// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "config.h" #include "CCMathUtil.h" #include "CCGeometryTestUtils.h" #include "FloatRect.h" #include #include #include using namespace cc; using WebKit::WebTransformationMatrix; namespace { TEST(CCMathUtilTest, verifyBackfaceVisibilityBasicCases) { WebTransformationMatrix transform; transform.makeIdentity(); EXPECT_FALSE(transform.isBackFaceVisible()); transform.makeIdentity(); transform.rotate3d(0, 80, 0); EXPECT_FALSE(transform.isBackFaceVisible()); transform.makeIdentity(); transform.rotate3d(0, 100, 0); EXPECT_TRUE(transform.isBackFaceVisible()); // Edge case, 90 degree rotation should return false. transform.makeIdentity(); transform.rotate3d(0, 90, 0); EXPECT_FALSE(transform.isBackFaceVisible()); } TEST(CCMathUtilTest, verifyBackfaceVisibilityForPerspective) { WebTransformationMatrix layerSpaceToProjectionPlane; // This tests if isBackFaceVisible works properly under perspective transforms. // Specifically, layers that may have their back face visible in orthographic // projection, may not actually have back face visible under perspective projection. // Case 1: Layer is rotated by slightly more than 90 degrees, at the center of the // prespective projection. In this case, the layer's back-side is visible to // the camera. layerSpaceToProjectionPlane.makeIdentity(); layerSpaceToProjectionPlane.applyPerspective(1); layerSpaceToProjectionPlane.translate3d(0, 0, 0); layerSpaceToProjectionPlane.rotate3d(0, 100, 0); EXPECT_TRUE(layerSpaceToProjectionPlane.isBackFaceVisible()); // Case 2: Layer is rotated by slightly more than 90 degrees, but shifted off to the // side of the camera. Because of the wide field-of-view, the layer's front // side is still visible. // // |<-- front side of layer is visible to perspective camera // \ | / // \ | / // \| / // | / // |\ /<-- camera field of view // | \ / // back side of layer -->| \ / // \./ <-- camera origin // layerSpaceToProjectionPlane.makeIdentity(); layerSpaceToProjectionPlane.applyPerspective(1); layerSpaceToProjectionPlane.translate3d(-10, 0, 0); layerSpaceToProjectionPlane.rotate3d(0, 100, 0); EXPECT_FALSE(layerSpaceToProjectionPlane.isBackFaceVisible()); // Case 3: Additionally rotating the layer by 180 degrees should of course show the // opposite result of case 2. layerSpaceToProjectionPlane.rotate3d(0, 180, 0); EXPECT_TRUE(layerSpaceToProjectionPlane.isBackFaceVisible()); } TEST(CCMathUtilTest, verifyProjectionOfPerpendicularPlane) { // In this case, the m33() element of the transform becomes zero, which could cause a // divide-by-zero when projecting points/quads. WebTransformationMatrix transform; transform.makeIdentity(); transform.setM33(0); FloatRect rect = FloatRect(0, 0, 1, 1); FloatRect projectedRect = CCMathUtil::projectClippedRect(transform, rect); EXPECT_EQ(0, projectedRect.x()); EXPECT_EQ(0, projectedRect.y()); EXPECT_TRUE(projectedRect.isEmpty()); } TEST(CCMathUtilTest, verifyEnclosingClippedRectUsesCorrectInitialBounds) { HomogeneousCoordinate h1(-100, -100, 0, 1); HomogeneousCoordinate h2(-10, -10, 0, 1); HomogeneousCoordinate h3(10, 10, 0, -1); HomogeneousCoordinate h4(100, 100, 0, -1); // The bounds of the enclosing clipped rect should be -100 to -10 for both x and y. // However, if there is a bug where the initial xmin/xmax/ymin/ymax are initialized to // numeric_limits::min() (which is zero, not -flt_max) then the enclosing // clipped rect will be computed incorrectly. FloatRect result = CCMathUtil::computeEnclosingClippedRect(h1, h2, h3, h4); EXPECT_FLOAT_RECT_EQ(FloatRect(FloatPoint(-100, -100), FloatSize(90, 90)), result); } TEST(CCMathUtilTest, verifyEnclosingRectOfVerticesUsesCorrectInitialBounds) { FloatPoint vertices[3]; int numVertices = 3; vertices[0] = FloatPoint(-10, -100); vertices[1] = FloatPoint(-100, -10); vertices[2] = FloatPoint(-30, -30); // The bounds of the enclosing rect should be -100 to -10 for both x and y. However, // if there is a bug where the initial xmin/xmax/ymin/ymax are initialized to // numeric_limits::min() (which is zero, not -flt_max) then the enclosing // clipped rect will be computed incorrectly. FloatRect result = CCMathUtil::computeEnclosingRectOfVertices(vertices, numVertices); EXPECT_FLOAT_RECT_EQ(FloatRect(FloatPoint(-100, -100), FloatSize(90, 90)), result); } TEST(CCMathUtilTest, smallestAngleBetweenVectors) { FloatSize x(1, 0); FloatSize y(0, 1); FloatSize testVector(0.5, 0.5); // Orthogonal vectors are at an angle of 90 degress. EXPECT_EQ(90, CCMathUtil::smallestAngleBetweenVectors(x, y)); // A vector makes a zero angle with itself. EXPECT_EQ(0, CCMathUtil::smallestAngleBetweenVectors(x, x)); EXPECT_EQ(0, CCMathUtil::smallestAngleBetweenVectors(y, y)); EXPECT_EQ(0, CCMathUtil::smallestAngleBetweenVectors(testVector, testVector)); // Parallel but reversed vectors are at 180 degrees. EXPECT_FLOAT_EQ(180, CCMathUtil::smallestAngleBetweenVectors(x, -x)); EXPECT_FLOAT_EQ(180, CCMathUtil::smallestAngleBetweenVectors(y, -y)); EXPECT_FLOAT_EQ(180, CCMathUtil::smallestAngleBetweenVectors(testVector, -testVector)); // The test vector is at a known angle. EXPECT_FLOAT_EQ(45, floor(CCMathUtil::smallestAngleBetweenVectors(testVector, x))); EXPECT_FLOAT_EQ(45, floor(CCMathUtil::smallestAngleBetweenVectors(testVector, y))); } TEST(CCMathUtilTest, vectorProjection) { FloatSize x(1, 0); FloatSize y(0, 1); FloatSize testVector(0.3f, 0.7f); // Orthogonal vectors project to a zero vector. EXPECT_EQ(FloatSize(0, 0), CCMathUtil::projectVector(x, y)); EXPECT_EQ(FloatSize(0, 0), CCMathUtil::projectVector(y, x)); // Projecting a vector onto the orthonormal basis gives the corresponding component of the // vector. EXPECT_EQ(FloatSize(testVector.width(), 0), CCMathUtil::projectVector(testVector, x)); EXPECT_EQ(FloatSize(0, testVector.height()), CCMathUtil::projectVector(testVector, y)); // Finally check than an arbitrary vector projected to another one gives a vector parallel to // the second vector. FloatSize targetVector(0.5, 0.2f); FloatSize projectedVector = CCMathUtil::projectVector(testVector, targetVector); EXPECT_EQ(projectedVector.width() / targetVector.width(), projectedVector.height() / targetVector.height()); } } // namespace