// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/layers/nine_patch_layer_impl.h" #include "base/strings/stringprintf.h" #include "base/values.h" #include "cc/base/math_util.h" #include "cc/layers/quad_sink.h" #include "cc/quads/texture_draw_quad.h" #include "cc/trees/layer_tree_impl.h" #include "ui/gfx/rect_f.h" namespace cc { NinePatchLayerImpl::NinePatchLayerImpl(LayerTreeImpl* tree_impl, int id) : UIResourceLayerImpl(tree_impl, id), fill_center_(false) {} NinePatchLayerImpl::~NinePatchLayerImpl() {} scoped_ptr NinePatchLayerImpl::CreateLayerImpl( LayerTreeImpl* tree_impl) { return NinePatchLayerImpl::Create(tree_impl, id()).PassAs(); } void NinePatchLayerImpl::PushPropertiesTo(LayerImpl* layer) { UIResourceLayerImpl::PushPropertiesTo(layer); NinePatchLayerImpl* layer_impl = static_cast(layer); layer_impl->SetLayout(image_aperture_, border_, fill_center_); } static gfx::RectF NormalizedRect(float x, float y, float width, float height, float total_width, float total_height) { return gfx::RectF(x / total_width, y / total_height, width / total_width, height / total_height); } void NinePatchLayerImpl::SetLayout(const gfx::Rect& aperture, const gfx::Rect& border, bool fill_center) { // This check imposes an ordering on the call sequence. An UIResource must // exist before SetLayout can be called. DCHECK(ui_resource_id_); if (image_aperture_ == aperture && border_ == border && fill_center_ == fill_center) return; image_aperture_ = aperture; border_ = border; fill_center_ = fill_center; NoteLayerPropertyChanged(); } void NinePatchLayerImpl::CheckGeometryLimitations() { // TODO(ccameron): the following "greater than or equal to" (GE) checks should // be greater than (GT) to avoid degenerate nine-patches. The relaxed // condition "equal to" is a workaround for the overhang shadow use case and // should be investigated further. // |border| is in layer space. It cannot exceed the bounds of the layer. DCHECK(!border_.size().IsEmpty()); DCHECK_GE(bounds().width(), border_.width()); DCHECK_GE(bounds().height(), border_.height()); // Sanity Check on |border| DCHECK_LT(border_.x(), border_.width()); DCHECK_LT(border_.y(), border_.height()); DCHECK_GE(border_.x(), 0); DCHECK_GE(border_.y(), 0); // |aperture| is in image space. It cannot exceed the bounds of the bitmap. DCHECK(!image_aperture_.size().IsEmpty()); DCHECK(gfx::Rect(image_bounds_.width(), image_bounds_.height()) .Contains(image_aperture_)); // Avoid the degenerate cases where the aperture touches the edge of the // image. DCHECK_LT(image_aperture_.width(), image_bounds_.width() - 1); DCHECK_LT(image_aperture_.height(), image_bounds_.height() - 1); DCHECK_GT(image_aperture_.x(), 0); DCHECK_GT(image_aperture_.y(), 0); } void NinePatchLayerImpl::AppendQuads(QuadSink* quad_sink, AppendQuadsData* append_quads_data) { CheckGeometryLimitations(); SharedQuadState* shared_quad_state = quad_sink->UseSharedQuadState(CreateSharedQuadState()); AppendDebugBorderQuad(quad_sink, shared_quad_state, append_quads_data); if (!ui_resource_id_) return; ResourceProvider::ResourceId resource = layer_tree_impl()->ResourceIdForUIResource(ui_resource_id_); if (!resource) return; static const bool flipped = false; static const bool premultiplied_alpha = true; DCHECK(!bounds().IsEmpty()); // NinePatch border widths in layer space. int layer_left_width = border_.x(); int layer_top_height = border_.y(); int layer_right_width = border_.width() - layer_left_width; int layer_bottom_height = border_.height() - layer_top_height; int layer_middle_width = bounds().width() - border_.width(); int layer_middle_height = bounds().height() - border_.height(); // Patch positions in layer space gfx::Rect layer_top_left(0, 0, layer_left_width, layer_top_height); gfx::Rect layer_top_right(bounds().width() - layer_right_width, 0, layer_right_width, layer_top_height); gfx::Rect layer_bottom_left(0, bounds().height() - layer_bottom_height, layer_left_width, layer_bottom_height); gfx::Rect layer_bottom_right(layer_top_right.x(), layer_bottom_left.y(), layer_right_width, layer_bottom_height); gfx::Rect layer_top( layer_top_left.right(), 0, layer_middle_width, layer_top_height); gfx::Rect layer_left( 0, layer_top_left.bottom(), layer_left_width, layer_middle_height); gfx::Rect layer_right(layer_top_right.x(), layer_top_right.bottom(), layer_right_width, layer_left.height()); gfx::Rect layer_bottom(layer_top.x(), layer_bottom_left.y(), layer_top.width(), layer_bottom_height); gfx::Rect