// Copyright 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/base/tiling_data.h" #include #include "ui/gfx/geometry/rect.h" #include "ui/gfx/geometry/vector2d.h" namespace cc { static int ComputeNumTiles(int max_texture_size, int total_size, int border_texels) { if (max_texture_size - 2 * border_texels <= 0) return total_size > 0 && max_texture_size >= total_size ? 1 : 0; int num_tiles = std::max(1, 1 + (total_size - 1 - 2 * border_texels) / (max_texture_size - 2 * border_texels)); return total_size > 0 ? num_tiles : 0; } TilingData::TilingData() : border_texels_(0) { RecomputeNumTiles(); } TilingData::TilingData(const gfx::Size& max_texture_size, const gfx::Size& tiling_size, bool has_border_texels) : max_texture_size_(max_texture_size), tiling_size_(tiling_size), border_texels_(has_border_texels ? 1 : 0) { RecomputeNumTiles(); } TilingData::TilingData(const gfx::Size& max_texture_size, const gfx::Size& tiling_size, int border_texels) : max_texture_size_(max_texture_size), tiling_size_(tiling_size), border_texels_(border_texels) { RecomputeNumTiles(); } void TilingData::SetTilingSize(const gfx::Size& tiling_size) { tiling_size_ = tiling_size; RecomputeNumTiles(); } void TilingData::SetMaxTextureSize(const gfx::Size& max_texture_size) { max_texture_size_ = max_texture_size; RecomputeNumTiles(); } void TilingData::SetHasBorderTexels(bool has_border_texels) { border_texels_ = has_border_texels ? 1 : 0; RecomputeNumTiles(); } void TilingData::SetBorderTexels(int border_texels) { border_texels_ = border_texels; RecomputeNumTiles(); } int TilingData::TileXIndexFromSrcCoord(int src_position) const { if (num_tiles_x_ <= 1) return 0; DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); int x = (src_position - border_texels_) / (max_texture_size_.width() - 2 * border_texels_); return std::min(std::max(x, 0), num_tiles_x_ - 1); } int TilingData::TileYIndexFromSrcCoord(int src_position) const { if (num_tiles_y_ <= 1) return 0; DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); int y = (src_position - border_texels_) / (max_texture_size_.height() - 2 * border_texels_); return std::min(std::max(y, 0), num_tiles_y_ - 1); } int TilingData::FirstBorderTileXIndexFromSrcCoord(int src_position) const { if (num_tiles_x_ <= 1) return 0; DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); int inner_tile_size = max_texture_size_.width() - 2 * border_texels_; int x = (src_position - 2 * border_texels_) / inner_tile_size; return std::min(std::max(x, 0), num_tiles_x_ - 1); } int TilingData::FirstBorderTileYIndexFromSrcCoord(int src_position) const { if (num_tiles_y_ <= 1) return 0; DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); int inner_tile_size = max_texture_size_.height() - 2 * border_texels_; int y = (src_position - 2 * border_texels_) / inner_tile_size; return std::min(std::max(y, 0), num_tiles_y_ - 1); } int TilingData::LastBorderTileXIndexFromSrcCoord(int src_position) const { if (num_tiles_x_ <= 1) return 0; DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); int inner_tile_size = max_texture_size_.width() - 2 * border_texels_; int x = src_position / inner_tile_size; return std::min(std::max(x, 0), num_tiles_x_ - 1); } int TilingData::LastBorderTileYIndexFromSrcCoord(int src_position) const { if (num_tiles_y_ <= 1) return 0; DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); int inner_tile_size = max_texture_size_.height() - 2 * border_texels_; int y = src_position / inner_tile_size; return std::min(std::max(y, 0), num_tiles_y_ - 1); } gfx::Rect TilingData::ExpandRectIgnoringBordersToTileBounds( const gfx::Rect& rect) const { if (rect.IsEmpty() || has_empty_bounds()) return gfx::Rect(); if (rect.x() > tiling_size_.width() || rect.y() > tiling_size_.height()) return gfx::Rect(); int index_x = TileXIndexFromSrcCoord(rect.x()); int index_y = TileYIndexFromSrcCoord(rect.y()); int index_right = TileXIndexFromSrcCoord(rect.right() - 1); int index_bottom = TileYIndexFromSrcCoord(rect.bottom() - 1); gfx::Rect rect_top_left(TileBounds(index_x, index_y)); gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom)); return