// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/animation/animation.h" #include #include "base/debug/trace_event.h" #include "base/strings/string_util.h" #include "cc/animation/animation_curve.h" namespace { // This should match the RunState enum. static const char* const s_runStateNames[] = { "WaitingForTargetAvailability", "WaitingForDeletion", "Starting", "Running", "Paused", "Finished", "Aborted" }; COMPILE_ASSERT(static_cast(cc::Animation::RunStateEnumSize) == arraysize(s_runStateNames), RunState_names_match_enum); // This should match the TargetProperty enum. static const char* const s_targetPropertyNames[] = { "Transform", "Opacity", "Filter", "ScrollOffset", "BackgroundColor" }; COMPILE_ASSERT(static_cast(cc::Animation::TargetPropertyEnumSize) == arraysize(s_targetPropertyNames), TargetProperty_names_match_enum); } // namespace namespace cc { scoped_ptr Animation::Create( scoped_ptr curve, int animation_id, int group_id, TargetProperty target_property) { return make_scoped_ptr(new Animation(curve.Pass(), animation_id, group_id, target_property)); } Animation::Animation(scoped_ptr curve, int animation_id, int group_id, TargetProperty target_property) : curve_(curve.Pass()), id_(animation_id), group_(group_id), target_property_(target_property), run_state_(WaitingForTargetAvailability), iterations_(1), iteration_start_(0), direction_(Normal), playback_rate_(1), fill_mode_(FillModeBoth), needs_synchronized_start_time_(false), received_finished_event_(false), suspended_(false), is_controlling_instance_(false), is_impl_only_(false), affects_active_observers_(true), affects_pending_observers_(true) { } Animation::~Animation() { if (run_state_ == Running || run_state_ == Paused) SetRunState(Aborted, base::TimeTicks()); } void Animation::SetRunState(RunState run_state, base::TimeTicks monotonic_time) { if (suspended_) return; char name_buffer[256]; base::snprintf(name_buffer, sizeof(name_buffer), "%s-%d%s", s_targetPropertyNames[target_property_], group_, is_controlling_instance_ ? "(impl)" : ""); bool is_waiting_to_start = run_state_ == WaitingForTargetAvailability || run_state_ == Starting; if (is_waiting_to_start && run_state == Running) { TRACE_EVENT_ASYNC_BEGIN1( "cc", "Animation", this, "Name", TRACE_STR_COPY(name_buffer)); } bool was_finished = is_finished(); const char* old_run_state_name = s_runStateNames[run_state_]; if (run_state == Running && run_state_ == Paused) total_paused_time_ += (monotonic_time - pause_time_); else if (run_state == Paused) pause_time_ = monotonic_time; run_state_ = run_state; const char* new_run_state_name = s_runStateNames[run_state]; if (!was_finished && is_finished()) TRACE_EVENT_ASYNC_END0("cc", "Animation", this); char state_buffer[256]; base::snprintf(state_buffer, sizeof(state_buffer), "%s->%s", old_run_state_name, new_run_state_name); TRACE_EVENT_INSTANT2("cc", "LayerAnimationController::SetRunState", TRACE_EVENT_SCOPE_THREAD, "Name", TRACE_STR_COPY(name_buffer), "State", TRACE_STR_COPY(state_buffer)); } void Animation::Suspend(base::TimeTicks monotonic_time) { SetRunState(Paused, monotonic_time); suspended_ = true; } void Animation::Resume(base::TimeTicks monotonic_time) { suspended_ = false; SetRunState(Running, monotonic_time); } bool Animation::IsFinishedAt(base::TimeTicks monotonic_time) const { if (is_finished()) return true; if (needs_synchronized_start_time_) return false; if (playback_rate_ == 0) return false; return run_state_ == Running && iterations_ >= 0 && iterations_ * curve_->Duration() / std::abs(playback_rate_) <= (monotonic_time + time_offset_ - start_time_ - total_paused_time_) .InSecondsF(); } bool Animation::InEffect(base::TimeTicks monotonic_time) const { return ConvertToActiveTime(monotonic_time) >= 0 || (fill_mode_ == FillModeBoth || fill_mode_ == FillModeBackwards); } double Animation::ConvertToActiveTime(base::TimeTicks monotonic_time) const { base::TimeTicks trimmed = monotonic_time + time_offset_; // If we're paused, time is 'stuck' at the pause time. if (run_state_ == Paused) trimmed = pause_time_; // Returned time should always be relative to the start time and should // subtract all time spent paused. trimmed -= (start_time_ - base::TimeTicks()) + total_paused_time_; // If we're just starting or we're waiting on receiving a start time, // time is 'stuck' at the initial state. if ((run_state_ == Starting && !has_set_start_time()) || needs_synchronized_start_time()) trimmed = base::TimeTicks() + time_offset_; return (trimmed - base::TimeTicks()).InSecondsF(); } double Animation::TrimTimeToCurrentIteration( base::TimeTicks monotonic_time) const { // Check for valid parameters DCHECK(playback_rate_); DCHECK_GE(iteration_start_, 0); double active_time = ConvertToActiveTime(monotonic_time); double start_offset = iteration_start_ * curve_->Duration(); // Return start offset if we are before the start of the animation if (active_time < 0) return start_offset; // Always return zero if we have no iterations. if (!iterations_) return 0; // Don't attempt to trim if we have no duration. if (curve_->Duration() <= 0) return 0; double repeated_duration = iterations_ * curve_->Duration(); double active_duration = repeated_duration / std::abs(playback_rate_); // Check if we are past active duration if (iterations_ > 0 && active_time >= active_duration) active_time = active_duration; // Calculate the scaled active time double scaled_active_time; if (playback_rate_ < 0) scaled_active_time = (active_time - active_duration) * playback_rate_ + start_offset; else scaled_active_time = active_time * playback_rate_ + start_offset; // Calculate the iteration time double iteration_time; if (scaled_active_time - start_offset == repeated_duration && fmod(iterations_ + iteration_start_, 1) == 0) iteration_time = curve_->Duration(); else iteration_time = fmod(scaled_active_time, curve_->Duration()); // Calculate the current iteration int iteration; if (scaled_active_time <= 0) iteration = 0; else if (iteration_time == curve_->Duration()) iteration = ceil(iteration_start_ + iterations_ - 1); else iteration = static_cast(scaled_active_time / curve_->Duration()); // Check if we are running the animation in reverse direction for the current // iteration bool reverse = (direction_ == Reverse) || (direction_ == Alternate && iteration % 2 == 1) || (direction_ == AlternateReverse && iteration % 2 == 0); // If we are running the animation in reverse direction, reverse the result if (reverse) iteration_time = curve_->Duration() - iteration_time; return iteration_time; } scoped_ptr Animation::CloneAndInitialize( RunState initial_run_state) const { scoped_ptr to_return( new Animation(curve_->Clone(), id_, group_, target_property_)); to_return->run_state_ = initial_run_state; to_return->iterations_ = iterations_; to_return->iteration_start_ = iteration_start_; to_return->start_time_ = start_time_; to_return->pause_time_ = pause_time_; to_return->total_paused_time_ = total_paused_time_; to_return->time_offset_ = time_offset_; to_return->direction_ = direction_; to_return->playback_rate_ = playback_rate_; to_return->fill_mode_ = fill_mode_; DCHECK(!to_return->is_controlling_instance_); to_return->is_controlling_instance_ = true; return to_return.Pass(); } void Animation::PushPropertiesTo(Animation* other) const { // Currently, we only push changes due to pausing and resuming animations on // the main thread. if (run_state_ == Animation::Paused || other->run_state_ == Animation::Paused) { other->run_state_ = run_state_; other->pause_time_ = pause_time_; other->total_paused_time_ = total_paused_time_; } } } // namespace cc