// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/animation/animation.h" #include #include "base/strings/string_util.h" #include "base/trace_event/trace_event.h" #include "cc/animation/animation_curve.h" #include "cc/base/time_util.h" namespace { // This should match the RunState enum. static const char* const s_runStateNames[] = {"WAITING_FOR_TARGET_AVAILABILITY", "WAITING_FOR_DELETION", "STARTING", "RUNNING", "PAUSED", "FINISHED", "ABORTED", "ABORTED_BUT_NEEDS_COMPLETION"}; static_assert(static_cast(cc::Animation::LAST_RUN_STATE) + 1 == arraysize(s_runStateNames), "RunStateEnumSize should equal the number of elements in " "s_runStateNames"); } // namespace namespace cc { scoped_ptr Animation::Create(scoped_ptr curve, int animation_id, int group_id, TargetProperty::Type target_property) { return make_scoped_ptr( new Animation(std::move(curve), animation_id, group_id, target_property)); } Animation::Animation(scoped_ptr curve, int animation_id, int group_id, TargetProperty::Type target_property) : curve_(std::move(curve)), id_(animation_id), group_(group_id), target_property_(target_property), run_state_(WAITING_FOR_TARGET_AVAILABILITY), iterations_(1), iteration_start_(0), direction_(DIRECTION_NORMAL), playback_rate_(1), fill_mode_(FILL_MODE_BOTH), needs_synchronized_start_time_(false), received_finished_event_(false), suspended_(false), is_controlling_instance_(false), is_impl_only_(false), affects_active_observers_(true), affects_pending_observers_(true) {} Animation::~Animation() { if (run_state_ == RUNNING || run_state_ == PAUSED) SetRunState(ABORTED, base::TimeTicks()); } void Animation::SetRunState(RunState run_state, base::TimeTicks monotonic_time) { if (suspended_) return; char name_buffer[256]; base::snprintf(name_buffer, sizeof(name_buffer), "%s-%d", TargetProperty::GetName(target_property_), group_); bool is_waiting_to_start = run_state_ == WAITING_FOR_TARGET_AVAILABILITY || run_state_ == STARTING; if (is_controlling_instance_ && is_waiting_to_start && run_state == RUNNING) { TRACE_EVENT_ASYNC_BEGIN1( "cc", "Animation", this, "Name", TRACE_STR_COPY(name_buffer)); } bool was_finished = is_finished(); const char* old_run_state_name = s_runStateNames[run_state_]; if (run_state == RUNNING && run_state_ == PAUSED) total_paused_time_ += (monotonic_time - pause_time_); else if (run_state == PAUSED) pause_time_ = monotonic_time; run_state_ = run_state; const char* new_run_state_name = s_runStateNames[run_state]; if (is_controlling_instance_ && !was_finished && is_finished()) TRACE_EVENT_ASYNC_END0("cc", "Animation", this); char state_buffer[256]; base::snprintf(state_buffer, sizeof(state_buffer), "%s->%s", old_run_state_name, new_run_state_name); TRACE_EVENT_INSTANT2("cc", "LayerAnimationController::SetRunState", TRACE_EVENT_SCOPE_THREAD, "Name", TRACE_STR_COPY(name_buffer), "State", TRACE_STR_COPY(state_buffer)); } void Animation::Suspend(base::TimeTicks monotonic_time) { SetRunState(PAUSED, monotonic_time); suspended_ = true; } void Animation::Resume(base::TimeTicks monotonic_time) { suspended_ = false; SetRunState(RUNNING, monotonic_time); } bool Animation::IsFinishedAt(base::TimeTicks monotonic_time) const { if (is_finished()) return true; if (needs_synchronized_start_time_) return false; if (playback_rate_ == 0) return false; return run_state_ == RUNNING && iterations_ >= 0 && TimeUtil::Scale(curve_->Duration(), iterations_ / std::abs(playback_rate_)) <= (monotonic_time + time_offset_ - start_time_ - total_paused_time_); } bool Animation::InEffect(base::TimeTicks monotonic_time) const { return ConvertToActiveTime(monotonic_time) >= base::TimeDelta() || (fill_mode_ == FILL_MODE_BOTH || fill_mode_ == FILL_MODE_BACKWARDS); } base::TimeDelta Animation::ConvertToActiveTime( base::TimeTicks monotonic_time) const { base::TimeTicks trimmed = monotonic_time + time_offset_; // If we're paused, time