// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/layers/picture_layer_impl.h" #include #include #include #include #include "base/time/time.h" #include "base/trace_event/trace_event_argument.h" #include "cc/base/math_util.h" #include "cc/debug/debug_colors.h" #include "cc/debug/micro_benchmark_impl.h" #include "cc/debug/traced_value.h" #include "cc/layers/append_quads_data.h" #include "cc/layers/solid_color_layer_impl.h" #include "cc/output/begin_frame_args.h" #include "cc/quads/debug_border_draw_quad.h" #include "cc/quads/picture_draw_quad.h" #include "cc/quads/solid_color_draw_quad.h" #include "cc/quads/tile_draw_quad.h" #include "cc/tiles/tile_manager.h" #include "cc/tiles/tiling_set_raster_queue_all.h" #include "cc/trees/layer_tree_impl.h" #include "cc/trees/occlusion.h" #include "ui/gfx/geometry/quad_f.h" #include "ui/gfx/geometry/rect_conversions.h" #include "ui/gfx/geometry/size_conversions.h" namespace { // This must be > 1 as we multiply or divide by this to find a new raster // scale during pinch. const float kMaxScaleRatioDuringPinch = 2.0f; // When creating a new tiling during pinch, snap to an existing // tiling's scale if the desired scale is within this ratio. const float kSnapToExistingTilingRatio = 1.2f; // Even for really wide viewports, at some point GPU raster should use // less than 4 tiles to fill the viewport. This is set to 256 as a // sane minimum for now, but we might want to tune this for low-end. const int kMinHeightForGpuRasteredTile = 256; // When making odd-sized tiles, round them up to increase the chances // of using the same tile size. const int kTileRoundUp = 64; } // namespace namespace cc { PictureLayerImpl::PictureLayerImpl( LayerTreeImpl* tree_impl, int id, bool is_mask, scoped_refptr scroll_offset) : LayerImpl(tree_impl, id, scroll_offset), twin_layer_(nullptr), tilings_(CreatePictureLayerTilingSet()), ideal_page_scale_(0.f), ideal_device_scale_(0.f), ideal_source_scale_(0.f), ideal_contents_scale_(0.f), raster_page_scale_(0.f), raster_device_scale_(0.f), raster_source_scale_(0.f), raster_contents_scale_(0.f), low_res_raster_contents_scale_(0.f), raster_source_scale_is_fixed_(false), was_screen_space_transform_animating_(false), only_used_low_res_last_append_quads_(false), is_mask_(is_mask), nearest_neighbor_(false) { layer_tree_impl()->RegisterPictureLayerImpl(this); } PictureLayerImpl::~PictureLayerImpl() { if (twin_layer_) twin_layer_->twin_layer_ = nullptr; layer_tree_impl()->UnregisterPictureLayerImpl(this); } const char* PictureLayerImpl::LayerTypeAsString() const { return "cc::PictureLayerImpl"; } scoped_ptr PictureLayerImpl::CreateLayerImpl( LayerTreeImpl* tree_impl) { return PictureLayerImpl::Create(tree_impl, id(), is_mask_, synced_scroll_offset()); } void PictureLayerImpl::PushPropertiesTo(LayerImpl* base_layer) { PictureLayerImpl* layer_impl = static_cast(base_layer); DCHECK_EQ(layer_impl->is_mask_, is_mask_); LayerImpl::PushPropertiesTo(base_layer); // Twin relationships should never change once established. DCHECK_IMPLIES(twin_layer_, twin_layer_ == layer_impl); DCHECK_IMPLIES(twin_layer_, layer_impl->twin_layer_ == this); // The twin relationship does not need to exist before the first // PushPropertiesTo from pending to active layer since before that the active // layer can not have a pile or tilings, it has only been created and inserted // into the tree at that point. twin_layer_ = layer_impl; layer_impl->twin_layer_ = this; layer_impl->SetNearestNeighbor(nearest_neighbor_); // Solid color layers have no tilings. DCHECK_IMPLIES(raster_source_->IsSolidColor(), tilings_->num_tilings() == 0); // The pending tree should only have a high res (and possibly low res) tiling. DCHECK_LE(tilings_->num_tilings(), layer_tree_impl()->create_low_res_tiling() ? 