// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // A Tuple is a generic templatized container, similar in concept to std::pair // and std::tuple. The convenient MakeTuple() function takes any number of // arguments and will construct and return the appropriate Tuple object. The // functions DispatchToMethod and DispatchToFunction take a function pointer or // instance and method pointer, and unpack a tuple into arguments to the call. // // Tuple elements are copied by value, and stored in the tuple. See the unit // tests for more details of how/when the values are copied. // // Example usage: // // These two methods of creating a Tuple are identical. // Tuple tuple_a(1, "wee"); // Tuple tuple_b = MakeTuple(1, "wee"); // // void SomeFunc(int a, const char* b) { } // DispatchToFunction(&SomeFunc, tuple_a); // SomeFunc(1, "wee") // DispatchToFunction( // &SomeFunc, MakeTuple(10, "foo")); // SomeFunc(10, "foo") // // struct { void SomeMeth(int a, int b, int c) { } } foo; // DispatchToMethod(&foo, &Foo::SomeMeth, MakeTuple(1, 2, 3)); // // foo->SomeMeth(1, 2, 3); #ifndef BASE_TUPLE_H_ #define BASE_TUPLE_H_ #include #include "base/bind_helpers.h" #include "build/build_config.h" namespace base { // Index sequences // // Minimal clone of the similarly-named C++14 functionality. template struct IndexSequence {}; template struct MakeIndexSequenceImpl; #if defined(_PREFAST_) && defined(OS_WIN) // Work around VC++ 2013 /analyze internal compiler error: // https://connect.microsoft.com/VisualStudio/feedback/details/1053626 template <> struct MakeIndexSequenceImpl<0> { using Type = IndexSequence<>; }; template <> struct MakeIndexSequenceImpl<1> { using Type = IndexSequence<0>; }; template <> struct MakeIndexSequenceImpl<2> { using Type = IndexSequence<0,1>; }; template <> struct MakeIndexSequenceImpl<3> { using Type = IndexSequence<0,1,2>; }; template <> struct MakeIndexSequenceImpl<4> { using Type = IndexSequence<0,1,2,3>; }; template <> struct MakeIndexSequenceImpl<5> { using Type = IndexSequence<0,1,2,3,4>; }; template <> struct MakeIndexSequenceImpl<6> { using Type = IndexSequence<0,1,2,3,4,5>; }; template <> struct MakeIndexSequenceImpl<7> { using Type = IndexSequence<0,1,2,3,4,5,6>; }; template <> struct MakeIndexSequenceImpl<8> { using Type = IndexSequence<0,1,2,3,4,5,6,7>; }; template <> struct MakeIndexSequenceImpl<9> { using Type = IndexSequence<0,1,2,3,4,5,6,7,8>; }; template <> struct MakeIndexSequenceImpl<10> { using Type = IndexSequence<0,1,2,3,4,5,6,7,8,9>; }; template <> struct MakeIndexSequenceImpl<11> { using Type = IndexSequence<0,1,2,3,4,5,6,7,8,9,10>; }; template <> struct MakeIndexSequenceImpl<12> { using Type = IndexSequence<0,1,2,3,4,5,6,7,8,9,10,11>; }; template <> struct MakeIndexSequenceImpl<13> { using Type = IndexSequence<0,1,2,3,4,5,6,7,8,9,10,11,12>; }; #else // defined(WIN) && defined(_PREFAST_) template struct MakeIndexSequenceImpl<0, Ns...> { using Type = IndexSequence; }; template struct MakeIndexSequenceImpl : MakeIndexSequenceImpl {}; #endif // defined(WIN) && defined(_PREFAST_) template using MakeIndexSequence = typename MakeIndexSequenceImpl::Type; // Traits ---------------------------------------------------------------------- // // A simple traits class for tuple arguments. // // ValueType: the bare, nonref version of a type (same as the type for nonrefs). // RefType: the ref version of a type (same as the type for refs). // ParamType: what type to pass to functions (refs should not be constified). template struct TupleTraits { typedef P ValueType; typedef P& RefType; typedef const P& ParamType; }; template struct TupleTraits { typedef P ValueType; typedef P& RefType; typedef P& ParamType; }; // Tuple ----------------------------------------------------------------------- // // This set of classes is useful for bundling 0 or more heterogeneous data types // into a single variable. The advantage of this is that it greatly simplifies // function objects that need to take an arbitrary number of parameters; see // RunnableMethod and IPC::MessageWithTuple. // // Tuple<> is supplied to act as a 'void' type. It can be used, for example, // when dispatching to a function that accepts no arguments (see the // Dispatchers below). // Tuple is rarely useful. One such use is when A is non-const ref that you // want filled by the dispatchee, and the tuple is merely a container for that // output (a "tier"). See MakeRefTuple and its usages. template struct TupleBaseImpl; template using TupleBase = TupleBaseImpl, Ts...