// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_TRACKED_OBJECTS_H_ #define BASE_TRACKED_OBJECTS_H_ #pragma once #include #include #include #include #include #include #include "base/base_export.h" #include "base/gtest_prod_util.h" #include "base/lazy_instance.h" #include "base/location.h" #include "base/profiler/alternate_timer.h" #include "base/profiler/tracked_time.h" #include "base/time.h" #include "base/synchronization/lock.h" #include "base/threading/thread_local_storage.h" #include "base/tracking_info.h" #include "base/values.h" // TrackedObjects provides a database of stats about objects (generally Tasks) // that are tracked. Tracking means their birth, death, duration, birth thread, // death thread, and birth place are recorded. This data is carefully spread // across a series of objects so that the counts and times can be rapidly // updated without (usually) having to lock the data, and hence there is usually // very little contention caused by the tracking. The data can be viewed via // the about:profiler URL, with a variety of sorting and filtering choices. // // These classes serve as the basis of a profiler of sorts for the Tasks system. // As a result, design decisions were made to maximize speed, by minimizing // recurring allocation/deallocation, lock contention and data copying. In the // "stable" state, which is reached relatively quickly, there is no separate // marginal allocation cost associated with construction or destruction of // tracked objects, no locks are generally employed, and probably the largest // computational cost is associated with obtaining start and stop times for // instances as they are created and destroyed. // // The following describes the lifecycle of tracking an instance. // // First off, when the instance is created, the FROM_HERE macro is expanded // to specify the birth place (file, line, function) where the instance was // created. That data is used to create a transient Location instance // encapsulating the above triple of information. The strings (like __FILE__) // are passed around by reference, with the assumption that they are static, and // will never go away. This ensures that the strings can be dealt with as atoms // with great efficiency (i.e., copying of strings is never needed, and // comparisons for equality can be based on pointer comparisons). // // Next, a Births instance is created for use ONLY on the thread where this // instance was created. That Births instance records (in a base class // BirthOnThread) references to the static data provided in a Location instance, // as well as a pointer specifying the thread on which the birth takes place. // Hence there is at most one Births instance for each Location on each thread. // The derived Births class contains slots for recording statistics about all // instances born at the same location. Statistics currently include only the // count of instances constructed. // // Since the base class BirthOnThread contains only constant data, it can be // freely accessed by any thread at any time (i.e., only the statistic needs to // be handled carefully, and stats are updated exclusively on the birth thread). // // For Tasks, having now either constructed or found the Births instance // described above, a pointer to the Births instance is then recorded into the // PendingTask structure in MessageLoop. This fact alone is very useful in // debugging, when there is a question of where an instance came from. In // addition, the birth time is also recorded and used to later evaluate the // lifetime duration of the whole Task. As a result of the above embedding, we // can find out a Task's location of birth, and thread of birth, without using // any locks, as all that data is constant across the life of the process. // // The above work *could* also be done for any other object as well by calling // TallyABirthIfActive() and TallyRunOnNamedThreadIfTracking() as appropriate. // // The amount of memory used in the above data structures depends on how many // threads there are, and how many Locations of construction there are. // Fortunately, we don't use memory that is the product of those two counts, but // rather we only need one Births instance for each thread that constructs an // instance at a Location. In many cases, instances are only created on one // thread, so the memory utilization is actually fairly restrained. // // Lastly, when an instance is deleted, the final tallies of statistics are // carefully accumulated. That tallying writes into slots (members) in a // collection of DeathData instances. For each birth place Location that is // destroyed on a thread, there is a DeathData instance to record the additional // death count, as well as accumulate the run-time