// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/base/math_util.h" #include #include #include #include "base/values.h" #include "ui/gfx/quad_f.h" #include "ui/gfx/rect.h" #include "ui/gfx/rect_conversions.h" #include "ui/gfx/rect_f.h" #include "ui/gfx/transform.h" #include "ui/gfx/vector2d_f.h" namespace cc { const double MathUtil::kPiDouble = 3.14159265358979323846; const float MathUtil::kPiFloat = 3.14159265358979323846f; static HomogeneousCoordinate ProjectHomogeneousPoint( const gfx::Transform& transform, const gfx::PointF& p) { // In this case, the layer we are trying to project onto is perpendicular to // ray (point p and z-axis direction) that we are trying to project. This // happens when the layer is rotated so that it is infinitesimally thin, or // when it is co-planar with the camera origin -- i.e. when the layer is // invisible anyway. if (!transform.matrix().get(2, 2)) return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0); SkMScalar z = -(transform.matrix().get(2, 0) * p.x() + transform.matrix().get(2, 1) * p.y() + transform.matrix().get(2, 3)) / transform.matrix().get(2, 2); HomogeneousCoordinate result(p.x(), p.y(), z, 1.0); transform.matrix().mapMScalars(result.vec, result.vec); return result; } static HomogeneousCoordinate ProjectHomogeneousPoint( const gfx::Transform& transform, const gfx::PointF& p, bool* clipped) { HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p); *clipped = h.w() <= 0; return h; } static HomogeneousCoordinate MapHomogeneousPoint( const gfx::Transform& transform, const gfx::Point3F& p) { HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0); transform.matrix().mapMScalars(result.vec, result.vec); return result; } static HomogeneousCoordinate ComputeClippedPointForEdge( const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2) { // Points h1 and h2 form a line in 4d, and any point on that line can be // represented as an interpolation between h1 and h2: // p = (1-t) h1 + (t) h2 // // We want to compute point p such that p.w == epsilon, where epsilon is a // small non-zero number. (but the smaller the number is, the higher the risk // of overflow) // To do this, we solve for t in the following equation: // p.w = epsilon = (1-t) * h1.w + (t) * h2.w // // Once paramter t is known, the rest of p can be computed via // p = (1-t) h1 + (t) h2. // Technically this is a special case of the following assertion, but its a // good idea to keep it an explicit sanity check here. DCHECK_NE(h2.w(), h1.w()); // Exactly one of h1 or h2 (but not both) must be on the negative side of the // w plane when this is called. DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped()); // ...or any positive non-zero small epsilon SkMScalar w = 0.00001f; SkMScalar t = (w - h1.w()) / (h2.w() - h1.w()); SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x(); SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y(); SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z(); return HomogeneousCoordinate(x, y, z, w); } static inline void ExpandBoundsToIncludePoint(float* xmin, float* xmax, float* ymin, float* ymax, const gfx::PointF& p) { *xmin = std::min(p.x(), *xmin); *xmax = std::max(p.x(), *xmax); *ymin = std::min(p.y(), *ymin); *ymax = std::max(p.y(), *ymax); } static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex, gfx::PointF clipped_quad[8], int* num_vertices_in_clipped_quad) { clipped_quad[*num_vertices_in_clipped_quad] = new_vertex; (*num_vertices_in_clipped_quad)++; } gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform, const gfx::Rect& src_rect) { if (transform.IsIdentityOrIntegerTranslation()) { return src_rect + gfx::Vector2d( static_cast(SkMScalarToFloat(transform.matrix().get(0, 3))), static_cast( SkMScalarToFloat(transform.matrix().get(1, 3)))); } return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect))); } gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform, const gfx::RectF& src_rect) { if (transform.IsIdentityOrTranslation()) { return src_rect + gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)), SkMScalarToFloat(transform.matrix().get(1, 3))); } // Apply the transform, but retain the result in homogeneous coordinates. SkMScalar quad[4 * 2]; // input: 4 x 2D points quad[0] = src_rect.x(); quad[1] = src_rect.y(); quad[2] = src_rect.right(); quad[3] = src_rect.y(); quad[4] = src_rect.right(); quad[5] = src_rect.bottom(); quad[6] = src_rect.x(); quad[7] = src_rect.bottom(); SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points transform.matrix().map2(quad, 4, result); HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]); HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]); HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]); HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]); return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3); } gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform, const