2u : 1u); layer_impl->set_gpu_raster_max_texture_size(gpu_raster_max_texture_size_); layer_impl->UpdateRasterSource(raster_source_, &invalidation_, tilings_.get()); DCHECK(invalidation_.IsEmpty()); // After syncing a solid color layer, the active layer has no tilings. DCHECK_IMPLIES(raster_source_->IsSolidColor(), layer_impl->tilings_->num_tilings() == 0); layer_impl->raster_page_scale_ = raster_page_scale_; layer_impl->raster_device_scale_ = raster_device_scale_; layer_impl->raster_source_scale_ = raster_source_scale_; layer_impl->raster_contents_scale_ = raster_contents_scale_; layer_impl->low_res_raster_contents_scale_ = low_res_raster_contents_scale_; layer_impl->SanityCheckTilingState(); // We always need to push properties. // See http://crbug.com/303943 // TODO(danakj): Stop always pushing properties since we don't swap tilings. needs_push_properties_ = true; } void PictureLayerImpl::AppendQuads(RenderPass* render_pass, AppendQuadsData* append_quads_data) { // The bounds and the pile size may differ if the pile wasn't updated (ie. // PictureLayer::Update didn't happen). In that case the pile will be empty. DCHECK_IMPLIES(!raster_source_->GetSize().IsEmpty(), bounds() == raster_source_->GetSize()) << " bounds " << bounds().ToString() << " pile " << raster_source_->GetSize().ToString(); SharedQuadState* shared_quad_state = render_pass->CreateAndAppendSharedQuadState(); if (raster_source_->IsSolidColor()) { PopulateSharedQuadState(shared_quad_state); AppendDebugBorderQuad( render_pass, bounds(), shared_quad_state, append_quads_data); SolidColorLayerImpl::AppendSolidQuads( render_pass, draw_properties().occlusion_in_content_space, shared_quad_state, visible_layer_rect(), raster_source_->GetSolidColor(), append_quads_data); return; } float max_contents_scale = MaximumTilingContentsScale(); PopulateScaledSharedQuadState(shared_quad_state, max_contents_scale); Occlusion scaled_occlusion = draw_properties() .occlusion_in_content_space.GetOcclusionWithGivenDrawTransform( shared_quad_state->quad_to_target_transform); if (current_draw_mode_ == DRAW_MODE_RESOURCELESS_SOFTWARE) { AppendDebugBorderQuad( render_pass, shared_quad_state->quad_layer_bounds, shared_quad_state, append_quads_data, DebugColors::DirectPictureBorderColor(), DebugColors::DirectPictureBorderWidth(layer_tree_impl())); gfx::Rect geometry_rect = shared_quad_state->visible_quad_layer_rect; gfx::Rect opaque_rect = contents_opaque() ? geometry_rect : gfx::Rect(); gfx::Rect visible_geometry_rect = scaled_occlusion.GetUnoccludedContentRect(geometry_rect); if (visible_geometry_rect.IsEmpty()) return; gfx::Rect quad_content_rect = shared_quad_state->visible_quad_layer_rect; gfx::Size texture_size = quad_content_rect.size(); gfx::RectF texture_rect = gfx::RectF(texture_size); PictureDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, opaque_rect, visible_geometry_rect, texture_rect, texture_size, nearest_neighbor_, RGBA_8888, quad_content_rect, max_contents_scale, raster_source_); ValidateQuadResources(quad); return; } AppendDebugBorderQuad(render_pass, shared_quad_state->quad_layer_bounds, shared_quad_state, append_quads_data); if (ShowDebugBorders()) { for (PictureLayerTilingSet::CoverageIterator iter( tilings_.get(), max_contents_scale, shared_quad_state->visible_quad_layer_rect, ideal_contents_scale_); iter; ++iter) { SkColor color; float width; if (*iter && iter->draw_info().IsReadyToDraw()) { TileDrawInfo::Mode mode = iter->draw_info().mode(); if (mode == TileDrawInfo::SOLID_COLOR_MODE) { color = DebugColors::SolidColorTileBorderColor(); width = DebugColors::SolidColorTileBorderWidth(layer_tree_impl()); } else if (mode == TileDrawInfo::OOM_MODE) { color = DebugColors::OOMTileBorderColor(); width = DebugColors::OOMTileBorderWidth(layer_tree_impl()); } else if (iter.resolution() == HIGH_RESOLUTION) { color = DebugColors::HighResTileBorderColor(); width = DebugColors::HighResTileBorderWidth(layer_tree_impl()); } else if (iter.resolution() == LOW_RESOLUTION) { color = DebugColors::LowResTileBorderColor(); width = DebugColors::LowResTileBorderWidth(layer_tree_impl()); } else if (iter->contents_scale() > max_contents_scale) { color = DebugColors::ExtraHighResTileBorderColor(); width = DebugColors::ExtraHighResTileBorderWidth(layer_tree_impl()); } else { color = DebugColors::ExtraLowResTileBorderColor(); width = DebugColors::ExtraLowResTileBorderWidth(layer_tree_impl()); } } else { color = DebugColors::MissingTileBorderColor(); width = DebugColors::MissingTileBorderWidth(layer_tree_impl()); } DebugBorderDrawQuad* debug_border_quad = render_pass->CreateAndAppendDrawQuad(); gfx::Rect geometry_rect = iter.geometry_rect(); gfx::Rect visible_geometry_rect = geometry_rect; debug_border_quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect, color, width); } } // Keep track of the tilings that were used so that tilings that are // unused can be considered for removal. last_append_quads_tilings_.clear(); // Ignore missing tiles outside of viewport for tile priority. This is // normally the same as draw viewport but can be independently overridden by // embedders like Android WebView with SetExternalDrawConstraints. gfx::Rect scaled_viewport_for_tile_priority = gfx::ScaleToEnclosingRect( viewport_rect_for_tile_priority_in_content_space_, max_contents_scale); size_t missing_tile_count = 0u; size_t on_demand_missing_tile_count = 0u; only_used_low_res_last_append_quads_ = true; for (PictureLayerTilingSet::CoverageIterator iter( tilings_.get(), max_contents_scale, shared_quad_state->visible_quad_layer_rect, ideal_contents_scale_); iter; ++iter) { gfx::Rect geometry_rect = iter.geometry_rect(); gfx::Rect opaque_rect = contents_opaque() ? geometry_rect : gfx::Rect(); gfx::Rect visible_geometry_rect = scaled_occlusion.GetUnoccludedContentRect(geometry_rect); if (visible_geometry_rect.IsEmpty()) continue; append_quads_data->visible_layer_area += visible_geometry_rect.width() * visible_geometry_rect.height(); bool has_draw_quad = false; if (*iter && iter->draw_info().IsReadyToDraw()) { const TileDrawInfo& draw_info = iter->draw_info(); switch (draw_info.mode()) { case TileDrawInfo::RESOURCE_MODE: { gfx::RectF texture_rect = iter.texture_rect(); // The raster_contents_scale_ is the best scale that the layer is // trying to produce, even though it may not be ideal. Since that's // the best the layer can promise in the future, consider those as // complete. But if a tile is ideal scale, we don't want to consider // it incomplete and trying to replace it with a tile at a worse // scale. if (iter->contents_scale() != raster_contents_scale_ && iter->contents_scale() != ideal_contents_scale_ && geometry_rect.Intersects(scaled_viewport_for_tile_priority)) { append_quads_data->num_incomplete_tiles++; } TileDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, opaque_rect, visible_geometry_rect, draw_info.resource_id(), texture_rect, draw_info.resource_size(), draw_info.contents_swizzled(), nearest_neighbor_); ValidateQuadResources(quad); iter->draw_info().set_was_ever_used_to_draw(); has_draw_quad = true; break; } case TileDrawInfo::SOLID_COLOR_MODE: { SolidColorDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect, draw_info.solid_color(), false); ValidateQuadResources(quad); iter->draw_info().set_was_ever_used_to_draw(); has_draw_quad = true; break; } case TileDrawInfo::OOM_MODE: break; // Checkerboard. } } if (!has_draw_quad) { // Checkerboard. SkColor color = SafeOpaqueBackgroundColor(); if (ShowDebugBorders()) { // Fill the whole tile with the missing tile color. color = DebugColors::OOMTileBorderColor(); } SolidColorDrawQuad* quad = render_pass->CreateAndAppendDrawQuad(); quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect, color, false); ValidateQuadResources(quad); if (geometry_rect.Intersects(scaled_viewport_for_tile_priority)) { append_quads_data->num_missing_tiles++; ++missing_tile_count; } append_quads_data->approximated_visible_content_area += visible_geometry_rect.width() * visible_geometry_rect.height(); append_quads_data->checkerboarded_visible_content_area += visible_geometry_rect.width() * visible_geometry_rect.height(); continue; } if (iter.resolution() != HIGH_RESOLUTION) { append_quads_data->approximated_visible_content_area += visible_geometry_rect.width() * visible_geometry_rect.height(); } // If we have a draw quad, but it's not low resolution, then // mark that we've used something other than low res to draw. if (iter.resolution() != LOW_RESOLUTION) only_used_low_res_last_append_quads_ = false; if (last_append_quads_tilings_.empty() || last_append_quads_tilings_.back() != iter.CurrentTiling()) { last_append_quads_tilings_.push_back(iter.CurrentTiling()); } } if (missing_tile_count) { TRACE_EVENT_INSTANT2("cc", "PictureLayerImpl::AppendQuads checkerboard", TRACE_EVENT_SCOPE_THREAD, "missing_tile_count", missing_tile_count, "on_demand_missing_tile_count", on_demand_missing_tile_count); } // Aggressively remove any tilings that are not seen to save memory. Note // that this is at the expense of doing cause more frequent re-painting. A // better scheme would be to maintain a tighter visible_layer_rect for the // finer tilings. CleanUpTilingsOnActiveLayer(last_append_quads_tilings_); } bool PictureLayerImpl::UpdateTiles(bool resourceless_software_draw) { if (!resourceless_software_draw) { visible_rect_for_tile_priority_ = visible_layer_rect(); } if (!CanHaveTilings()) { ideal_page_scale_ = 0.f; ideal_device_scale_ = 0.f; ideal_contents_scale_ = 0.f; ideal_source_scale_ = 0.f; SanityCheckTilingState(); return false; } // Remove any non-ideal tilings that were not used last time we generated // quads to save memory and processing time. Note that pending tree should // only have one or two tilings (high and low res), so only clean up the // active layer. This cleans it up here in case AppendQuads didn't run. // If it did run, this would not remove any additional tilings. if (layer_tree_impl()->IsActiveTree()) CleanUpTilingsOnActiveLayer(last_append_quads_tilings_); UpdateIdealScales(); if (!raster_contents_scale_ || ShouldAdjustRasterScale()) { RecalculateRasterScales(); AddTilingsForRasterScale(); } if (layer_tree_impl()->IsActiveTree()) AddLowResolutionTilingIfNeeded(); DCHECK(raster_page_scale_); DCHECK(raster_device_scale_); DCHECK(raster_source_scale_); DCHECK(raster_contents_scale_); DCHECK(low_res_raster_contents_scale_); was_screen_space_transform_animating_ = draw_properties().screen_space_transform_is_animating; if (screen_space_transform_is_animating()) raster_source_->SetShouldAttemptToUseDistanceFieldText(); double current_frame_time_in_seconds = (layer_tree_impl()->CurrentBeginFrameArgs().frame_time - base::TimeTicks()).InSecondsF(); UpdateViewportRectForTilePriorityInContentSpace(); // The tiling set can require tiles for activation any of the following // conditions are true: // - This layer produced a high-res or non-ideal-res tile last frame. // - We're in requires high res to draw mode. // - We're not in smoothness takes priority mode. // To put different, the tiling set can't require tiles for activation if // we're in smoothness mode and only used low-res or checkerboard to draw last // frame and we don't need high res to draw. // // The reason for this is that we should be able to activate sooner and get a // more up to date recording, so we don't run out of recording on the active // tree. bool can_require_tiles_for_activation = !only_used_low_res_last_append_quads_ || RequiresHighResToDraw() || !layer_tree_impl()->SmoothnessTakesPriority(); static const Occlusion kEmptyOcclusion; const Occlusion& occlusion_in_content_space = layer_tree_impl()->settings().use_occlusion_for_tile_prioritization ? draw_properties().occlusion_in_content_space : kEmptyOcclusion; // Pass |occlusion_in_content_space| for |occlusion_in_layer_space| since // they are the same space in picture layer, as contents scale is always 1. bool updated = tilings_->UpdateTilePriorities( viewport_rect_for_tile_priority_in_content_space_, ideal_contents_scale_, current_frame_time_in_seconds, occlusion_in_content_space, can_require_tiles_for_activation); return updated; } void PictureLayerImpl::UpdateViewportRectForTilePriorityInContentSpace() { // If visible_rect_for_tile_priority_ is empty or // viewport_rect_for_tile_priority is set to be different from the device // viewport, try to inverse project the viewport into layer space and use // that. Otherwise just use visible_rect_for_tile_priority_ gfx::Rect visible_rect_in_content_space = visible_rect_for_tile_priority_; gfx::Rect viewport_rect_for_tile_priority = layer_tree_impl()->ViewportRectForTilePriority(); if (visible_rect_in_content_space.IsEmpty() || layer_tree_impl()->DeviceViewport() != viewport_rect_for_tile_priority) { gfx::Transform view_to_layer(gfx::Transform::kSkipInitialization); if (screen_space_transform().GetInverse(&view_to_layer)) { // Transform from view space to content space. visible_rect_in_content_space = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect( view_to_layer, viewport_rect_for_tile_priority)); // We have to allow for a viewport that is outside of the layer bounds in // order to compute tile priorities correctly for offscreen content that // is going to make it on screen. However, we also have to limit the // viewport since it can be very large due to screen_space_transforms. As // a heuristic, we clip to bounds padded by skewport_extrapolation_limit * // maximum tiling scale, since this should allow sufficient room for // skewport calculations. gfx::Rect padded_bounds(bounds()); int padding_amount = layer_tree_impl() ->settings() .skewport_extrapolation_limit_in_content_pixels * MaximumTilingContentsScale(); padded_bounds.Inset(-padding_amount, -padding_amount); visible_rect_in_content_space.Intersect(padded_bounds); } } viewport_rect_for_tile_priority_in_content_space_ = visible_rect_in_content_space; } PictureLayerImpl* PictureLayerImpl::GetPendingOrActiveTwinLayer() const { if (!twin_layer_ || !twin_layer_->IsOnActiveOrPendingTree()) return nullptr; return twin_layer_; } void PictureLayerImpl::UpdateRasterSource( scoped_refptr raster_source, Region* new_invalidation, const PictureLayerTilingSet* pending_set) { // The bounds and the pile size may differ if the pile wasn't updated (ie. // PictureLayer::Update didn't happen). In that case the pile will be empty. DCHECK_IMPLIES(!raster_source->GetSize().IsEmpty(), bounds() == raster_source->GetSize()) << " bounds " << bounds().ToString() << " pile " << raster_source->GetSize().ToString(); // The |raster_source_| is initially null, so have to check for that for the // first frame. bool could_have_tilings = raster_source_.get() && CanHaveTilings(); raster_source_.swap(raster_source); // The |new_invalidation| must be cleared before updating tilings since they // access the invalidation through the PictureLayerTilingClient interface. invalidation_.Clear(); invalidation_.Swap(new_invalidation); bool can_have_tilings = CanHaveTilings(); DCHECK_IMPLIES( pending_set, can_have_tilings == GetPendingOrActiveTwinLayer()->CanHaveTilings()); // Need to call UpdateTiles again if CanHaveTilings changed. if (could_have_tilings != can_have_tilings) layer_tree_impl()->set_needs_update_draw_properties(); if (!can_have_tilings) { RemoveAllTilings(); return; } // We could do this after doing UpdateTiles, which would avoid doing this for // tilings that are going to disappear on the pending tree (if scale changed). // But that would also be more complicated, so we just do it here for now. if (pending_set) { tilings_->UpdateTilingsToCurrentRasterSourceForActivation( raster_source_, pending_set, invalidation_, MinimumContentsScale(), MaximumContentsScale()); } else { tilings_->UpdateTilingsToCurrentRasterSourceForCommit( raster_source_, invalidation_, MinimumContentsScale(), MaximumContentsScale()); } } void PictureLayerImpl::UpdateCanUseLCDTextAfterCommit() { // This function is only allowed to be called after commit, due to it not // being smart about sharing tiles and because otherwise it would cause // flashes by switching out tiles in place that may be currently on screen. DCHECK(layer_tree_impl()->IsSyncTree()); // Don't allow the LCD text state to change once disabled. if (!RasterSourceUsesLCDText()) return; if (can_use_lcd_text() == RasterSourceUsesLCDText()) return; // Raster sources are considered const, so in order to update the state // a new one must be created and all tiles recreated. scoped_refptr new_raster_source = raster_source_->CreateCloneWithoutLCDText(); raster_source_.swap(new_raster_source); // Synthetically