is 'stuck' at the pause time. if (run_state_ == PAUSED) trimmed = pause_time_; // Returned time should always be relative to the start time and should // subtract all time spent paused. trimmed -= (start_time_ - base::TimeTicks()) + total_paused_time_; // If we're just starting or we're waiting on receiving a start time, // time is 'stuck' at the initial state. if ((run_state_ == STARTING && !has_set_start_time()) || needs_synchronized_start_time()) trimmed = base::TimeTicks() + time_offset_; return (trimmed - base::TimeTicks()); } base::TimeDelta Animation::TrimTimeToCurrentIteration( base::TimeTicks monotonic_time) const { // Check for valid parameters DCHECK(playback_rate_); DCHECK_GE(iteration_start_, 0); base::TimeDelta active_time = ConvertToActiveTime(monotonic_time); base::TimeDelta start_offset = TimeUtil::Scale(curve_->Duration(), iteration_start_); // Return start offset if we are before the start of the animation if (active_time < base::TimeDelta()) return start_offset; // Always return zero if we have no iterations. if (!iterations_) return base::TimeDelta(); // Don't attempt to trim if we have no duration. if (curve_->Duration() <= base::TimeDelta()) return base::TimeDelta(); base::TimeDelta repeated_duration = TimeUtil::Scale(curve_->Duration(), iterations_); base::TimeDelta active_duration = TimeUtil::Scale(repeated_duration, 1.0 / std::abs(playback_rate_)); // Check if we are past active duration if (iterations_ > 0 && active_time >= active_duration) active_time = active_duration; // Calculate the scaled active time base::TimeDelta scaled_active_time; if (playback_rate_ < 0) scaled_active_time = TimeUtil::Scale((active_time - active_duration), playback_rate_) + start_offset; else scaled_active_time = TimeUtil::Scale(active_time, playback_rate_) + start_offset; // Calculate the iteration time base::TimeDelta iteration_time; if (scaled_active_time - start_offset == repeated_duration && fmod(iterations_ + iteration_start_, 1) == 0) iteration_time = curve_->Duration(); else iteration_time = TimeUtil::Mod(scaled_active_time, curve_->Duration()); // Calculate the current iteration int iteration; if (scaled_active_time <= base::TimeDelta()) iteration = 0; else if (iteration_time == curve_->Duration()) iteration = ceil(iteration_start_ + iterations_ - 1); else iteration = static_cast(scaled_active_time / curve_->Duration()); // Check if we are running the animation in reverse direction for the current // iteration bool reverse = (direction_ == DIRECTION_REVERSE) || (direction_ == DIRECTION_ALTERNATE && iteration % 2 == 1) || (direction_ == DIRECTION_ALTERNATE_REVERSE && iteration % 2 == 0); // If we are running the animation in reverse direction, reverse the result if (reverse) iteration_time = curve_->Duration() - iteration_time; return iteration_time; } scoped_ptr Animation::CloneAndInitialize( RunState initial_run_state) const { scoped_ptr to_return( new Animation(curve_->Clone(), id_, group_, target_property_)); to_return->run_state_ = initial_run_state; to_return->iterations_ = iterations_; to_return->iteration_start_ = iteration_start_; to_return->start_time_ = start_time_; to_return->pause_time_ = pause_time_; to_return->total_paused_time_ = total_paused_time_; to_return->time_offset_ = time_offset_; to_return->direction_ = direction_; to_return->playback_rate_ = playback_rate_; to_return->fill_mode_ = fill_mode_; DCHECK(!to_return->is_controlling_instance_); to_return->is_controlling_instance_ = true; return to_return; } void Animation::PushPropertiesTo(Animation* other) const { // Currently, we only push changes due to pausing and resuming animations on // the main thread. if (run_state_ == Animation::PAUSED || other->run_state_ == Animation::PAUSED) { other->run_state_ = run_state_; other->pause_time_ = pause_time_; other->total_paused_time_ = total_paused_time_; } } } // namespace cc