>; template struct TupleLeaf; template struct Tuple final : TupleBase { Tuple() : TupleBase() {} explicit Tuple(typename TupleTraits::ParamType... args) : TupleBase(args...) {} }; // Avoids ambiguity between Tuple's two constructors. template <> struct Tuple<> final {}; template struct TupleBaseImpl, Ts...> : TupleLeaf... { TupleBaseImpl() : TupleLeaf()... {} explicit TupleBaseImpl(typename TupleTraits::ParamType... args) : TupleLeaf(args)... {} }; template struct TupleLeaf { TupleLeaf() {} explicit TupleLeaf(typename TupleTraits::ParamType x) : x(x) {} T& get() { return x; } const T& get() const { return x; } T x; }; // Tuple getters -------------------------------------------------------------- // // Allows accessing an arbitrary tuple element by index. // // Example usage: // base::Tuple t2; // base::get<0>(t2) = 42; // base::get<1>(t2) = 3.14; template T& get(TupleLeaf& leaf) { return leaf.get(); } template const T& get(const TupleLeaf& leaf) { return leaf.get(); } // Tuple types ---------------------------------------------------------------- // // Allows for selection of ValueTuple/RefTuple/ParamTuple without needing the // definitions of class types the tuple takes as parameters. template struct TupleTypes; template struct TupleTypes> { using ValueTuple = Tuple::ValueType...>; using RefTuple = Tuple::RefType...>; using ParamTuple = Tuple::ParamType...>; }; // Tuple creators ------------------------------------------------------------- // // Helper functions for constructing tuples while inferring the template // argument types. template inline Tuple MakeTuple(const Ts&... arg) { return Tuple(arg...); } // The following set of helpers make what Boost refers to as "Tiers" - a tuple // of references. template inline Tuple MakeRefTuple(Ts&... arg) { return Tuple(arg...); } // Dispatchers ---------------------------------------------------------------- // // Helper functions that call the given method on an object, with the unpacked // tuple arguments. Notice that they all have the same number of arguments, // so you need only write: // DispatchToMethod(object, &Object::method, args); // This is very useful for templated dispatchers, since they don't need to know // what type |args| is. // Non-Static Dispatchers with no out params. template inline void DispatchToMethodImpl(ObjT* obj, Method method, const Tuple& arg, IndexSequence) { (obj->*method)(base::internal::UnwrapTraits::Unwrap(get(arg))...); } template inline void DispatchToMethod(ObjT* obj, Method method, const Tuple& arg) { DispatchToMethodImpl(obj, method, arg, MakeIndexSequence()); } // Static Dispatchers with no out params. template inline void DispatchToFunctionImpl(Function function, const Tuple& arg, IndexSequence) { (*function)(base::internal::UnwrapTraits::Unwrap(get(arg))...); } template inline void DispatchToFunction(Function function, const Tuple& arg) { DispatchToFunctionImpl(function, arg, MakeIndexSequence()); } // Dispatchers with out parameters. template inline void DispatchToMethodImpl(ObjT* obj, Method method, const Tuple& in, Tuple* out, IndexSequence, IndexSequence) { (obj->*method)(base::internal::UnwrapTraits::Unwrap(get(in))..., &get(*out)...); } template inline void DispatchToMethod(ObjT* obj, Method method, const Tuple& in, Tuple* out) { DispatchToMethodImpl(obj, method, in, out, MakeIndexSequence(), MakeIndexSequence()); } } // namespace base #endif // BASE_TUPLE_H_