and queue-time durations for // the instance as it is destroyed (dies). By maintaining a single place to // aggregate this running sum *only* for the given thread, we avoid the need to // lock such DeathData instances. (i.e., these accumulated stats in a DeathData // instance are exclusively updated by the singular owning thread). // // With the above lifecycle description complete, the major remaining detail is // explaining how each thread maintains a list of DeathData instances, and of // Births instances, and is able to avoid additional (redundant/unnecessary) // allocations. // // Each thread maintains a list of data items specific to that thread in a // ThreadData instance (for that specific thread only). The two critical items // are lists of DeathData and Births instances. These lists are maintained in // STL maps, which are indexed by Location. As noted earlier, we can compare // locations very efficiently as we consider the underlying data (file, // function, line) to be atoms, and hence pointer comparison is used rather than // (slow) string comparisons. // // To provide a mechanism for iterating over all "known threads," which means // threads that have recorded a birth or a death, we create a singly linked list // of ThreadData instances. Each such instance maintains a pointer to the next // one. A static member of ThreadData provides a pointer to the first item on // this global list, and access via that all_thread_data_list_head_ item // requires the use of the list_lock_. // When new ThreadData instances is added to the global list, it is pre-pended, // which ensures that any prior acquisition of the list is valid (i.e., the // holder can iterate over it without fear of it changing, or the necessity of // using an additional lock. Iterations are actually pretty rare (used // primarilly for cleanup, or snapshotting data for display), so this lock has // very little global performance impact. // // The above description tries to define the high performance (run time) // portions of these classes. After gathering statistics, calls instigated // by visiting about:profiler will assemble and aggregate data for display. The // following data structures are used for producing such displays. They are // not performance critical, and their only major constraint is that they should // be able to run concurrently with ongoing augmentation of the birth and death // data. // // For a given birth location, information about births is spread across data // structures that are asynchronously changing on various threads. For display // purposes, we need to construct Snapshot instances for each combination of // birth thread, death thread, and location, along with the count of such // lifetimes. We gather such data into a Snapshot instances, so that such // instances can be sorted and aggregated (and remain frozen during our // processing). Snapshot instances use pointers to constant portions of the // birth and death datastructures, but have local (frozen) copies of the actual // statistics (birth count, durations, etc. etc.). // // A DataCollector is a container object that holds a set of Snapshots. The // statistics in a snapshot are gathered asynhcronously relative to their // ongoing updates. It is possible, though highly unlikely, that stats could be // incorrectly recorded by this process (all data is held in 32 bit ints, but we // are not atomically collecting all data, so we could have count that does not, // for example, match with the number of durations we accumulated). The // advantage to having fast (non-atomic) updates of the data outweighs the // minimal risk of a singular corrupt statistic snapshot (only the snapshot // could be corrupt, not the underlying and ongoing statistic). In constrast, // pointer data that is accessed during snapshotting is completely invariant, // and hence is perfectly acquired (i.e., no potential corruption, and no risk // of a bad memory reference). // // After an array of Snapshots instances are collected into a DataCollector, // they need to be prepared for displaying our output. We currently implement a // serialization into a Value hierarchy, which is automatically translated to // JSON when supplied to rendering Java Scirpt. // // TODO(jar): We can implement a Snapshot system that *tries* to grab the // snapshots on the source threads *when* they have MessageLoops available // (worker threads don't have message loops generally, and hence gathering from // them will continue to be asynchronous). We had an implementation of this in // the past, but the difficulty is dealing with message loops being terminated. // We can *try* to spam the available threads via some message loop proxy to // achieve this feat, and it *might* be valuable