gfx::UnionRects(rect_top_left, rect_bottom_right); } gfx::Rect TilingData::ExpandRectToTileBounds(const gfx::Rect& rect) const { if (rect.IsEmpty() || has_empty_bounds()) return gfx::Rect(); if (rect.x() > tiling_size_.width() || rect.y() > tiling_size_.height()) return gfx::Rect(); int index_x = FirstBorderTileXIndexFromSrcCoord(rect.x()); int index_y = FirstBorderTileYIndexFromSrcCoord(rect.y()); int index_right = LastBorderTileXIndexFromSrcCoord(rect.right() - 1); int index_bottom = LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1); gfx::Rect rect_top_left(TileBounds(index_x, index_y)); gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom)); return gfx::UnionRects(rect_top_left, rect_bottom_right); } gfx::Rect TilingData::TileBounds(int i, int j) const { AssertTile(i, j); int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_; int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_; int lo_x = max_texture_size_x * i; if (i != 0) lo_x += border_texels_; int lo_y = max_texture_size_y * j; if (j != 0) lo_y += border_texels_; int hi_x = max_texture_size_x * (i + 1) + border_texels_; if (i + 1 == num_tiles_x_) hi_x += border_texels_; int hi_y = max_texture_size_y * (j + 1) + border_texels_; if (j + 1 == num_tiles_y_) hi_y += border_texels_; hi_x = std::min(hi_x, tiling_size_.width()); hi_y = std::min(hi_y, tiling_size_.height()); int x = lo_x; int y = lo_y; int width = hi_x - lo_x; int height = hi_y - lo_y; DCHECK_GE(x, 0); DCHECK_GE(y, 0); DCHECK_GE(width, 0); DCHECK_GE(height, 0); DCHECK_LE(x, tiling_size_.width()); DCHECK_LE(y, tiling_size_.height()); return gfx::Rect(x, y, width, height); } gfx::Rect TilingData::TileBoundsWithBorder(int i, int j) const { AssertTile(i, j); int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_; int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_; int lo_x = max_texture_size_x * i; int lo_y = max_texture_size_y * j; int hi_x = lo_x + max_texture_size_x + 2 * border_texels_; int hi_y = lo_y + max_texture_size_y + 2 * border_texels_; hi_x = std::min(hi_x, tiling_size_.width()); hi_y = std::min(hi_y, tiling_size_.height()); int x = lo_x; int y = lo_y; int width = hi_x - lo_x; int height = hi_y - lo_y; DCHECK_GE(x, 0); DCHECK_GE(y, 0); DCHECK_GE(width, 0); DCHECK_GE(height, 0); DCHECK_LE(x, tiling_size_.width()); DCHECK_LE(y, tiling_size_.height()); return gfx::Rect(x, y, width, height); } int TilingData::TilePositionX(int x_index) const { DCHECK_GE(x_index, 0); DCHECK_LT(x_index, num_tiles_x_); int pos = (max_texture_size_.width() - 2 * border_texels_) * x_index; if (x_index != 0) pos += border_texels_; return pos; } int TilingData::TilePositionY(int y_index) const { DCHECK_GE(y_index, 0); DCHECK_LT(y_index, num_tiles_y_); int pos = (max_texture_size_.height() - 2 * border_texels_) * y_index; if (y_index != 0) pos += border_texels_; return pos; } int TilingData::TileSizeX(int x_index) const { DCHECK_GE(x_index, 0); DCHECK_LT(x_index, num_tiles_x_); if (!x_index && num_tiles_x_ == 1) return tiling_size_.width(); if (!x_index && num_tiles_x_ > 1) return max_texture_size_.width() - border_texels_; if (x_index < num_tiles_x_ - 1) return max_texture_size_.width() - 2 * border_texels_; if (x_index == num_tiles_x_ - 1) return tiling_size_.width() - TilePositionX(x_index); NOTREACHED(); return 0; } int TilingData::TileSizeY(int y_index) const { DCHECK_GE(y_index, 0); DCHECK_LT(y_index, num_tiles_y_); if (!y_index && num_tiles_y_ == 1) return tiling_size_.height(); if (!y_index && num_tiles_y_ > 1) return max_texture_size_.height() - border_texels_; if (y_index < num_tiles_y_ - 1) return max_texture_size_.height() - 2 * border_texels_; if (y_index == num_tiles_y_ - 1) return tiling_size_.height() - TilePositionY(y_index); NOTREACHED(); return 0; } gfx::Vector2d TilingData::TextureOffset(int x_index, int y_index) const { int left = (!x_index || num_tiles_x_ == 1) ? 0 : border_texels_; int top = (!y_index || num_tiles_y_ == 1) ? 