data can be reset to zero (discarding all births, deaths, etc.) using" " about:tasks/reset. The existing stats will be displayed, but the" " internal stats will be set to zero, and start accumulating afresh. This" " option is very helpful if you only wish to consider tasks created after" " some point in time.

" "If you wish to monitor Renderer events, be sure to run in --single-process" " mode."; output->append(help_string); } // static void ThreadData::WriteHTMLTotalAndSubtotals( const DataCollector::Collection& match_array, const Comparator& comparator, std::string* output) { if (!match_array.size()) { output->append("There were no tracked matches."); } else { // Aggregate during printing Aggregation totals; for (size_t i = 0; i < match_array.size(); ++i) { totals.AddDeathSnapshot(match_array[i]); } output->append("Aggregate Stats: "); totals.Write(output); output->append("

"); Aggregation subtotals; for (size_t i = 0; i < match_array.size(); ++i) { if (0 == i || !comparator.Equivalent(match_array[i - 1], match_array[i])) { // Print group's defining characteristics. comparator.WriteSortGrouping(match_array[i], output); output->append("

"); } comparator.WriteSnapshot(match_array[i], output); output->append("
"); subtotals.AddDeathSnapshot(match_array[i]); if (i + 1 >= match_array.size() || !comparator.Equivalent(match_array[i], match_array[i + 1])) { // Print aggregate stats for the group. output->append("
"); subtotals.Write(output); output->append("


"); subtotals.Clear(); } } } } Births* ThreadData::TallyABirth(const Location& location) { { // This shouldn't use the MessageLoop::current() LazyInstance since this // might be used on a non-joinable thread. // http://crbug.com/62728 base::ThreadRestrictions::ScopedAllowSingleton scoped_allow_singleton; if (!message_loop_) // In case message loop wasn't yet around... message_loop_ = MessageLoop::current(); // Find it now. } BirthMap::iterator it = birth_map_.find(location); if (it != birth_map_.end()) { it->second->RecordBirth(); return it->second; } Births* tracker = new Births(location); // Lock since the map may get relocated now, and other threads sometimes // snapshot it (but they lock before copying it). base::AutoLock lock(lock_); birth_map_[location] = tracker; return tracker; } void ThreadData::TallyADeath(const Births& lifetimes, const TimeDelta& duration) { { // http://crbug.com/62728 base::ThreadRestrictions::ScopedAllowSingleton scoped_allow_singleton; if (!message_loop_) // In case message loop wasn't yet around... message_loop_ = MessageLoop::current(); // Find it now. } DeathMap::iterator it = death_map_.find(&lifetimes); if (it != death_map_.end()) { it->second.RecordDeath(duration); return; } base::AutoLock lock(lock_); // Lock since the map may get relocated now. death_map_[&lifetimes].RecordDeath(duration); } // static ThreadData* ThreadData::first() { base::AutoLock lock(list_lock_); return first_; } const std::string ThreadData::ThreadName() const { if (message_loop_) return message_loop_->thread_name(); return "ThreadWithoutMessageLoop"; } // This may be called from another thread. void ThreadData::SnapshotBirthMap(BirthMap *output) const { base::AutoLock lock(lock_); for (BirthMap::const_iterator it = birth_map_.begin(); it != birth_map_.end(); ++it) (*output)[it->first] = it->second; } // This may be called from another thread. void ThreadData::SnapshotDeathMap(DeathMap *output) const { base::AutoLock lock(lock_); for (DeathMap::const_iterator it = death_map_.begin(); it != death_map_.end(); ++it) (*output)[it->first] = it->second; } // static void ThreadData::ResetAllThreadData() { ThreadData* my_list = ThreadData::current()->first(); for (ThreadData* thread_data = my_list; thread_data; thread_data = thread_data->next()) thread_data->Reset(); } void ThreadData::Reset() { base::AutoLock lock(lock_); for (DeathMap::iterator it = death_map_.begin(); it != death_map_.end(); ++it) it->second.Clear(); for (BirthMap::iterator it = birth_map_.begin(); it != birth_map_.end(); ++it) it->second->Clear(); } #ifdef OS_WIN // A class used to count down which is accessed by several threads. This is // used to make sure RunOnAllThreads() actually runs a task on the expected // count of threads. class ThreadData::ThreadSafeDownCounter { public: // Constructor sets the count, once and for all. explicit ThreadSafeDownCounter(size_t count); // Decrement the count, and return true if we hit zero. Also delete this // instance automatically when we hit zero. bool LastCaller(); private: size_t remaining_count_; base::Lock lock_; // protect access to remaining_count_. }; ThreadData::ThreadSafeDownCounter::ThreadSafeDownCounter(size_t count) : remaining_count_(count) { DCHECK_GT(remaining_count_, 0u); } bool ThreadData::ThreadSafeDownCounter::LastCaller() { { base::AutoLock lock(lock_); if (--remaining_count_) return false; } // Release lock, so we can delete everything in this instance. delete this; return true; } // A Task class that runs a static method supplied, and checks to see if this // is the last tasks instance (on last thread) that will run the method. // IF this is the last run, then the supplied event is signalled. class ThreadData::RunTheStatic : public Task { public: typedef void (*FunctionPointer)(); RunTheStatic(FunctionPointer function, HANDLE completion_handle, ThreadSafeDownCounter* counter); // Run the supplied static method, and optionally set the event. void Run(); private: FunctionPointer function_; HANDLE completion_handle_; // Make sure enough tasks are called before completion is signaled. ThreadSafeDownCounter* counter_; DISALLOW_COPY_AND_ASSIGN(RunTheStatic); }; ThreadData::RunTheStatic::RunTheStatic(FunctionPointer function, HANDLE completion_handle, ThreadSafeDownCounter* counter) : function_(function), completion_handle_(completion_handle), counter_(counter) { } void ThreadData::RunTheStatic::Run() { function_(); if (counter_->LastCaller()) SetEvent(completion_handle_); } // TODO(jar): This should use condition variables, and be cross platform. void ThreadData::RunOnAllThreads(void (*function)()) { ThreadData* list = first(); // Get existing list. std::vector message_loops; for (ThreadData* it = list; it; it = it->next()) { if (current() != it && it->message_loop()) message_loops.push_back(it->message_loop()); } ThreadSafeDownCounter* counter = new ThreadSafeDownCounter(message_loops.size() + 1); // Extra one for us! HANDLE completion_handle = CreateEvent(NULL, false, false, NULL); // Tell all other threads to run. for (size_t i = 0; i < message_loops.size(); ++i) message_loops[i]->PostTask( FROM_HERE, new RunTheStatic(function, completion_handle, counter)); // Also run Task on our thread. RunTheStatic local_task(function, completion_handle, counter); local_task.Run(); WaitForSingleObject(completion_handle, INFINITE); int ret_val = CloseHandle(completion_handle); DCHECK(ret_val); } #endif // OS_WIN // static bool ThreadData::StartTracking(bool status) { #ifndef TRACK_ALL_TASK_OBJECTS return false; // Not compiled in. #endif if (!status) { base::AutoLock lock(list_lock_); DCHECK(status_ == ACTIVE || status_ == SHUTDOWN); status_ = SHUTDOWN; return true; } base::AutoLock lock(list_lock_); DCHECK_EQ(UNINITIALIZED, status_); CHECK(tls_index_.Initialize(NULL)); status_ = ACTIVE; return true; } // static bool ThreadData::IsActive() { return status_ == ACTIVE; } #ifdef OS_WIN // static void ThreadData::ShutdownMultiThreadTracking() { // Using lock, guarantee that no new ThreadData instances will be created. if (!StartTracking(false)) return; RunOnAllThreads(ShutdownDisablingFurtherTracking); // Now the *only* threads that might change the database are the threads with // no messages loops. They might still be adding data to their birth records, // but since no objects are deleted on those threads, there will be no further // access to to cross-thread data. // We could do a cleanup on all threads except for the ones without // MessageLoops, but we won't bother doing cleanup (destruction of data) yet. return; } #endif // static void ThreadData::ShutdownSingleThreadedCleanup() { // We must be single threaded... but be careful anyway. if (!StartTracking(false)) return; ThreadData* thread_data_list; { base::AutoLock lock(list_lock_); thread_data_list = first_; first_ = NULL; } while (thread_data_list) { ThreadData* next_thread_data = thread_data_list; thread_data_list = thread_data_list->next(); for (BirthMap::iterator it = next_thread_data->birth_map_.begin(); next_thread_data->birth_map_.end() != it; ++it) delete it->second; // Delete the Birth Records. next_thread_data->birth_map_.clear(); next_thread_data->death_map_.clear(); delete next_thread_data; // Includes all Death Records. } CHECK(tls_index_.initialized()); tls_index_.Free(); DCHECK(!tls_index_.initialized()); status_ = UNINITIALIZED; } // static void ThreadData::ShutdownDisablingFurtherTracking() { // Redundantly set status SHUTDOWN on this thread. if (!StartTracking(false)) return; } //------------------------------------------------------------------------------ // Individual 3-tuple of birth (place and thread) along with death thread, and // the accumulated stats for instances (DeathData). Snapshot::Snapshot(const BirthOnThread& birth_on_thread, const ThreadData& death_thread, const DeathData& death_data) : birth_(&birth_on_thread), death_thread_(&death_thread), death_data_(death_data) { } Snapshot::Snapshot(const BirthOnThread& birth_on_thread, int count) : birth_(&birth_on_thread), death_thread_(NULL), death_data_(DeathData(count)) { } const std::string Snapshot::DeathThreadName() const { if (death_thread_) return death_thread_->ThreadName(); return "Still_Alive"; } void Snapshot::Write(std::string* output) const { death_data_.Write(output); base::StringAppendF(output, "%s->%s ", birth_->birth_thread()->ThreadName().c_str(), death_thread_->ThreadName().c_str()); birth_->location().Write(true, true, output); } void Snapshot::Add(const Snapshot& other) { death_data_.AddDeathData(other.death_data_); } //------------------------------------------------------------------------------ // DataCollector DataCollector::DataCollector() { DCHECK(ThreadData::IsActive()); // Get an unchanging copy of a ThreadData list. ThreadData* my_list = ThreadData::current()->first(); count_of_contributing_threads_ = 0; for (ThreadData* thread_data = my_list; thread_data; thread_data = thread_data->next()) { ++count_of_contributing_threads_; } // Gather data serially. A different constructor could be used to do in // parallel, and then invoke an OnCompletion task. // This hackish approach *can* get some slighly corrupt tallies, as we are // grabbing values without the protection of a lock, but it has the advantage // of working even with threads that don't have message loops. If a user // sees any strangeness, they can always just run their stats gathering a // second time. // TODO(jar): Provide version that gathers stats safely via PostTask in all // cases where thread_data supplies a message_loop to post to. Be careful to // handle message_loops that are destroyed!?! for (ThreadData* thread_data = my_list; thread_data; thread_data = thread_data->next()) { Append(*thread_data); } } DataCollector::~DataCollector() { } void DataCollector::Append(const ThreadData& thread_data) { // Get