when we are colecting data for // upload via UMA (where correctness of data may be more significant than for a // single screen of about:profiler). // // TODO(jar): We should support (optionally) the recording of parent-child // relationships for tasks. This should be done by detecting what tasks are // Born during the running of a parent task. The resulting data can be used by // a smarter profiler to aggregate the cost of a series of child tasks into // the ancestor task. It can also be used to illuminate what child or parent is // related to each task. // // TODO(jar): We need to store DataCollections, and provide facilities for // taking the difference between two gathered DataCollections. For now, we're // just adding a hack that Reset()s to zero all counts and stats. This is also // done in a slighly thread-unsafe fashion, as the resetting is done // asynchronously relative to ongoing updates (but all data is 32 bit in size). // For basic profiling, this will work "most of the time," and should be // sufficient... but storing away DataCollections is the "right way" to do this. // We'll accomplish this via JavaScript storage of snapshots, and then we'll // remove the Reset() methods. We may also need a short-term-max value in // DeathData that is reset (as synchronously as possible) during each snapshot. // This will facilitate displaying a max value for each snapshot period. namespace tracked_objects { //------------------------------------------------------------------------------ // For a specific thread, and a specific birth place, the collection of all // death info (with tallies for each death thread, to prevent access conflicts). class ThreadData; class BASE_EXPORT BirthOnThread { public: BirthOnThread(const Location& location, const ThreadData& current); const Location location() const; const ThreadData* birth_thread() const; // Insert our state (location, and thread name) into the dictionary. // Use the supplied |prefix| in front of "thread_name" and "location" // respectively when defining keys. void ToValue(const std::string& prefix, base::DictionaryValue* dictionary) const; private: // File/lineno of birth. This defines the essence of the task, as the context // of the birth (construction) often tell what the item is for. This field // is const, and hence safe to access from any thread. const Location location_; // The thread that records births into this object. Only this thread is // allowed to update birth_count_ (which changes over time). const ThreadData* const birth_thread_; DISALLOW_COPY_AND_ASSIGN(BirthOnThread); }; //------------------------------------------------------------------------------ // A class for accumulating counts of births (without bothering with a map<>). class BASE_EXPORT Births: public BirthOnThread { public: Births(const Location& location, const ThreadData& current); int birth_count() const; // When we have a birth we update the count for this BirhPLace. void RecordBirth(); // When a birthplace is changed (updated), we need to decrement the counter // for the old instance. void ForgetBirth(); // Hack to quickly reset all counts to zero. void Clear(); private: // The number of births on this thread for our location_. int birth_count_; DISALLOW_COPY_AND_ASSIGN(Births); }; //------------------------------------------------------------------------------ // Basic info summarizing multiple destructions of a tracked object with a // single birthplace (fixed Location). Used both on specific threads, and also // in snapshots when integrating assembled data. class BASE_EXPORT DeathData { public: // Default initializer. DeathData(); // When deaths have not yet taken place, and we gather data from all the // threads, we create DeathData stats that tally the number of births without // a corresponding death. explicit DeathData(int count); // Update stats for a task destruction (death) that had a Run() time of // |duration|, and has had a queueing delay of |queue_duration|. void RecordDeath(const DurationInt queue_duration, const DurationInt run_duration, int random_number); // Metrics accessors, used only in tests. int count() const; DurationInt run_duration_sum() const; DurationInt run_duration_max() const; DurationInt run_duration_sample() const; DurationInt queue_duration_sum() const; DurationInt queue_duration_max() const; DurationInt queue_duration_sample() const; // Construct a DictionaryValue instance containing all our stats. The caller // assumes ownership of the returned instance. base::DictionaryValue* ToValue() const; // Reset the max values to zero. void ResetMax(); // Reset all tallies to zero. This is used as a hack on realtime data. void Clear(); private: // Members are ordered from most regularly read and updated, to least // frequently used. This might help a bit with cache lines. // Number of runs seen (divisor for calculating averages). int count_; // Basic tallies, used to compute averages. DurationInt run_duration_sum_; DurationInt queue_duration_sum_; // Max values, used by local visualization routines. These are often read, // but rarely updated. DurationInt run_duration_max_; DurationInt queue_duration_max_; // Samples, used by by crowd sourcing gatherers. These are almost never read, // and rarely updated. DurationInt run_duration_sample_; DurationInt queue_duration_sample_; }; //------------------------------------------------------------------------------ // A temporary collection of data that can be sorted and summarized. It is // gathered (carefully) from many threads. Instances are held in arrays and // processed, filtered, and rendered. // The source of this data was collected on many threads, and is asynchronously // changing. The data in this instance is not asynchronously changing. class BASE_EXPORT Snapshot { public: // When snapshotting a full life cycle set (birth-to-death), use this: Snapshot(const BirthOnThread& birth_on_thread, const ThreadData& death_thread, const DeathData& death_data); // When snapshotting a birth, with no death yet, use this: Snapshot(const BirthOnThread& birth_on_thread, int count); // Accessor, that provides default value when there is no death thread. const std::string DeathThreadName() const; // Construct a DictionaryValue instance containing all our data recursively. // The caller assumes ownership of the memory in the returned instance. base::DictionaryValue* ToValue() const; private: const BirthOnThread* birth_; // Includes Location and birth_thread. const ThreadData* death_thread_; DeathData death_data_; }; //------------------------------------------------------------------------------ // For each thread, we have a ThreadData that stores all tracking info generated // on this thread. This prevents the need for locking as data accumulates. // We use ThreadLocalStorage to quickly identfy the current ThreadData context. // We also have a linked list of ThreadData instances, and that list is used to // harvest data from all existing instances. class BASE_EXPORT ThreadData { public: // Current allowable states of the tracking system. The states can vary // between ACTIVE and DEACTIVATED, but can never go back to UNINITIALIZED. enum Status { UNINITIALIZED, // PRistine, link-time state before running. DORMANT_DURING_TESTS, // Only used during testing. DEACTIVATED, // No longer recording profling. PROFILING_ACTIVE, // Recording profiles (no parent-child links). PROFILING_CHILDREN_ACTIVE, // Fully active, recording parent-child links. }; typedef std::map BirthMap; typedef std::map DeathMap; typedef std::pair ParentChildPair; typedef std::set ParentChildSet; typedef std::stack ParentStack; // Initialize the current thread context with a new instance of ThreadData. // This is used by all threads that have names, and should be explicitly // set *before* any births on the threads have taken place. It is generally // only used by the message loop, which has a well defined thread name. static void InitializeThreadContext(const std::string& suggested_name); // Using Thread Local Store, find the current instance for collecting data. // If an instance does not exist, construct one (and remember it for use on // this thread. // This may return NULL if the system is disabled for any reason. static ThreadData* Get(); // Constructs a DictionaryValue instance containing all recursive results in // our process. The caller assumes ownership of the memory in the returned // instance. During the scavenging, if |reset_max| is true, then the // DeathData instances max-values are reset to zero during this scan. static base::DictionaryValue* ToValue(bool reset_max); // Finds (or creates) a place to count births from the given location in this // thread, and increment that tally. // TallyABirthIfActive will returns NULL if the birth cannot be tallied. static Births* TallyABirthIfActive(const Location& location); // Records the end of a timed run of an object. The |completed_task| contains // a pointer to a Births, the time_posted, and a delayed_start_time if any. // The |start_of_run| indicates when we started to perform the run of the // task. The delayed_start_time is non-null for tasks that were posted as // delayed tasks, and it indicates when the task should have run (i.e., when // it should have posted out of the timer queue, and into the work queue. // The |end_of_run| was just obtained by a call to Now() (just after the task // finished). It is provided as an argument to help with testing. static void TallyRunOnNamedThreadIfTracking( const base::TrackingInfo& completed_task, const