// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file specifies a recursive data storage class called Value // intended for storing setting and other persistable data. // It includes the ability to specify (recursive) lists and dictionaries, so // it's fairly expressive. However, the API is optimized for the common case, // namely storing a hierarchical tree of simple values. Given a // DictionaryValue root, you can easily do things like: // // root->SetString(L"global.pages.homepage", L"http://goateleporter.com"); // std::wstring homepage = L"http://google.com"; // default/fallback value // root->GetString(L"global.pages.homepage", &homepage); // // where "global" and "pages" are also DictionaryValues, and "homepage" // is a string setting. If some elements of the path didn't exist yet, // the SetString() method would create the missing elements and attach them // to root before attaching the homepage value. #ifndef BASE_VALUES_H_ #define BASE_VALUES_H_ #include #include #include #include #include "base/basictypes.h" class Value; class FundamentalValue; class StringValue; class BinaryValue; class DictionaryValue; class ListValue; typedef std::vector ValueVector; typedef std::map ValueMap; // The Value class is the base class for Values. A Value can be // instantiated via the Create*Value() factory methods, or by directly // creating instances of the subclasses. class Value { public: virtual ~Value(); // Convenience methods for creating Value objects for various // kinds of values without thinking about which class implements them. // These can always be expected to return a valid Value*. static Value* CreateNullValue(); static Value* CreateBooleanValue(bool in_value); static Value* CreateIntegerValue(int in_value); static Value* CreateRealValue(double in_value); static Value* CreateStringValue(const std::string& in_value); static Value* CreateStringValue(const std::wstring& in_value); // This one can return NULL if the input isn't valid. If the return value // is non-null, the new object has taken ownership of the buffer pointer. static BinaryValue* CreateBinaryValue(char* buffer, size_t size); typedef enum { TYPE_NULL = 0, TYPE_BOOLEAN, TYPE_INTEGER, TYPE_REAL, TYPE_STRING, TYPE_BINARY, TYPE_DICTIONARY, TYPE_LIST } ValueType; // Returns the type of the value stored by the current Value object. // Each type will be implemented by only one subclass of Value, so it's // safe to use the ValueType to determine whether you can cast from // Value* to (Implementing Class)*. Also, a Value object never changes // its type after construction. ValueType GetType() const { return type_; } // Returns true if the current object represents a given type. bool IsType(ValueType type) const { return type == type_; } // These methods allow the convenient retrieval of settings. // If the current setting object can be converted into the given type, // the value is returned through the "value" parameter and true is returned; // otherwise, false is returned and "value" is unchanged. virtual bool GetAsBoolean(bool* out_value) const; virtual bool GetAsInteger(int* out_value) const; virtual bool GetAsReal(double* out_value) const; virtual bool GetAsString(std::string* out_value) const; virtual bool GetAsString(std::wstring* out_value) const; // This creates a deep copy of the entire Value tree, and returns a pointer // to the copy. The caller gets ownership of the copy, of course. virtual Value* DeepCopy() const; // Compares if two Value objects have equal contents. virtual bool Equals(const Value* other) const; protected: // This isn't safe for end-users (they should use the Create*Value() // static methods above), but it's useful for subclasses. Value(ValueType type) : type_(type) {} private: DISALLOW_EVIL_CONSTRUCTORS(Value); Value(); ValueType type_; }; // FundamentalValue represents the simple fundamental types of values. class FundamentalValue : public Value { public: FundamentalValue(bool in_value) : Value(TYPE_BOOLEAN), boolean_value_(in_value) {} FundamentalValue(int in_value) : Value(TYPE_INTEGER), integer_value_(in_value) {} FundamentalValue(double in_value) : Value(TYPE_REAL), real_value_(in_value) {} ~FundamentalValue(); // Subclassed methods virtual bool GetAsBoolean(bool* out_value) const; virtual bool GetAsInteger(int* out_value) const; virtual bool GetAsReal(double* out_value) const; virtual Value* DeepCopy() const; virtual bool