0 : border_texels_; return gfx::Vector2d(left, top); } void TilingData::RecomputeNumTiles() { num_tiles_x_ = ComputeNumTiles( max_texture_size_.width(), tiling_size_.width(), border_texels_); num_tiles_y_ = ComputeNumTiles( max_texture_size_.height(), tiling_size_.height(), border_texels_); } TilingData::BaseIterator::BaseIterator() : index_x_(-1), index_y_(-1) { } TilingData::Iterator::Iterator() { done(); } TilingData::Iterator::Iterator(const TilingData* tiling_data, const gfx::Rect& consider_rect, bool include_borders) : left_(-1), right_(-1), bottom_(-1) { if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) { done(); return; } gfx::Rect tiling_bounds_rect(tiling_data->tiling_size()); gfx::Rect rect(consider_rect); rect.Intersect(tiling_bounds_rect); gfx::Rect top_left_tile; if (include_borders) { index_x_ = tiling_data->FirstBorderTileXIndexFromSrcCoord(rect.x()); index_y_ = tiling_data->FirstBorderTileYIndexFromSrcCoord(rect.y()); right_ = tiling_data->LastBorderTileXIndexFromSrcCoord(rect.right() - 1); bottom_ = tiling_data->LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1); top_left_tile = tiling_data->TileBoundsWithBorder(index_x_, index_y_); } else { index_x_ = tiling_data->TileXIndexFromSrcCoord(rect.x()); index_y_ = tiling_data->TileYIndexFromSrcCoord(rect.y()); right_ = tiling_data->TileXIndexFromSrcCoord(rect.right() - 1); bottom_ = tiling_data->TileYIndexFromSrcCoord(rect.bottom() - 1); top_left_tile = tiling_data->TileBounds(index_x_, index_y_); } left_ = index_x_; // Index functions always return valid indices, so explicitly check // for non-intersecting rects. if (!top_left_tile.Intersects(rect)) done(); } TilingData::Iterator& TilingData::Iterator::operator++() { if (!*this) return *this; index_x_++; if (index_x_ > right_) { index_x_ = left_; index_y_++; if (index_y_ > bottom_) done(); } return *this; } TilingData::BaseDifferenceIterator::BaseDifferenceIterator() { done(); } TilingData::BaseDifferenceIterator::BaseDifferenceIterator( const TilingData* tiling_data, const gfx::Rect& consider_rect, const gfx::Rect& ignore_rect) : consider_left_(-1), consider_top_(-1), consider_right_(-1), consider_bottom_(-1), ignore_left_(-1), ignore_top_(-1), ignore_right_(-1), ignore_bottom_(-1) { if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) { done(); return; } gfx::Rect tiling_bounds_rect(tiling_data->tiling_size()); gfx::Rect consider(consider_rect); consider.Intersect(tiling_bounds_rect); if (consider.IsEmpty()) { done(); return; } consider_left_ = tiling_data->TileXIndexFromSrcCoord(consider.x()); consider_top_ = tiling_data->TileYIndexFromSrcCoord(consider.y()); consider_right_ = tiling_data->TileXIndexFromSrcCoord(consider.right() - 1); consider_bottom_ = tiling_data->TileYIndexFromSrcCoord(consider.bottom() - 1); gfx::Rect ignore(ignore_rect); ignore.Intersect(tiling_bounds_rect); if (!ignore.IsEmpty()) { ignore_left_ = tiling_data->TileXIndexFromSrcCoord(ignore.x()); ignore_top_ = tiling_data->TileYIndexFromSrcCoord(ignore.y()); ignore_right_ = tiling_data->TileXIndexFromSrcCoord(ignore.right() - 1); ignore_bottom_ = tiling_data->TileYIndexFromSrcCoord(ignore.bottom() - 1); // Clamp ignore indices to consider indices. ignore_left_ = std::max(ignore_left_, consider_left_); ignore_top_ = std::max(ignore_top_, consider_top_); ignore_right_ = std::min(ignore_right_, consider_right_); ignore_bottom_ = std::min(ignore_bottom_, consider_bottom_); if (ignore_left_ == consider_left_ && ignore_right_ == consider_right_ && ignore_top_ == consider_top_ && ignore_bottom_ == consider_bottom_) { consider_left_ = consider_top_ = consider_right_ = consider_bottom_ = -1; done(); return; } } } bool TilingData::BaseDifferenceIterator::HasConsiderRect() const { // Consider indices are either all valid or all equal to -1. DCHECK((0 <= consider_left_ && consider_left_ <= consider_right_ && 0 <= consider_top_ && consider_top_ <= consider_bottom_) || (consider_left_ == -1 && consider_top_ == -1 && consider_right_ == -1 && consider_bottom_ == -1)); return consider_left_ != -1; } TilingData::DifferenceIterator::DifferenceIterator() { } TilingData::DifferenceIterator::DifferenceIterator( const TilingData* tiling_data, const gfx::Rect& consider_rect, const gfx::Rect& ignore_rect) : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) { if (!HasConsiderRect()) { done(); return; } index_x_ = consider_left_; index_y_ = consider_top_; if (in_ignore_rect()) ++(*this); } TilingData::DifferenceIterator& TilingData::DifferenceIterator::operator++() { if (!