TrackedTime& start_of_run, const TrackedTime& end_of_run); // Record the end of a timed run of an object. The |birth| is the record for // the instance, the |time_posted| records that instant, which is presumed to // be when the task was posted into a queue to run on a worker thread. // The |start_of_run| is when the worker thread started to perform the run of // the task. // The |end_of_run| was just obtained by a call to Now() (just after the task // finished). static void TallyRunOnWorkerThreadIfTracking( const Births* birth, const TrackedTime& time_posted, const TrackedTime& start_of_run, const TrackedTime& end_of_run); // Record the end of execution in region, generally corresponding to a scope // being exited. static void TallyRunInAScopedRegionIfTracking( const Births* birth, const TrackedTime& start_of_run, const TrackedTime& end_of_run); const std::string thread_name() const; // Snapshot (under a lock) copies of the maps in each ThreadData instance. For // each set of maps (BirthMap, DeathMap, and ParentChildSet) call the Append() // method of the |target| DataCollector. If |reset_max| is true, then the max // values in each DeathData instance should be reset during the scan. static void SendAllMaps(bool reset_max, class DataCollector* target); // Hack: asynchronously clear all birth counts and death tallies data values // in all ThreadData instances. The numerical (zeroing) part is done without // use of a locks or atomics exchanges, and may (for int64 values) produce // bogus counts VERY rarely. static void ResetAllThreadData(); // Initializes all statics if needed (this initialization call should be made // while we are single threaded). Returns false if unable to initialize. static bool Initialize(); // Sets internal status_. // If |status| is false, then status_ is set to DEACTIVATED. // If |status| is true, then status_ is set to, PROFILING_ACTIVE, or // PROFILING_CHILDREN_ACTIVE. // If tracking is not compiled in, this function will return false. // If parent-child tracking is not compiled in, then an attempt to set the // status to PROFILING_CHILDREN_ACTIVE will only result in a status of // PROFILING_ACTIVE (i.e., it can't be set to a higher level than what is // compiled into the binary, and parent-child tracking at the // PROFILING_CHILDREN_ACTIVE level might not be compiled in). static bool InitializeAndSetTrackingStatus(Status status); static Status status(); // Indicate if any sort of profiling is being done (i.e., we are more than // DEACTIVATED). static bool TrackingStatus(); // For testing only, indicate if the status of parent-child tracking is turned // on. This is currently a compiled option, atop TrackingStatus(). static bool TrackingParentChildStatus(); // Special versions of Now() for getting times at start and end of a tracked // run. They are super fast when tracking is disabled, and have some internal // side effects when we are tracking, so that we can deduce the amount of time // accumulated outside of execution of tracked runs. // The task that will be tracked is passed in as |parent| so that parent-child // relationships can be (optionally) calculated. static TrackedTime NowForStartOfRun(const Births* parent); static TrackedTime NowForEndOfRun(); // Provide a time function that does nothing (runs fast) when we don't have // the profiler enabled. It will generally be optimized away when it is // ifdef'ed to be small enough (allowing the profiler to be "compiled out" of // the code). static TrackedTime Now(); // Use the function |now| to provide current times, instead of calling the // TrackedTime::Now() function. Since this alternate function is being used, // the other time arguments (used for calculating queueing delay) will be // ignored. static void SetAlternateTimeSource(NowFunction* now); // This function can be called at process termination to validate that thread // cleanup routines have been called for at least some number of named // threads. static void EnsureCleanupWasCalled(int major_threads_shutdown_count); private: // Allow only tests to call ShutdownSingleThreadedCleanup. We NEVER call it // in production code. // TODO(jar): Make this a friend in DEBUG only, so that the optimizer has a // better change of optimizing (inlining? etc.) private methods (knowing that // there will be no need for an external entry point). friend class TrackedObjectsTest; FRIEND_TEST_ALL_PREFIXES(TrackedObjectsTest, MinimalStartupShutdown); FRIEND_TEST_ALL_PREFIXES(TrackedObjectsTest, TinyStartupShutdown); FRIEND_TEST_ALL_PREFIXES(TrackedObjectsTest, ParentChildTest); // Worker thread construction creates a name since there is none. explicit ThreadData(int thread_number); // Message loop based construction should provide a name. explicit