copy of data (which is done under ThreadData's lock). ThreadData::BirthMap birth_map; thread_data.SnapshotBirthMap(&birth_map); ThreadData::DeathMap death_map; thread_data.SnapshotDeathMap(&death_map); // Use our lock to protect our accumulation activity. base::AutoLock lock(accumulation_lock_); DCHECK(count_of_contributing_threads_); for (ThreadData::DeathMap::const_iterator it = death_map.begin(); it != death_map.end(); ++it) { collection_.push_back(Snapshot(*it->first, thread_data, it->second)); global_birth_count_[it->first] -= it->first->birth_count(); } for (ThreadData::BirthMap::const_iterator it = birth_map.begin(); it != birth_map.end(); ++it) { global_birth_count_[it->second] += it->second->birth_count(); } --count_of_contributing_threads_; } DataCollector::Collection* DataCollector::collection() { DCHECK(!count_of_contributing_threads_); return &collection_; } void DataCollector::AddListOfLivingObjects() { DCHECK(!count_of_contributing_threads_); for (BirthCount::iterator it = global_birth_count_.begin(); it != global_birth_count_.end(); ++it) { if (it->second > 0) collection_.push_back(Snapshot(*it->first, it->second)); } } //------------------------------------------------------------------------------ // Aggregation Aggregation::Aggregation() : birth_count_(0) { } Aggregation::~Aggregation() { } void Aggregation::AddDeathSnapshot(const Snapshot& snapshot) { AddBirth(snapshot.birth()); death_threads_[snapshot.death_thread()]++; AddDeathData(snapshot.death_data()); } void Aggregation::AddBirths(const Births& births) { AddBirth(births); birth_count_ += births.birth_count(); } void Aggregation::AddBirth(const BirthOnThread& birth) { AddBirthPlace(birth.location()); birth_threads_[birth.birth_thread()]++; } void Aggregation::AddBirthPlace(const Location& location) { locations_[location]++; birth_files_[location.file_name()]++; } void Aggregation::Write(std::string* output) const { if (locations_.size() == 1) { locations_.begin()->first.Write(true, true, output); } else { base::StringAppendF(output, "%" PRIuS " Locations. ", locations_.size()); if (birth_files_.size() > 1) { base::StringAppendF(output, "%" PRIuS " Files. ", birth_files_.size()); } else { base::StringAppendF(output, "All born in %s. ", birth_files_.begin()->first.c_str()); } } if (birth_threads_.size() > 1) { base::StringAppendF(output, "%" PRIuS " BirthingThreads. ", birth_threads_.size()); } else { base::StringAppendF(output, "All born on %s. ", birth_threads_.begin()->first->ThreadName().c_str()); } if (death_threads_.size() > 1) { base::StringAppendF(output, "%" PRIuS " DeathThreads. ", death_threads_.size()); } else { if (death_threads_.begin()->first) { base::StringAppendF(output, "All deleted on %s. ", death_threads_.begin()->first->ThreadName().c_str()); } else { output->append("All these objects are still alive."); } } if (birth_count_ > 1) base::StringAppendF(output, "Births=%d ", birth_count_); DeathData::Write(output); } void Aggregation::Clear() { birth_count_ = 0; birth_files_.clear(); locations_.clear(); birth_threads_.clear(); DeathData::Clear(); death_threads_.clear(); } //------------------------------------------------------------------------------ // Comparison object for sorting. Comparator::Comparator() : selector_(NIL), tiebreaker_(NULL), combined_selectors_(0), use_tiebreaker_for_sort_only_(false) {} void Comparator::Clear() { if (tiebreaker_) { tiebreaker_->Clear(); delete tiebreaker_; tiebreaker_ = NULL; } use_tiebreaker_for_sort_only_ = false; selector_ = NIL; } bool Comparator::operator()(const Snapshot& left, const Snapshot& right) const { switch (selector_) { case BIRTH_THREAD: if (left.birth_thread() != right.birth_thread() && left.birth_thread()->ThreadName() != right.birth_thread()->ThreadName()) return