*this) return *this; index_x_++; if (in_ignore_rect()) index_x_ = ignore_right_ + 1; if (index_x_ > consider_right_) { index_x_ = consider_left_; index_y_++; if (in_ignore_rect()) { index_x_ = ignore_right_ + 1; // If the ignore rect spans the whole consider rect horizontally, then // ignore_right + 1 will be out of bounds. if (in_ignore_rect() || index_x_ > consider_right_) { index_y_ = ignore_bottom_ + 1; index_x_ = consider_left_; } } if (index_y_ > consider_bottom_) done(); } return *this; } TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator() { done(); } TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator( const TilingData* tiling_data, const gfx::Rect& consider_rect, const gfx::Rect& ignore_rect, const gfx::Rect& center_rect) : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect), direction_(RIGHT), delta_x_(1), delta_y_(0), current_step_(0), horizontal_step_count_(0), vertical_step_count_(0) { if (!HasConsiderRect()) { done(); return; } // Determine around left, such that it is between -1 and num_tiles_x. int around_left = 0; if (center_rect.x() < 0 || center_rect.IsEmpty()) around_left = -1; else if (center_rect.x() >= tiling_data->tiling_size().width()) around_left = tiling_data->num_tiles_x(); else around_left = tiling_data->TileXIndexFromSrcCoord(center_rect.x()); // Determine around top, such that it is between -1 and num_tiles_y. int around_top = 0; if (center_rect.y() < 0 || center_rect.IsEmpty()) around_top = -1; else if (center_rect.y() >= tiling_data->tiling_size().height()) around_top = tiling_data->num_tiles_y(); else around_top = tiling_data->TileYIndexFromSrcCoord(center_rect.y()); // Determine around right, such that it is between -1 and num_tiles_x. int right_src_coord = center_rect.right() - 1; int around_right = 0; if (right_src_coord < 0 || center_rect.IsEmpty()) { around_right = -1; } else if (right_src_coord >= tiling_data->tiling_size().width()) { around_right = tiling_data->num_tiles_x(); } else { around_right = tiling_data->TileXIndexFromSrcCoord(right_src_coord); } // Determine around bottom, such that it is between -1 and num_tiles_y. int bottom_src_coord = center_rect.bottom() - 1; int around_bottom = 0; if (bottom_src_coord < 0 || center_rect.IsEmpty()) { around_bottom = -1; } else if (bottom_src_coord >= tiling_data->tiling_size().height()) { around_bottom = tiling_data->num_tiles_y(); } else { around_bottom = tiling_data->TileYIndexFromSrcCoord(bottom_src_coord); } vertical_step_count_ = around_bottom - around_top + 1; horizontal_step_count_ = around_right - around_left + 1; current_step_ = horizontal_step_count_ - 1; index_x_ = around_right; index_y_ = around_bottom; // The current index is the bottom right of the around rect, which is also // ignored. So we have to advance. ++(*this); } TilingData::SpiralDifferenceIterator& TilingData::SpiralDifferenceIterator:: operator++() { int cannot_hit_consider_count = 0; while (cannot_hit_consider_count < 4) { if (needs_direction_switch()) switch_direction(); index_x_ += delta_x_; index_y_ += delta_y_; ++current_step_; if (in_consider_rect()) { cannot_hit_consider_count = 0; if (!in_ignore_rect()) break; // Steps needed to reach the very edge of the ignore rect, while remaining // inside (so that the continue would take us outside). int steps_to_edge = 0; switch (direction_) { case UP: steps_to_edge = index_y_ - ignore_top_; break; case LEFT: steps_to_edge = index_x_ - ignore_left_; break; case DOWN: steps_to_edge = ignore_bottom_ - index_y_; break; case RIGHT: steps_to_edge = ignore_right_ - index_x_; break; } // We need to switch directions in |max_steps|. int max_steps = current_step_count() - current_step_; int