// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Needed on Windows to get |M_PI| from #ifdef _WIN32 #define _USE_MATH_DEFINES #endif #include #include #include #include "base/logging.h" #include "cc/animation/transform_operation.h" #include "cc/animation/transform_operations.h" #include "ui/gfx/geometry/box_f.h" #include "ui/gfx/geometry/vector3d_f.h" #include "ui/gfx/transform_util.h" namespace { const SkMScalar kAngleEpsilon = 1e-4f; } namespace cc { bool TransformOperation::IsIdentity() const { return matrix.IsIdentity(); } static bool IsOperationIdentity(const TransformOperation* operation) { return !operation || operation->IsIdentity(); } static bool ShareSameAxis(const TransformOperation* from, const TransformOperation* to, SkMScalar* axis_x, SkMScalar* axis_y, SkMScalar* axis_z, SkMScalar* angle_from) { if (IsOperationIdentity(from) && IsOperationIdentity(to)) return false; if (IsOperationIdentity(from) && !IsOperationIdentity(to)) { *axis_x = to->rotate.axis.x; *axis_y = to->rotate.axis.y; *axis_z = to->rotate.axis.z; *angle_from = 0; return true; } if (!IsOperationIdentity(from) && IsOperationIdentity(to)) { *axis_x = from->rotate.axis.x; *axis_y = from->rotate.axis.y; *axis_z = from->rotate.axis.z; *angle_from = from->rotate.angle; return true; } SkMScalar length_2 = from->rotate.axis.x * from->rotate.axis.x + from->rotate.axis.y * from->rotate.axis.y + from->rotate.axis.z * from->rotate.axis.z; SkMScalar other_length_2 = to->rotate.axis.x * to->rotate.axis.x + to->rotate.axis.y * to->rotate.axis.y + to->rotate.axis.z * to->rotate.axis.z; if (length_2 <= kAngleEpsilon || other_length_2 <= kAngleEpsilon) return false; SkMScalar dot = to->rotate.axis.x * from->rotate.axis.x + to->rotate.axis.y * from->rotate.axis.y + to->rotate.axis.z * from->rotate.axis.z; SkMScalar error = std::abs(SK_MScalar1 - (dot * dot) / (length_2 * other_length_2)); bool result = error < kAngleEpsilon; if (result) { *axis_x = to->rotate.axis.x; *axis_y = to->rotate.axis.y; *axis_z = to->rotate.axis.z; // If the axes are pointing in opposite directions, we need to reverse // the angle. *angle_from = dot > 0 ? from->rotate.angle : -from->rotate.angle; } return result; } static SkMScalar BlendSkMScalars(SkMScalar from, SkMScalar to, SkMScalar progress) { return from * (1 - progress) + to * progress; } bool TransformOperation::BlendTransformOperations( const TransformOperation* from, const TransformOperation* to, SkMScalar progress, gfx::Transform* result) { if (IsOperationIdentity(from) && IsOperationIdentity(to)) return true; TransformOperation::Type interpolation_type = TransformOperation::TRANSFORM_OPERATION_IDENTITY; if (IsOperationIdentity(to)) interpolation_type = from->type; else interpolation_type = to->type; switch (interpolation_type) { case TransformOperation::TRANSFORM_OPERATION_TRANSLATE: { SkMScalar from_x = IsOperationIdentity(from) ? 0 : from->translate.x; SkMScalar from_y = IsOperationIdentity(from) ? 0 : from->translate.y; SkMScalar from_z = IsOperationIdentity(from) ? 0 : from->translate.z; SkMScalar to_x = IsOperationIdentity(to) ? 0 : to->translate.x; SkMScalar to_y = IsOperationIdentity(to) ? 0 : to->translate.y; SkMScalar to_z = IsOperationIdentity(to) ? 