layer_center(layer_left_width, layer_top_height, layer_middle_width, layer_middle_height); // Note the following values are in image (bitmap) space. float image_width = image_bounds_.width(); float image_height = image_bounds_.height(); int image_aperture_left_width = image_aperture_.x(); int image_aperture_top_height = image_aperture_.y(); int image_aperture_right_width = image_width - image_aperture_.right(); int image_aperture_bottom_height = image_height - image_aperture_.bottom(); // Patch positions in bitmap UV space (from zero to one) gfx::RectF uv_top_left = NormalizedRect(0, 0, image_aperture_left_width, image_aperture_top_height, image_width, image_height); gfx::RectF uv_top_right = NormalizedRect(image_width - image_aperture_right_width, 0, image_aperture_right_width, image_aperture_top_height, image_width, image_height); gfx::RectF uv_bottom_left = NormalizedRect(0, image_height - image_aperture_bottom_height, image_aperture_left_width, image_aperture_bottom_height, image_width, image_height); gfx::RectF uv_bottom_right = NormalizedRect(image_width - image_aperture_right_width, image_height - image_aperture_bottom_height, image_aperture_right_width, image_aperture_bottom_height, image_width, image_height); gfx::RectF uv_top( uv_top_left.right(), 0, (image_width - image_aperture_left_width - image_aperture_right_width) / image_width, (image_aperture_top_height) / image_height); gfx::RectF uv_left(0, uv_top_left.bottom(), image_aperture_left_width / image_width, (image_height - image_aperture_top_height - image_aperture_bottom_height) / image_height); gfx::RectF uv_right(uv_top_right.x(), uv_top_right.bottom(), image_aperture_right_width / image_width, uv_left.height()); gfx::RectF uv_bottom(uv_top.x(), uv_bottom_left.y(), uv_top.width(), image_aperture_bottom_height / image_height); gfx::RectF uv_center(uv_top_left.right(), uv_top_left.bottom(), uv_top.width(), uv_left.height()); // Nothing is opaque here. // TODO(danakj): Should we look at the SkBitmaps to determine opaqueness? gfx::Rect opaque_rect; const float vertex_opacity[] = {1.0f, 1.0f, 1.0f, 1.0f}; scoped_ptr quad; quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_top_left, opaque_rect, resource, premultiplied_alpha, uv_top_left.origin(), uv_top_left.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_top_right, opaque_rect, resource, premultiplied_alpha, uv_top_right.origin(), uv_top_right.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_bottom_left, opaque_rect, resource, premultiplied_alpha, uv_bottom_left.origin(), uv_bottom_left.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_bottom_right, opaque_rect, resource, premultiplied_alpha, uv_bottom_right.origin(), uv_bottom_right.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_top, opaque_rect, resource, premultiplied_alpha, uv_top.origin(), uv_top.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_left, opaque_rect, resource, premultiplied_alpha, uv_left.origin(), uv_left.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_right, opaque_rect, resource, premultiplied_alpha, uv_right.origin(), uv_right.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_bottom, opaque_rect, resource, premultiplied_alpha, uv_bottom.origin(), uv_bottom.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); if (fill_center_) { quad = TextureDrawQuad::Create(); quad->SetNew(shared_quad_state, layer_center, opaque_rect, resource, premultiplied_alpha, uv_center.origin(), uv_center.bottom_right(), SK_ColorTRANSPARENT, vertex_opacity, flipped); quad_sink->Append(quad.PassAs(), append_quads_data); } } const char* NinePatchLayerImpl::LayerTypeAsString() const { return "cc::NinePatchLayerImpl"; } base::DictionaryValue* NinePatchLayerImpl::LayerTreeAsJson() const { base::DictionaryValue* result = LayerImpl::LayerTreeAsJson(); base::ListValue* list = new base::ListValue; list->AppendInteger(image_aperture_.origin().x()); list->AppendInteger(image_aperture_.origin().y()); list->AppendInteger(image_aperture_.size().width()); list->AppendInteger(image_aperture_.size().height()); result->Set("ImageAperture", list); list = new base::ListValue; list->AppendInteger(image_bounds_.width()); list->AppendInteger(image_bounds_.height()); result->Set("ImageBounds", list); result->Set("Border", MathUtil::AsValue(border_).release()); base::FundamentalValue* fill_center = base::Value::CreateBooleanValue(fill_center_); result->Set("FillCenter", fill_center); return result; } } // namespace cc