steps_to_take = std::min(steps_to_edge, max_steps); DCHECK_GE(steps_to_take, 0); index_x_ += steps_to_take * delta_x_; index_y_ += steps_to_take * delta_y_; current_step_ += steps_to_take; } else { int max_steps = current_step_count() - current_step_; int steps_to_take = max_steps; bool can_hit_consider_rect = false; switch (direction_) { case UP: if (valid_column() && consider_bottom_ < index_y_) steps_to_take = index_y_ - consider_bottom_ - 1; can_hit_consider_rect |= consider_right_ >= index_x_; break; case LEFT: if (valid_row() && consider_right_ < index_x_) steps_to_take = index_x_ - consider_right_ - 1; can_hit_consider_rect |= consider_top_ <= index_y_; break; case DOWN: if (valid_column() && consider_top_ > index_y_) steps_to_take = consider_top_ - index_y_ - 1; can_hit_consider_rect |= consider_left_ <= index_x_; break; case RIGHT: if (valid_row() && consider_left_ > index_x_) steps_to_take = consider_left_ - index_x_ - 1; can_hit_consider_rect |= consider_bottom_ >= index_y_; break; } steps_to_take = std::min(steps_to_take, max_steps); DCHECK_GE(steps_to_take, 0); index_x_ += steps_to_take * delta_x_; index_y_ += steps_to_take * delta_y_; current_step_ += steps_to_take; if (can_hit_consider_rect) cannot_hit_consider_count = 0; else ++cannot_hit_consider_count; } } if (cannot_hit_consider_count >= 4) done(); return *this; } bool TilingData::SpiralDifferenceIterator::needs_direction_switch() const { return current_step_ >= current_step_count(); } void TilingData::SpiralDifferenceIterator::switch_direction() { // Note that delta_x_ and delta_y_ always remain between -1 and 1. int new_delta_x_ = delta_y_; delta_y_ = -delta_x_; delta_x_ = new_delta_x_; current_step_ = 0; direction_ = static_cast((direction_ + 1) % 4); if (direction_ == RIGHT || direction_ == LEFT) { ++vertical_step_count_; ++horizontal_step_count_; } } TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator() { done(); } TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator( const TilingData* tiling_data, const gfx::Rect& consider_rect, const gfx::Rect& ignore_rect, const gfx::Rect& center_rect) : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect), around_left_(-1), around_top_(-1), around_right_(-1), around_bottom_(-1), direction_(LEFT), delta_x_(-1), delta_y_(0), current_step_(0), horizontal_step_count_(0), vertical_step_count_(0) { if (!HasConsiderRect()) { done(); return; } // Determine around left, such that it is between -1 and num_tiles_x. if (center_rect.x() < 0 || center_rect.IsEmpty()) around_left_ = -1; else if (center_rect.x() >= tiling_data->tiling_size().width()) around_left_ = tiling_data->num_tiles_x(); else around_left_ = tiling_data->TileXIndexFromSrcCoord(center_rect.x()); // Determine around top, such that it is between -1 and num_tiles_y. if (center_rect.y() < 0 || center_rect.IsEmpty()) around_top_ = -1; else if (center_rect.y() >= tiling_data->tiling_size().height()) around_top_ = tiling_data->num_tiles_y(); else around_top_ = tiling_data->TileYIndexFromSrcCoord(center_rect.y()); // Determine around right, such that it is between -1 and num_tiles_x. int right_src_coord = center_rect.right() - 1; if (right_src_coord < 0 || center_rect.IsEmpty()) { around_right_ = -1; } else if (right_src_coord >= tiling_data->tiling_size().width()) { around_right_ = tiling_data->num_tiles_x(); } else { around_right_ = tiling_data->TileXIndexFromSrcCoord(right_src_coord); } // Determine around bottom, such that it is between -1 and num_tiles_y. int bottom_src_coord = center_rect.bottom() - 1; if (bottom_src_coord < 0 || center_rect.IsEmpty()) { around_bottom_ = -1; } else if (bottom_src_coord >= tiling_data->tiling_size().height()) { around_bottom_ = tiling_data->num_tiles_y(); } else { around_bottom_ = tiling_data->TileYIndexFromSrcCoord(bottom_src_coord); } // Figure out the maximum distance from the around edge to consider edge. int max_distance = 0; max_distance = std::max(max_distance, around_top_ - consider_top_); max_distance = std::max(max_distance, around_left_ - consider_left_); max_distance = std::max(max_distance, consider_bottom_ - around_bottom_); max_distance = std::max(max_distance, consider_right_ - around_right_); // The step count is the length of the edge (around_right_ - around_left_ + 1) // plus twice the max distance to pad (to the right and to the left). This way // the initial rect is the size proportional to the center, but big enough // to cover the consider rect. // // C = consider rect // A = around rect // . = area of the padded around rect // md = max distance (note in the picture below, there's md written vertically // as well). // I = initial starting position // // |md| |md| // // - .......... // m .......... // d .......... // - CCCCCCC... // CCCCAAC... // CCCCAAC... // - .......... // m .......... // d .......... // - ..........I vertical_step_count_ = around_bottom_ - around_top_ + 1 + 2 * max_distance; horizontal_step_count_ = around_right_ - around_left_ + 1 + 2 * max_distance; // Start with one to the right of the padded around rect. index_x_ = around_right_ + max_distance + 1; index_y_ = around_bottom_ + max_distance; // The current index is outside a valid tile, so advance immediately. ++(*this); } TilingData::ReverseSpiralDifferenceIterator& TilingData::ReverseSpiralDifferenceIterator:: operator++() { while (!in_around_rect()) { if (needs_direction_switch()) switch_direction(); index_x_ += delta_x_; index_y_ += delta_y_; ++current_step_; if (in_around_rect()) { break; } else if (in_consider_rect()) { // If the tile is in the consider rect but not in ignore rect, then it's a // valid tile to visit. if (!in_ignore_rect()) break; // Steps needed to reach the very edge of the ignore rect, while remaining // inside it (so that the continue would take us outside). int steps_to_edge = 0; switch (direction_) { case UP: steps_to_edge = index_y_ - ignore_top_; break; case LEFT: steps_to_edge = index_x_ - ignore_left_; break; case DOWN: steps_to_edge = ignore_bottom_ - index_y_; break; case RIGHT: steps_to_edge = ignore_right_ - index_x_; break; } // We need to switch directions in |max_steps|. int max_steps = current_step_count() - current_step_; int steps_to_take = std::min(steps_to_edge, max_steps); DCHECK_GE(steps_to_take, 0); index_x_ += steps_to_take * delta_x_; index_y_ += steps_to_take * delta_y_; current_step_ += steps_to_take; } else { // We're not in the consider rect. int max_steps = current_step_count() - current_step_; int steps_to_take = max_steps; // We might hit the consider rect before needing to switch directions: // update steps to take. switch (direction_) { case UP: if (valid_column() && consider_bottom_ < index_y_) steps_to_take = index_y_ - consider_bottom_ - 1; break; case LEFT: if (valid_row() && consider_right_ < index_x_) steps_to_take = index_x_ - consider_right_ - 1; break; case DOWN: if (valid_column() && consider_top_ > index_y_) steps_to_take = consider_top_ - index_y_ - 1; break; case RIGHT: if (valid_row() && consider_left_ > index_x_) steps_to_take = consider_left_ - index_x_ - 1; break; } steps_to_take = std::min(steps_to_take, max_steps); DCHECK_GE(steps_to_take, 0); index_x_ += steps_to_take * delta_x_; index_y_ += steps_to_take * delta_y_; current_step_ += steps_to_take; } } // Once we enter the around rect, we're done. if (in_around_rect()) done(); return *this; } bool TilingData::ReverseSpiralDifferenceIterator::needs_direction_switch() const { return current_step_ >= current_step_count(); } void TilingData::ReverseSpiralDifferenceIterator::switch_direction() { // Note that delta_x_ and delta_y_ always remain between -1 and 1. int new_delta_y_ = delta_x_; delta_x_ = -delta_y_; delta_y_ = new_delta_y_; current_step_ = 0; direction_ = static_cast((direction_ + 1) % 4); if (direction_ == UP || direction_ == DOWN) { --vertical_step_count_; --horizontal_step_count_; // We should always end up in an around rect at some point. // Since the direction is now vertical, we have to ensure that we will // advance. DCHECK_GE(horizontal_step_count_, 1); DCHECK_GE(vertical_step_count_, 1); } } } // namespace cc