0 : to->translate.z; result->Translate3d(BlendSkMScalars(from_x, to_x, progress), BlendSkMScalars(from_y, to_y, progress), BlendSkMScalars(from_z, to_z, progress)); break; } case TransformOperation::TRANSFORM_OPERATION_ROTATE: { SkMScalar axis_x = 0; SkMScalar axis_y = 0; SkMScalar axis_z = 1; SkMScalar from_angle = 0; SkMScalar to_angle = IsOperationIdentity(to) ? 0 : to->rotate.angle; if (ShareSameAxis(from, to, &axis_x, &axis_y, &axis_z, &from_angle)) { result->RotateAbout(gfx::Vector3dF(axis_x, axis_y, axis_z), BlendSkMScalars(from_angle, to_angle, progress)); } else { gfx::Transform to_matrix; if (!IsOperationIdentity(to)) to_matrix = to->matrix; gfx::Transform from_matrix; if (!IsOperationIdentity(from)) from_matrix = from->matrix; *result = to_matrix; if (!result->Blend(from_matrix, progress)) return false; } break; } case TransformOperation::TRANSFORM_OPERATION_SCALE: { SkMScalar from_x = IsOperationIdentity(from) ? 1 : from->scale.x; SkMScalar from_y = IsOperationIdentity(from) ? 1 : from->scale.y; SkMScalar from_z = IsOperationIdentity(from) ? 1 : from->scale.z; SkMScalar to_x = IsOperationIdentity(to) ? 1 : to->scale.x; SkMScalar to_y = IsOperationIdentity(to) ? 1 : to->scale.y; SkMScalar to_z = IsOperationIdentity(to) ? 1 : to->scale.z; result->Scale3d(BlendSkMScalars(from_x, to_x, progress), BlendSkMScalars(from_y, to_y, progress), BlendSkMScalars(from_z, to_z, progress)); break; } case TransformOperation::TRANSFORM_OPERATION_SKEW: { SkMScalar from_x = IsOperationIdentity(from) ? 0 : from->skew.x; SkMScalar from_y = IsOperationIdentity(from) ? 0 : from->skew.y; SkMScalar to_x = IsOperationIdentity(to) ? 0 : to->skew.x; SkMScalar to_y = IsOperationIdentity(to) ? 0 : to->skew.y; result->Skew(BlendSkMScalars(from_x, to_x, progress), BlendSkMScalars(from_y, to_y, progress)); break; } case TransformOperation::TRANSFORM_OPERATION_PERSPECTIVE: { SkMScalar from_perspective_depth = IsOperationIdentity(from) ? std::numeric_limits::max() : from->perspective_depth; SkMScalar to_perspective_depth = IsOperationIdentity(to) ? std::numeric_limits::max() : to->perspective_depth; if (from_perspective_depth == 0.f || to_perspective_depth == 0.f) return false; SkMScalar blended_perspective_depth = BlendSkMScalars( 1.f / from_perspective_depth, 1.f / to_perspective_depth, progress); if (blended_perspective_depth == 0.f) return false; result->ApplyPerspectiveDepth(1.f / blended_perspective_depth); break; } case TransformOperation::TRANSFORM_OPERATION_MATRIX: { gfx::Transform to_matrix; if (!IsOperationIdentity(to)) to_matrix = to->matrix; gfx::Transform from_matrix; if (!IsOperationIdentity(from)) from_matrix = from->matrix; *result = to_matrix; if (!result->Blend(from_matrix, progress)) return false; break; } case TransformOperation::TRANSFORM_OPERATION_IDENTITY: // Do nothing. break; } return true; } // If p = (px, py) is a point in the plane being rotated about (0, 0, nz), this // function computes the angles we would have to rotate from p to get to // (length(p), 0), (-length(p), 0), (0, length(p)), (0, -length(p)). If nz is // negative, these angles will need to be reversed. static void FindCandidatesInPlane(float px, float py, float nz, double* candidates, int* num_candidates) { double phi = atan2(px, py); *num_candidates = 4; candidates[0] = phi; for (int i = 1; i < *num_candidates; ++i) candidates[i] = candidates[i - 1] + M_PI_2; if (nz < 0.f) { for (int i = 0; i < *num_candidates; ++i) candidates[i] *= -1.f; } } static float RadiansToDegrees(float radians) { return (180.f * radians) / M_PI; } static float DegreesToRadians(float degrees) { return (M_PI * degrees) / 180.f; } static void BoundingBoxForArc(const gfx::Point3F& point, const TransformOperation* from, const TransformOperation* to, SkMScalar min_progress, SkMScalar max_progress, gfx::BoxF* box) { const TransformOperation* exemplar = from ? from : to; gfx::Vector3dF axis(exemplar->rotate.axis.x, exemplar->rotate.axis.y, exemplar->rotate.axis.z); const bool x_is_zero = axis.x() == 0.f; const bool y_is_zero = axis.y() == 0.f; const bool z_is_zero = axis.z() == 0.f; // We will have at most 6 angles to test (excluding from->angle and // to->angle). static const int kMaxNumCandidates = 6; double candidates[kMaxNumCandidates]; int num_candidates = kMaxNumCandidates; if (x_is_zero && y_is_zero && z_is_zero) return; SkMScalar from_angle = from ? from->rotate.angle : 0.f; SkMScalar to_angle = to ? to->rotate.angle : 0.f; // If the axes of rotation are pointing in opposite directions, we need to // flip one of the angles. Note, if both |from| and |to| exist, then axis will // correspond to |from|. if (from && to) { gfx::Vector3dF other_axis( to->rotate.axis.x, to->rotate.axis.y, to->rotate.axis.z); if (gfx::DotProduct(axis, other_axis) < 0.f) to_angle *= -1.f; } float min_degrees = SkMScalarToFloat(BlendSkMScalars(from_angle, to_angle, min_progress)); float max_degrees = SkMScalarToFloat(BlendSkMScalars(from_angle, to_angle, max_progress)); if (max_degrees < min_degrees) std::swap(min_degrees, max_degrees); gfx::Transform from_transform; from_transform.RotateAbout(axis, min_degrees); gfx::Transform to_transform; to_transform.RotateAbout(axis, max_degrees); *box = gfx::BoxF(); gfx::Point3F point_rotated_from = point; from_transform.TransformPoint(&point_rotated_from); gfx::Point3F point_rotated_to = point; to_transform.TransformPoint(&point_rotated_to); box->set_origin(point_rotated_from); box->ExpandTo(point_rotated_to); if (x_is_zero && y_is_zero) { FindCandidatesInPlane( point.x(), point.y(), axis.z(), candidates, &num_candidates); } else if (x_is_zero && z_is_zero) { FindCandidatesInPlane( point.z(), point.x(), axis.y(), candidates, &num_candidates); } else if (y_is_zero && z_is_zero) { FindCandidatesInPlane( point.y(), point.z(), axis.x(), candidates, &num_candidates); } else { gfx::Vector3dF normal = axis; normal.Scale(1.f / normal.Length()); // First, find center of rotation. gfx::Point3F origin; gfx::Vector3dF to_point = point - origin; gfx::Point3F center = origin + gfx::ScaleVector3d(normal, gfx::DotProduct(to_point, normal)); // Now we need to find two vectors in the plane of rotation. One pointing // towards point and another, perpendicular vector in the plane. gfx::Vector3dF v1 = point - center; float v1_length = v1.Length(); if (v1_length == 0.f) return; v1.Scale(1.f / v1_length); gfx::Vector3dF v2 = gfx::CrossProduct(normal, v1); // v1 is the basis vector in the direction of the point. // i.e. with a rotation of 0, v1 is our +x vector. // v2 is a perpenticular basis vector of our plane (+y). // Take the parametric