left.birth_thread()->ThreadName() < right.birth_thread()->ThreadName(); break; case DEATH_THREAD: if (left.death_thread() != right.death_thread() && left.DeathThreadName() != right.DeathThreadName()) { if (!left.death_thread()) return true; if (!right.death_thread()) return false; return left.DeathThreadName() < right.DeathThreadName(); } break; case BIRTH_FILE: if (left.location().file_name() != right.location().file_name()) { int comp = strcmp(left.location().file_name(), right.location().file_name()); if (comp) return 0 > comp; } break; case BIRTH_FUNCTION: if (left.location().function_name() != right.location().function_name()) { int comp = strcmp(left.location().function_name(), right.location().function_name()); if (comp) return 0 > comp; } break; case BIRTH_LINE: if (left.location().line_number() != right.location().line_number()) return left.location().line_number() < right.location().line_number(); break; case COUNT: if (left.count() != right.count()) return left.count() > right.count(); // Sort large at front of vector. break; case AVERAGE_DURATION: if (!left.count() || !right.count()) break; if (left.AverageMsDuration() != right.AverageMsDuration()) return left.AverageMsDuration() > right.AverageMsDuration(); break; default: break; } if (tiebreaker_) return tiebreaker_->operator()(left, right); return false; } void Comparator::Sort(DataCollector::Collection* collection) const { std::sort(collection->begin(), collection->end(), *this); } bool Comparator::Equivalent(const Snapshot& left, const Snapshot& right) const { switch (selector_) { case BIRTH_THREAD: if (left.birth_thread() != right.birth_thread() && left.birth_thread()->ThreadName() != right.birth_thread()->ThreadName()) return false; break; case DEATH_THREAD: if (left.death_thread() != right.death_thread() && left.DeathThreadName() != right.DeathThreadName()) return false; break; case BIRTH_FILE: if (left.location().file_name() != right.location().file_name()) { int comp = strcmp(left.location().file_name(), right.location().file_name()); if (comp) return false; } break; case BIRTH_FUNCTION: if (left.location().function_name() != right.location().function_name()) { int comp = strcmp(left.location().function_name(), right.location().function_name()); if (comp) return false; } break; case COUNT: if (left.count() != right.count()) return false; break; case AVERAGE_DURATION: if (left.life_duration() != right.life_duration()) return false; break; default: break; } if (tiebreaker_ && !use_tiebreaker_for_sort_only_) return tiebreaker_->Equivalent(left, right); return true; } bool Comparator::Acceptable(const Snapshot& sample) const { if (required_.size()) { switch (selector_) { case BIRTH_THREAD: if (sample.birth_thread()->ThreadName().find(required_) == std::string::npos) return false; break; case DEATH_THREAD: if (sample.DeathThreadName().find(required_) == std::string::npos) return false; break; case BIRTH_FILE: if (!strstr(sample.location().file_name(), required_.c_str())) return false; break; case BIRTH_FUNCTION: if (!strstr(sample.location().function_name(), required_.c_str())) return false; break; default: break; } } if (tiebreaker_ && !use_tiebreaker_for_sort_only_) return tiebreaker_->Acceptable(sample); return true; } void Comparator::SetTiebreaker(Selector selector, const std::string& required) { if (selector == selector_ || NIL == selector) return; combined_selectors_ |= selector; if (NIL == selector_) { selector_ = selector; if (required.size()) required_ = required; return; } if (tiebreaker_) { if (use_tiebreaker_for_sort_only_) { Comparator* temp = new Comparator; temp->tiebreaker_ = tiebreaker_; tiebreaker_ = temp; } } else { tiebreaker_ = new Comparator; DCHECK(!use_tiebreaker_for_sort_only_); } tiebreaker_->SetTiebreaker(selector, required); } bool