ThreadData(const std::string& suggested_name); ~ThreadData(); // Push this instance to the head of all_thread_data_list_head_, linking it to // the previous head. This is performed after each construction, and leaves // the instance permanently on that list. void PushToHeadOfList(); // (Thread safe) Get start of list of all ThreadData instances using the lock. static ThreadData* first(); // Iterate through the null terminated list of ThreadData instances. ThreadData* next() const; // In this thread's data, record a new birth. Births* TallyABirth(const Location& location); // Find a place to record a death on this thread. void TallyADeath(const Births& birth, DurationInt queue_duration, DurationInt duration); // Using our lock, make a copy of the specified maps. This call may be made // on non-local threads, which necessitate the use of the lock to prevent // the map(s) from being reallocaed while they are copied. If |reset_max| is // true, then, just after we copy the DeathMap, we will set the max values to // zero in the active DeathMap (not the snapshot). void SnapshotMaps(bool reset_max, BirthMap* birth_map, DeathMap* death_map, ParentChildSet* parent_child_set); // Using our lock to protect the iteration, Clear all birth and death data. void Reset(); // This method is called by the TLS system when a thread terminates. // The argument may be NULL if this thread has never tracked a birth or death. static void OnThreadTermination(void* thread_data); // This method should be called when a worker thread terminates, so that we // can save all the thread data into a cache of reusable ThreadData instances. void OnThreadTerminationCleanup(); // Cleans up data structures, and returns statics to near pristine (mostly // uninitialized) state. If there is any chance that other threads are still // using the data structures, then the |leak| argument should be passed in as // true, and the data structures (birth maps, death maps, ThreadData // insntances, etc.) will be leaked and not deleted. If you have joined all // threads since the time that InitializeAndSetTrackingStatus() was called, // then you can pass in a |leak| value of false, and this function will // delete recursively all data structures, starting with the list of // ThreadData instances. static void ShutdownSingleThreadedCleanup(bool leak); // When non-null, this specifies an external function that supplies monotone // increasing time functcion. static NowFunction* now_function_; // We use thread local store to identify which ThreadData to interact with. static base::ThreadLocalStorage::StaticSlot tls_index_; // List of ThreadData instances for use with worker threads. When a worker // thread is done (terminated), we push it onto this llist. When a new worker // thread is created, we first try to re-use a ThreadData instance from the // list, and if none are available, construct a new one. // This is only accessed while list_lock_ is held. static ThreadData* first_retired_worker_; // Link to the most recently created instance (starts a null terminated list). // The list is traversed by about:profiler when it needs to snapshot data. // This is only accessed while list_lock_ is held. static ThreadData* all_thread_data_list_head_; // The next available worker thread number. This should only be accessed when // the list_lock_ is held. static int worker_thread_data_creation_count_; // The number of times TLS has called us back to cleanup a ThreadData // instance. This is only accessed while list_lock_ is held. static int cleanup_count_; // Incarnation sequence number, indicating how many times (during unittests) // we've either transitioned out of UNINITIALIZED, or into that state. This // value is only accessed while the list_lock_ is held. static int incarnation_counter_; // Protection for access to all_thread_data_list_head_, and to // unregistered_thread_data_pool_. This lock is leaked at shutdown. // The lock is very infrequently used, so we can afford to just make a lazy // instance and be safe. static base::LazyInstance::Leaky list_lock_; // We set status_ to SHUTDOWN when we shut down the tracking service. static Status status_; // Link to next instance (null terminated list). Used to globally track all // registered instances (corresponds to all registered threads where we keep // data). ThreadData* next_; // Pointer to another ThreadData instance for a Worker-Thread that has been // retired (its thread was terminated). This value is non-NULL only for a // retired ThreadData associated with a Worker-Thread. ThreadData* next_retired_worker_; // The name of the thread that is being recorded. If this thread has no // message_loop, then this is a worker thread, with a sequence number postfix. std::string thread_name_; // Indicate