equation of a circle. // x = r*cos(t); y = r*sin(t); // We can treat that as a circle on the plane v1xv2. // From that we get the parametric equations for a circle on the // plane in 3d space of: // x(t) = r*cos(t)*v1.x + r*sin(t)*v2.x + cx // y(t) = r*cos(t)*v1.y + r*sin(t)*v2.y + cy // z(t) = r*cos(t)*v1.z + r*sin(t)*v2.z + cz // Taking the derivative of (x, y, z) and solving for 0 gives us our // maximum/minimum x, y, z values. // x'(t) = r*cos(t)*v2.x - r*sin(t)*v1.x = 0 // tan(t) = v2.x/v1.x // t = atan2(v2.x, v1.x) + n*M_PI; candidates[0] = atan2(v2.x(), v1.x()); candidates[1] = candidates[0] + M_PI; candidates[2] = atan2(v2.y(), v1.y()); candidates[3] = candidates[2] + M_PI; candidates[4] = atan2(v2.z(), v1.z()); candidates[5] = candidates[4] + M_PI; } double min_radians = DegreesToRadians(min_degrees); double max_radians = DegreesToRadians(max_degrees); for (int i = 0; i < num_candidates; ++i) { double radians = candidates[i]; while (radians < min_radians) radians += 2.0 * M_PI; while (radians > max_radians) radians -= 2.0 * M_PI; if (radians < min_radians) continue; gfx::Transform rotation; rotation.RotateAbout(axis, RadiansToDegrees(radians)); gfx::Point3F rotated = point; rotation.TransformPoint(&rotated); box->ExpandTo(rotated); } } bool TransformOperation::BlendedBoundsForBox(const gfx::BoxF& box, const TransformOperation* from, const TransformOperation* to, SkMScalar min_progress, SkMScalar max_progress, gfx::BoxF* bounds) { bool is_identity_from = IsOperationIdentity(from); bool is_identity_to = IsOperationIdentity(to); if (is_identity_from && is_identity_to) { *bounds = box; return true; } TransformOperation::Type interpolation_type = TransformOperation::TRANSFORM_OPERATION_IDENTITY; if (is_identity_to) interpolation_type = from->type; else interpolation_type = to->type; switch (interpolation_type) { case TransformOperation::TRANSFORM_OPERATION_IDENTITY: *bounds = box; return true; case TransformOperation::TRANSFORM_OPERATION_TRANSLATE: case TransformOperation::TRANSFORM_OPERATION_SKEW: case TransformOperation::TRANSFORM_OPERATION_PERSPECTIVE: case TransformOperation::TRANSFORM_OPERATION_SCALE: { gfx::Transform from_transform; gfx::Transform to_transform; if (!BlendTransformOperations(from, to, min_progress, &from_transform) || !BlendTransformOperations(from, to, max_progress, &to_transform)) return false; *bounds = box; from_transform.TransformBox(bounds); gfx::BoxF to_box = box; to_transform.TransformBox(&to_box); bounds->ExpandTo(to_box); return true; } case TransformOperation::TRANSFORM_OPERATION_ROTATE: { SkMScalar axis_x = 0; SkMScalar axis_y = 0; SkMScalar axis_z = 1; SkMScalar from_angle = 0; if (!ShareSameAxis(from, to, &axis_x, &axis_y, &axis_z, &from_angle)) return false; bool first_point = true; for (int i = 0; i < 8; ++i) { gfx::Point3F corner = box.origin(); corner += gfx::Vector3dF(i & 1 ? box.width() : 0.f, i & 2 ? box.height() : 0.f, i & 4 ? box.depth() : 0.f); gfx::BoxF box_for_arc; BoundingBoxForArc( corner, from, to, min_progress, max_progress, &box_for_arc); if (first_point) *bounds = box_for_arc; else bounds->Union(box_for_arc); first_point = false; } return true; } case TransformOperation::TRANSFORM_OPERATION_MATRIX: return false; } NOTREACHED(); return false; } } // namespace cc