Comparator::IsGroupedBy(Selector selector) const { return 0 != (selector & combined_selectors_); } void Comparator::SetSubgroupTiebreaker(Selector selector) { if (selector == selector_ || NIL == selector) return; if (!tiebreaker_) { use_tiebreaker_for_sort_only_ = true; tiebreaker_ = new Comparator; tiebreaker_->SetTiebreaker(selector, ""); } else { tiebreaker_->SetSubgroupTiebreaker(selector); } } void Comparator::ParseKeyphrase(const std::string& key_phrase) { typedef std::map KeyMap; static KeyMap key_map; static bool initialized = false; if (!initialized) { initialized = true; // Sorting and aggretation keywords, which specify how to sort the data, or // can specify a required match from the specified field in the record. key_map["count"] = COUNT; key_map["duration"] = AVERAGE_DURATION; key_map["birth"] = BIRTH_THREAD; key_map["death"] = DEATH_THREAD; key_map["file"] = BIRTH_FILE; key_map["function"] = BIRTH_FUNCTION; key_map["line"] = BIRTH_LINE; // Immediate commands that do not involve setting sort order. key_map["reset"] = RESET_ALL_DATA; } std::string required; // Watch for: "sort_key=value" as we parse. size_t equal_offset = key_phrase.find('=', 0); if (key_phrase.npos != equal_offset) { // There is a value that must be matched for the data to display. required = key_phrase.substr(equal_offset + 1, key_phrase.npos); } std::string keyword(key_phrase.substr(0, equal_offset)); keyword = StringToLowerASCII(keyword); KeyMap::iterator it = key_map.find(keyword); if (key_map.end() == it) return; // Unknown keyword. if (it->second == RESET_ALL_DATA) ThreadData::ResetAllThreadData(); else SetTiebreaker(key_map[keyword], required); } bool Comparator::ParseQuery(const std::string& query) { // Parse each keyphrase between consecutive slashes. for (size_t i = 0; i < query.size();) { size_t slash_offset = query.find('/', i); ParseKeyphrase(query.substr(i, slash_offset - i)); if (query.npos == slash_offset) break; i = slash_offset + 1; } // Select subgroup ordering (if we want to display the subgroup) SetSubgroupTiebreaker(COUNT); SetSubgroupTiebreaker(AVERAGE_DURATION); SetSubgroupTiebreaker(BIRTH_THREAD); SetSubgroupTiebreaker(DEATH_THREAD); SetSubgroupTiebreaker(BIRTH_FUNCTION); SetSubgroupTiebreaker(BIRTH_FILE); SetSubgroupTiebreaker(BIRTH_LINE); return true; } bool Comparator::WriteSortGrouping(const Snapshot& sample, std::string* output) const { bool wrote_data = false; switch (selector_) { case BIRTH_THREAD: base::StringAppendF(output, "All new on %s ", sample.birth_thread()->ThreadName().c_str()); wrote_data = true; break; case DEATH_THREAD: if (sample.death_thread()) { base::StringAppendF(output, "All deleted on %s ", sample.DeathThreadName().c_str()); } else { output->append("All still alive "); } wrote_data = true; break; case BIRTH_FILE: base::StringAppendF(output, "All born in %s ", sample.location().file_name()); break; case BIRTH_FUNCTION: output->append("All born in "); sample.location().WriteFunctionName(output); output->push_back(' '); break; default: break; } if (tiebreaker_ && !use_tiebreaker_for_sort_only_) { wrote_data |= tiebreaker_->WriteSortGrouping(sample, output); } return wrote_data; } void Comparator::WriteSnapshot(const Snapshot& sample, std::string* output) const { sample.death_data().Write(output); if (!(combined_selectors_ & BIRTH_THREAD) || !(combined_selectors_ & DEATH_THREAD)) base::StringAppendF(output, "%s->%s ", (combined_selectors_ & BIRTH_THREAD) ? "*" : sample.birth().birth_thread()->ThreadName().c_str(), (combined_selectors_ & DEATH_THREAD) ? "*" : sample.DeathThreadName().c_str()); sample.birth().location().Write(!(combined_selectors_ & BIRTH_FILE), !(combined_selectors_ & BIRTH_FUNCTION), output); } } // namespace tracked_objects