if this is a worker thread, and the ThreadData contexts should be // stored in the unregistered_thread_data_pool_ when not in use. // Value is zero when it is not a worker thread. Value is a positive integer // corresponding to the created thread name if it is a worker thread. int worker_thread_number_; // A map used on each thread to keep track of Births on this thread. // This map should only be accessed on the thread it was constructed on. // When a snapshot is needed, this structure can be locked in place for the // duration of the snapshotting activity. BirthMap birth_map_; // Similar to birth_map_, this records informations about death of tracked // instances (i.e., when a tracked instance was destroyed on this thread). // It is locked before changing, and hence other threads may access it by // locking before reading it. DeathMap death_map_; // A set of parents that created children tasks on this thread. Each pair // corresponds to potentially non-local Births (location and thread), and a // local Births (that took place on this thread). ParentChildSet parent_child_set_; // Lock to protect *some* access to BirthMap and DeathMap. The maps are // regularly read and written on this thread, but may only be read from other // threads. To support this, we acquire this lock if we are writing from this // thread, or reading from another thread. For reading from this thread we // don't need a lock, as there is no potential for a conflict since the // writing is only done from this thread. mutable base::Lock map_lock_; // The stack of parents that are currently being profiled. This includes only // tasks that have started a timer recently via NowForStartOfRun(), but not // yet concluded with a NowForEndOfRun(). Usually this stack is one deep, but // if a scoped region is profiled, or a task runs a nested-message // loop, then the stack can grow larger. Note that we don't try to deduct // time in nested porfiles, as our current timer is based on wall-clock time, // and not CPU time (and we're hopeful that nested timing won't be a // significant additional cost). ParentStack parent_stack_; // A random number that we used to select decide which sample to keep as a // representative sample in each DeathData instance. We can't start off with // much randomness (because we can't call RandInt() on all our threads), so // we stir in more and more as we go. int32 random_number_; // Record of what the incarnation_counter_ was when this instance was created. // If the incarnation_counter_ has changed, then we avoid pushing into the // pool (this is only critical in tests which go through multiple // incarnations). int incarnation_count_for_pool_; DISALLOW_COPY_AND_ASSIGN(ThreadData); }; //------------------------------------------------------------------------------ // DataCollector is a container class for Snapshot and BirthOnThread count // items. class BASE_EXPORT DataCollector { public: typedef std::vector Collection; // Construct with a list of how many threads should contribute. This helps us // determine (in the async case) when we are done with all contributions. DataCollector(); ~DataCollector(); // Adds all stats from the indicated thread into our arrays. Accepts copies // of the birth_map and death_map, so that the data will not change during the // iterations and processing. void Append(const ThreadData &thread_data, const ThreadData::BirthMap& birth_map, const ThreadData::DeathMap& death_map, const ThreadData::ParentChildSet& parent_child_set); // After the accumulation phase, the following accessor is used to process the // data (i.e., sort it, filter it, etc.). Collection* collection(); // Adds entries for all the remaining living objects (objects that have // tallied a birth, but have not yet tallied a matching death, and hence must // be either running, queued up, or being held in limbo for future posting). // This should be called after all known ThreadData instances have been // processed using Append(). void AddListOfLivingObjects(); // Generates a ListValue representation of the vector of snapshots, and // inserts the results into |dictionary|. void ToValue(base::DictionaryValue* dictionary) const; private: typedef std::map BirthCount; // The array that we collect data into. Collection collection_; // The total number of births recorded at each location for which we have not // seen a death count. This map changes as we do Append() calls, and is later // used by AddListOfLivingObjects() to gather up unaccounted for births. BirthCount global_birth_count_; // The complete list of parent-child relationships among tasks. ThreadData::ParentChildSet parent_child_set_; DISALLOW_COPY_AND_ASSIGN(DataCollector); }; } // namespace tracked_objects #endif // BASE_TRACKED_OBJECTS_H_