Equals(const Value* other) const; private: DISALLOW_EVIL_CONSTRUCTORS(FundamentalValue); union { bool boolean_value_; int integer_value_; double real_value_; }; }; class StringValue : public Value { public: // Initializes a StringValue with a UTF-8 narrow character string. StringValue(const std::string& in_value); // Initializes a StringValue with a wide character string. StringValue(const std::wstring& in_value); ~StringValue(); // Subclassed methods bool GetAsString(std::string* out_value) const; bool GetAsString(std::wstring* out_value) const; Value* DeepCopy() const; virtual bool Equals(const Value* other) const; private: DISALLOW_EVIL_CONSTRUCTORS(StringValue); std::string value_; }; class BinaryValue: public Value { public: // Creates a Value to represent a binary buffer. The new object takes // ownership of the pointer passed in, if successful. // Returns NULL if buffer is NULL. static BinaryValue* Create(char* buffer, size_t size); // For situations where you want to keep ownership of your buffer, this // factory method creates a new BinaryValue by copying the contents of the // buffer that's passed in. // Returns NULL if buffer is NULL. static BinaryValue* CreateWithCopiedBuffer(char* buffer, size_t size); ~BinaryValue(); // Subclassed methods Value* DeepCopy() const; virtual bool Equals(const Value* other) const; size_t GetSize() const { return size_; } char* GetBuffer() { return buffer_; } private: DISALLOW_EVIL_CONSTRUCTORS(BinaryValue); // Constructor is private so that only objects with valid buffer pointers // and size values can be created. BinaryValue(char* buffer, size_t size); char* buffer_; size_t size_; }; class DictionaryValue : public Value { public: DictionaryValue() : Value(TYPE_DICTIONARY) {} ~DictionaryValue(); // Subclassed methods Value* DeepCopy() const; virtual bool Equals(const Value* other) const; // Returns true if the current dictionary has a value for the given key. bool HasKey(const std::wstring& key); // Clears any current contents of this dictionary. void Clear(); // Sets the Value associated with the given path starting from this object. // A path has the form "" or "..[...]", where "." indexes // into the next DictionaryValue down. Obviously, "." can't be used // within a key, but there are no other restrictions on keys. // If the key at any step of the way doesn't exist, or exists but isn't // a DictionaryValue, a new DictionaryValue will be created and attached // to the path in that location. // Note that the dictionary takes ownership of the value // referenced by in_value. bool Set(const std::wstring& path, Value* in_value); // Convenience forms of Set(). These methods will replace any existing // value at that path, even if it has a different type. bool SetBoolean(const std::wstring& path, bool in_value); bool SetInteger(const std::wstring& path, int in_value); bool SetReal(const std::wstring& path, double in_value); bool SetString(const std::wstring& path, const std::string& in_value); bool SetString(const std::wstring& path, const std::wstring& in_value); // Gets the Value associated with the given path starting from this object. // A path has the form "" or "..[...]", where "." indexes // into the next DictionaryValue down. If the path can be resolved // successfully, the value for the last key in the path will be returned // through the "value" parameter, and the function will return true. // Otherwise, it will return false and "value" will be untouched. // Note that the dictionary always owns the value that's returned. bool Get(const std::wstring& path, Value** out_value) const; // These are convenience forms of Get(). The value will be retrieved // and the return value will be true if the path is valid and the value at // the end of the path can be returned in the form specified. bool GetBoolean(const std::wstring& path, bool* out_value) const; bool GetInteger(const std::wstring& path, int* out_value) const; bool GetReal(const std::wstring& path, double* out_value) const; bool GetString(const std::wstring& path, std::string* out_value) const; bool GetString(const std::wstring& path, std::wstring* out_value) const; bool GetBinary(const std::wstring& path, BinaryValue** out_value) const; bool GetDictionary(const std::wstring& path, DictionaryValue** out_value) const; bool GetList(const std::wstring& path, ListValue** out_value) const; // Removes the Value with the specified path from this