gfx::Rect& src_rect) { if (transform.IsIdentityOrIntegerTranslation()) { return src_rect + gfx::Vector2d( static_cast(SkMScalarToFloat(transform.matrix().get(0, 3))), static_cast( SkMScalarToFloat(transform.matrix().get(1, 3)))); } return gfx::ToEnclosingRect( ProjectClippedRect(transform, gfx::RectF(src_rect))); } gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform, const gfx::RectF& src_rect) { if (transform.IsIdentityOrTranslation()) { return src_rect + gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)), SkMScalarToFloat(transform.matrix().get(1, 3))); } // Perform the projection, but retain the result in homogeneous coordinates. gfx::QuadF q = gfx::QuadF(src_rect); HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1()); HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2()); HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3()); HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4()); return ComputeEnclosingClippedRect(h1, h2, h3, h4); } void MathUtil::MapClippedQuad(const gfx::Transform& transform, const gfx::QuadF& src_quad, gfx::PointF clipped_quad[8], int* num_vertices_in_clipped_quad) { HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1())); HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2())); HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3())); HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4())); // The order of adding the vertices to the array is chosen so that // clockwise / counter-clockwise orientation is retained. *num_vertices_in_clipped_quad = 0; if (!h1.ShouldBeClipped()) { AddVertexToClippedQuad( h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); } if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) { AddVertexToClippedQuad( ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); } if (!h2.ShouldBeClipped()) { AddVertexToClippedQuad( h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); } if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) { AddVertexToClippedQuad( ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); } if (!h3.ShouldBeClipped()) { AddVertexToClippedQuad( h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); } if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) { AddVertexToClippedQuad( ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); } if (!h4.ShouldBeClipped()) { AddVertexToClippedQuad( h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); } if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) { AddVertexToClippedQuad( ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); } DCHECK_LE(*num_vertices_in_clipped_quad, 8); } gfx::RectF MathUtil::ComputeEnclosingRectOfVertices( const gfx::PointF vertices[], int num_vertices) { if (num_vertices < 2) return gfx::RectF(); float xmin = std::numeric_limits::max(); float xmax = -std::numeric_limits::max(); float ymin = std::numeric_limits::max(); float ymax = -std::numeric_limits::max(); for (int i = 0; i < num_vertices; ++i) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]); return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ymin)); } gfx::RectF MathUtil::ComputeEnclosingClippedRect( const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2, const HomogeneousCoordinate& h3, const HomogeneousCoordinate& h4) { // This function performs clipping as necessary and computes the enclosing 2d // gfx::RectF of the vertices. Doing these two steps simultaneously allows us // to avoid the overhead of storing an unknown number of clipped vertices. // If no vertices on the quad are clipped, then we can simply return the // enclosing rect directly. bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || h3.ShouldBeClipped() || h4.ShouldBeClipped(); if (!something_clipped) { gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(), h2.CartesianPoint2d(), h3.CartesianPoint2d(), h4.CartesianPoint2d()); return mapped_quad.BoundingBox(); } bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() && h3.ShouldBeClipped() && h4.ShouldBeClipped(); if (everything_clipped) return gfx::RectF(); float xmin = std::numeric_limits::max(); float xmax = -std::numeric_limits::max(); float ymin = std::numeric_limits::max(); float ymax = -std::numeric_limits::max(); if (!h1.ShouldBeClipped()) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, h1.CartesianPoint2d()); if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, ComputeClippedPointForEdge(h1, h2) .CartesianPoint2d()); if (!h2.ShouldBeClipped()) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, h2.CartesianPoint2d()); if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, ComputeClippedPointForEdge(h2, h3) .CartesianPoint2d()); if (!h3.ShouldBeClipped()) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, h3.CartesianPoint2d()); if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, ComputeClippedPointForEdge(h3, h4) .CartesianPoint2d()); if (!h4.ShouldBeClipped()) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, h4.CartesianPoint2d()); if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, ComputeClippedPointForEdge(h4, h1) .CartesianPoint2d()); return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ymin)); } gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform, const gfx::QuadF& q, bool* clipped) { if (transform.IsIdentityOrTranslation()) { gfx::QuadF mapped_quad(q); mapped_quad += gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)), SkMScalarToFloat(transform.matrix().get(1, 3))); *clipped = false; return mapped_quad; } HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, gfx::Point3F(q.p1())); HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, gfx::Point3F(q.p2())); HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, gfx::Point3F(q.p3())); HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, gfx::Point3F(q.p4())); *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || h3.ShouldBeClipped() || h4.ShouldBeClipped(); // Result will be invalid if clipped == true. But, compute it anyway just in // case, to emulate existing behavior. return gfx::QuadF(h1.CartesianPoint2d(), h2.CartesianPoint2d(), h3.CartesianPoint2d(), h4.CartesianPoint2d()); } gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform, const gfx::PointF& p, bool* clipped) { HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p)); if (h.w() > 0) { *clipped = false; return h.CartesianPoint2d(); } // The cartesian coordinates will be invalid after dividing by w. *clipped = true; // Avoid dividing by w if w == 0. if (!h.w()) return gfx::PointF(); // This return value will be invalid because clipped == true, but (1) users of // this code should be ignoring the return value when clipped == true anyway, // and (2) this behavior is more consistent with existing behavior of WebKit // transforms if the user really does not ignore the return value. return h.CartesianPoint2d(); } gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform, const gfx::Point3F& p, bool* clipped) { HomogeneousCoordinate h = MapHomogeneousPoint(transform, p); if (h.w() > 0) { *clipped = false; return h.CartesianPoint3d(); } // The cartesian coordinates will be invalid after dividing by w. *clipped = true; // Avoid dividing by w if w == 0. if (!h.w()) return gfx::Point3F(); // This return value will be invalid because clipped == true, but (1) users of // this code should be ignoring the return value when clipped == true anyway, // and (2) this behavior is more consistent with existing behavior of WebKit // transforms if the user really does not ignore the return value. return h.CartesianPoint3d(); } gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform, const gfx::QuadF& q, bool* clipped) { gfx::QuadF projected_quad; bool clipped_point; projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point)); *clipped = clipped_point; projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point)); *clipped |= clipped_point; projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point)); *clipped |= clipped_point; projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point)); *clipped |= clipped_point; return projected_quad; } gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform, const gfx::PointF& p, bool* clipped) { HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped); // Avoid dividing by w if w == 0. if (!h.w()) return gfx::PointF(); // This return value will be invalid if clipped == true, but (1) users of // this code should be ignoring the return value when clipped == true anyway, // and (2) this behavior is more consistent with existing behavior of WebKit // transforms if the user really does not ignore the return value. return h.CartesianPoint2d(); } gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform, const gfx::PointF& p, bool* clipped) { HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped); if (!h.w()) return gfx::Point3F(); return h.CartesianPoint3d(); } gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect, const gfx::RectF& scale_outer_rect, const gfx::RectF& scale_inner_rect) { gfx::RectF output_inner_rect = input_outer_rect; float scale_rect_to_input_scale_x = scale_outer_rect.width() / input_outer_rect.width(); float scale_rect_to_input_scale_y = scale_outer_rect.height() / input_outer_rect.height(); gfx::Vector2dF top_left_diff = scale_inner_rect.origin() - scale_outer_rect.origin(); gfx::Vector2dF bottom_right_diff = scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right(); output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x, top_left_diff.y() / scale_rect_to_input_scale_y, -bottom_right_diff.x() / scale_rect_to_input_scale_x, -bottom_right_diff.y() / scale_rect_to_input_scale_y); return output_inner_rect; } static inline bool NearlyZero(double value) { return std::abs(value) < std::numeric_limits::epsilon(); } static inline float ScaleOnAxis(double a, double b, double c) { if (NearlyZero(b) && NearlyZero(c)) return std::abs(a); if (NearlyZero(a) && NearlyZero(c)) return std::abs(b); if (NearlyZero(a) && NearlyZero(b)) return std::abs(c); // Do the sqrt as a double to not lose precision. return static_cast(std::sqrt(a * a + b * b + c * c)); } gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents( const gfx::Transform& transform, float fallback_value) { if (transform.HasPerspective()) return gfx::Vector2dF(fallback_value, fallback_value); float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0), transform.matrix().getDouble(1, 0), transform.matrix().getDouble(2, 0)); float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1), transform.matrix().getDouble(1, 1), transform.matrix().getDouble(2, 1)); return gfx::Vector2dF(x_scale, y_scale); } float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1, const gfx::Vector2dF& v2) { double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); // Clamp to compensate for rounding errors. dot_product = std::max(-1.0, std::min(1.0, dot_product)); return static_cast(Rad2Deg(std::acos(dot_product))); } gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source, const gfx::Vector2dF& destination) { float projected_length = gfx::DotProduct(source, destination) / destination.LengthSquared(); return gfx::Vector2dF(projected_length * destination.x(), projected_length * destination.y()); } scoped_ptr MathUtil::AsValue(const gfx::Size& s) { scoped_ptr res(new base::DictionaryValue()); res->SetDouble("width", s.width()); res->SetDouble("height", s.height()); return res.PassAs(); } scoped_ptr MathUtil::AsValue(const gfx::SizeF& s) { scoped_ptr res(new base::DictionaryValue()); res->SetDouble("width", s.width()); res->SetDouble("height", s.height()); return res.PassAs(); } scoped_ptr MathUtil::AsValue(const gfx::Rect& r) { scoped_ptr res(new base::ListValue()); res->AppendInteger(r.x()); res->AppendInteger(r.y()); res->AppendInteger(r.width()); res->AppendInteger(r.height()); return res.PassAs(); } bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) { const base::ListValue* value = NULL; if (!raw_value->GetAsList(&value)) return false; if (value->GetSize() != 4) return false; int x, y, w, h; bool ok = true; ok &= value->GetInteger(0, &x); ok &= value->GetInteger(1, &y); ok &= value->GetInteger(2, &w); ok &= value->GetInteger(3, &h); if (!ok) return false; *out_rect = gfx::Rect(x, y, w, h); return true; } scoped_ptr MathUtil::AsValue(const gfx::PointF& pt) { scoped_ptr res(new base::ListValue()); res->AppendDouble(pt.x()); res->AppendDouble(pt.y()); return res.PassAs(); } scoped_ptr MathUtil::AsValue(const gfx::Point3F& pt) { scoped_ptr res(new base::ListValue()); res->AppendDouble(pt.x()); res->AppendDouble(pt.y()); res->AppendDouble(pt.z()); return res.PassAs(); } scoped_ptr MathUtil::AsValue(const gfx::Vector2d& v) { scoped_ptr res(new base::ListValue()); res->AppendInteger(v.x()); res->AppendInteger(v.y()); return res.PassAs(); } scoped_ptr MathUtil::AsValue(const gfx::QuadF& q) { scoped_ptr res(new base::ListValue()); res->AppendDouble(q.p1().x()); res->AppendDouble(q.p1().y()); res->AppendDouble(q.p2().x()); res->AppendDouble(q.p2().y()); res->AppendDouble(q.p3().x()); res->AppendDouble(q.p3().y()); res->AppendDouble(q.p4().x()); res->AppendDouble(q.p4().y()); return res.PassAs(); } scoped_ptr MathUtil::AsValue(const gfx::RectF& rect) { scoped_ptr res(new base::ListValue()); res->AppendDouble(rect.x()); res->AppendDouble(rect.y()); res->AppendDouble(rect.width()); res->AppendDouble(rect.height()); return res.PassAs(); } scoped_ptr MathUtil::AsValue(const gfx::Transform& transform) { scoped_ptr res(new base::ListValue()); const SkMatrix44& m = transform.matrix(); for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) res->AppendDouble(m.getDouble(row, col)); } return res.PassAs(); } scoped_ptr MathUtil::AsValue(const gfx::BoxF& box) { scoped_ptr res(new base::ListValue()); res->AppendInteger(box.x()); res->AppendInteger(box.y()); res->AppendInteger(box.z()); res->AppendInteger(box.width()); res->AppendInteger(box.height()); res->AppendInteger(box.depth()); return res.PassAs(); } scoped_ptr MathUtil::AsValueSafely(double value) { return scoped_ptr(base::Value::CreateDoubleValue( std::min(value, std::numeric_limits::max()))); } scoped_ptr MathUtil::AsValueSafely(float value) { return scoped_ptr(base::Value::CreateDoubleValue( std::min(value, std::numeric_limits::max()))); } } // namespace cc