dictionary (or one // of its child dictionaries, if the path is more than just a local key). // If |out_value| is non-NULL, the removed Value AND ITS OWNERSHIP will be // passed out via out_value. If |out_value| is NULL, the removed value will // be deleted. This method returns true if |path| is a valid path; otherwise // it will return false and the DictionaryValue object will be unchanged. bool Remove(const std::wstring& path, Value** out_value); // This class provides an iterator for the keys in the dictionary. // It can't be used to modify the dictionary. class key_iterator : private std::iterator { public: key_iterator(ValueMap::const_iterator itr) { itr_ = itr; } key_iterator operator++() { ++itr_; return *this; } const std::wstring& operator*() { return itr_->first; } bool operator!=(const key_iterator& other) { return itr_ != other.itr_; } bool operator==(const key_iterator& other) { return itr_ == other.itr_; } private: ValueMap::const_iterator itr_; }; key_iterator begin_keys() const { return key_iterator(dictionary_.begin()); } key_iterator end_keys() const { return key_iterator(dictionary_.end()); } private: DISALLOW_EVIL_CONSTRUCTORS(DictionaryValue); // Associates the value |in_value| with the |key|. This method should be // used instead of "dictionary_[key] = foo" so that any previous value can // be properly deleted. void SetInCurrentNode(const std::wstring& key, Value* in_value); ValueMap dictionary_; }; // This type of Value represents a list of other Value values. // TODO(jhughes): Flesh this out. class ListValue : public Value { public: ListValue() : Value(TYPE_LIST) {} ~ListValue(); // Subclassed methods Value* DeepCopy() const; virtual bool Equals(const Value* other) const; // Clears the contents of this ListValue void Clear(); // Returns the number of Values in this list. size_t GetSize() const { return list_.size(); } // Sets the list item at the given index to be the Value specified by // the value given. If the index beyond the current end of the list, null // Values will be used to pad out the list. // Returns true if successful, or false if the index was negative or // the value is a null pointer. bool Set(size_t index, Value* in_value); // Gets the Value at the given index. Modifies value (and returns true) // only if the index falls within the current list range. // Note that the list always owns the Value passed out via out_value. bool Get(size_t index, Value** out_value) const; // Convenience forms of Get(). Modifies value (and returns true) only if // the index is valid and the Value at that index can be returned in // the specified form. bool GetDictionary(size_t index, DictionaryValue** out_value) const; // Removes the Value with the specified index from this list. // If |out_value| is non-NULL, the removed Value AND ITS OWNERSHIP will be // passed out via out_value. If |out_value| is NULL, the removed value will // be deleted. This method returns true if |index| is valid; otherwise // it will return false and the ListValue object will be unchanged. bool Remove(size_t index, Value** out_value); // Appends a Value to the end of the list. void Append(Value* in_value); // Iteration typedef ValueVector::iterator iterator; typedef ValueVector::const_iterator const_iterator; ListValue::iterator begin() { return list_.begin(); } ListValue::iterator end() { return list_.end(); } ListValue::const_iterator begin() const { return list_.begin(); } ListValue::const_iterator end() const { return list_.end(); } ListValue::iterator Erase(iterator item) { return list_.erase(item); } private: DISALLOW_EVIL_CONSTRUCTORS(ListValue); ValueVector list_; }; // This interface is implemented by classes that know how to serialize and // deserialize Value objects. class ValueSerializer { public: virtual ~ValueSerializer() {} virtual bool Serialize(const Value& root) = 0; // This method deserializes the subclass-specific format into a Value object. // The method should return true if and only if the root parameter is set // to a complete Value representation of the serialized form. If the // return value is true, the caller takes ownership of the objects pointed // to by root. If the return value is false, root should be unchanged and if // error_message is non-null, it should be filled with a message describing // the error. virtual bool Deserialize(Value** root, std::string* error_message) = 0; }; #endif // BASE_VALUES_H_