invalidate everything. gfx::Rect bounds_rect(bounds()); invalidation_ = Region(bounds_rect); tilings_->UpdateRasterSourceDueToLCDChange(raster_source_, invalidation_); SetUpdateRect(bounds_rect); DCHECK(!RasterSourceUsesLCDText()); } bool PictureLayerImpl::RasterSourceUsesLCDText() const { return raster_source_ ? raster_source_->CanUseLCDText() : layer_tree_impl()->settings().can_use_lcd_text; } void PictureLayerImpl::NotifyTileStateChanged(const Tile* tile) { if (layer_tree_impl()->IsActiveTree()) { gfx::RectF layer_damage_rect = gfx::ScaleRect(tile->content_rect(), 1.f / tile->contents_scale()); AddDamageRect(layer_damage_rect); } if (tile->draw_info().NeedsRaster()) { PictureLayerTiling* tiling = tilings_->FindTilingWithScale(tile->contents_scale()); if (tiling) tiling->set_all_tiles_done(false); } } void PictureLayerImpl::DidBeginTracing() { raster_source_->DidBeginTracing(); } void PictureLayerImpl::ReleaseResources() { // Recreate tilings with new settings, since some of those might change when // we release resources. tilings_ = nullptr; ResetRasterScale(); } void PictureLayerImpl::RecreateResources() { tilings_ = CreatePictureLayerTilingSet(); // To avoid an edge case after lost context where the tree is up to date but // the tilings have not been managed, request an update draw properties // to force tilings to get managed. layer_tree_impl()->set_needs_update_draw_properties(); } skia::RefPtr PictureLayerImpl::GetPicture() { return raster_source_->GetFlattenedPicture(); } Region PictureLayerImpl::GetInvalidationRegion() { // |invalidation_| gives the invalidation contained in the source frame, but // is not cleared after drawing from the layer. However, update_rect() is // cleared once the invalidation is drawn, which is useful for debugging // visualizations. This method intersects the two to give a more exact // representation of what was invalidated that is cleared after drawing. return IntersectRegions(invalidation_, update_rect()); } ScopedTilePtr PictureLayerImpl::CreateTile(float contents_scale, const gfx::Rect& content_rect) { int flags = 0; // We don't handle solid color masks, so we shouldn't bother analyzing those. // Otherwise, always analyze to maximize memory savings. if (!is_mask_) flags = Tile::USE_PICTURE_ANALYSIS; return layer_tree_impl()->tile_manager()->CreateTile( content_rect.size(), content_rect, contents_scale, id(), layer_tree_impl()->source_frame_number(), flags); } const Region* PictureLayerImpl::GetPendingInvalidation() { if (layer_tree_impl()->IsPendingTree()) return &invalidation_; if (layer_tree_impl()->IsRecycleTree()) return nullptr; DCHECK(layer_tree_impl()->IsActiveTree()); if (PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer()) return &twin_layer->invalidation_; return nullptr; } const PictureLayerTiling* PictureLayerImpl::GetPendingOrActiveTwinTiling( const PictureLayerTiling* tiling) const { PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer(); if (!twin_layer) return nullptr; return twin_layer->tilings_->FindTilingWithScale(tiling->contents_scale()); } bool PictureLayerImpl::RequiresHighResToDraw() const { return layer_tree_impl()->RequiresHighResToDraw(); } gfx::Rect PictureLayerImpl::GetEnclosingRectInTargetSpace() const { return GetScaledEnclosingRectInTargetSpace(MaximumTilingContentsScale()); } gfx::Size PictureLayerImpl::CalculateTileSize( const gfx::Size& content_bounds) const { int max_texture_size = layer_tree_impl()->resource_provider()->max_texture_size(); if (is_mask_) { // Masks are not tiled, so if we can't cover the whole mask with one tile, // we shouldn't have such a tiling at all. DCHECK_LE(content_bounds.width(), max_texture_size); DCHECK_LE(content_bounds.height(), max_texture_size); return content_bounds; } int default_tile_width = 0; int default_tile_height = 0; if (layer_tree_impl()->use_gpu_rasterization()) { // For GPU rasterization, we pick an ideal tile size using the viewport // so we don't need any settings. The current approach uses 4 tiles // to cover the viewport vertically. int viewport_width = gpu_raster_max_texture_size_.width(); int viewport_height = gpu_raster_max_texture_size_.height(); default_tile_width = viewport_width; // Also, increase the height proportionally as the width decreases, and // pad by our border texels to make the tiles exactly match the viewport. int divisor = 4; if (content_bounds.width() <= viewport_width / 2) divisor = 2; if (content_bounds.width() <= viewport_width / 4) divisor = 1; default_tile_height = MathUtil::UncheckedRoundUp(viewport_height, divisor) / divisor; // Grow default sizes to account for overlapping border texels. default_tile_width += 2 * PictureLayerTiling::kBorderTexels; default_tile_height += 2 * PictureLayerTiling::kBorderTexels; default_tile_height = std::max(default_tile_height, kMinHeightForGpuRasteredTile); } else { // For CPU rasterization we use tile-size settings. const LayerTreeSettings& settings = layer_tree_impl()->settings(); int max_untiled_content_width = settings.max_untiled_layer_size.width(); int max_untiled_content_height = settings.max_untiled_layer_size.height(); default_tile_width = settings.default_tile_size.width(); default_tile_height = settings.default_tile_size.height(); // If the content width is small, increase tile size vertically. // If the content height is small, increase tile size horizontally. // If both are less than the untiled-size, use a single tile. if (content_bounds.width() < default_tile_width) default_tile_height = max_untiled_content_height; if (content_bounds.height() < default_tile_height) default_tile_width = max_untiled_content_width; if (content_bounds.width() < max_untiled_content_width && content_bounds.height() < max_untiled_content_height) { default_tile_height = max_untiled_content_height; default_tile_width = max_untiled_content_width; } } int tile_width = default_tile_width; int tile_height = default_tile_height; // Clamp the tile width/height to the content width/height to save space. if (content_bounds.width() < default_tile_width) { tile_width = std::min(tile_width, content_bounds.width()); tile_width = MathUtil::UncheckedRoundUp(tile_width, kTileRoundUp); tile_width = std::min(tile_width, default_tile_width); } if (content_bounds.height() < default_tile_height) { tile_height = std::min(tile_height, content_bounds.height()); tile_height = MathUtil::UncheckedRoundUp(tile_height, kTileRoundUp); tile_height = std::min(tile_height, default_tile_height); } // Under no circumstance should we be larger than the max texture size. tile_width = std::min(tile_width, max_texture_size); tile_height = std::min(tile_height, max_texture_size); return gfx::Size(tile_width, tile_height); } void PictureLayerImpl::GetContentsResourceId(ResourceId* resource_id, gfx::Size* resource_size) const { // The bounds and the pile size may differ if the pile wasn't updated (ie. // PictureLayer::Update didn't happen). In that case the pile will be empty. DCHECK_IMPLIES(!raster_source_->GetSize().IsEmpty(), bounds() == raster_source_->GetSize()) << " bounds " << bounds().ToString() << " pile " << raster_source_->GetSize().ToString(); gfx::Rect content_rect(bounds()); PictureLayerTilingSet::CoverageIterator iter( tilings_.get(), 1.f, content_rect, ideal_contents_scale_); // Mask resource not ready yet. if (!iter || !*iter) { *resource_id = 0; return; } // Masks only supported if they fit on exactly one tile. DCHECK(iter.geometry_rect() == content_rect) << "iter rect " << iter.geometry_rect().ToString() << " content rect " << content_rect.ToString(); const TileDrawInfo& draw_info = iter->draw_info(); if (!draw_info.IsReadyToDraw() || draw_info.mode() != TileDrawInfo::RESOURCE_MODE) { *resource_id = 0; return; } *resource_id = draw_info.resource_id(); *resource_size = draw_info.resource_size(); } void PictureLayerImpl::SetNearestNeighbor(bool nearest_neighbor) { if (nearest_neighbor_ == nearest_neighbor) return; nearest_neighbor_ = nearest_neighbor; NoteLayerPropertyChanged(); } PictureLayerTiling* PictureLayerImpl::AddTiling(float contents_scale) { DCHECK(CanHaveTilings()); DCHECK_GE(contents_scale, MinimumContentsScale()); DCHECK_LE(contents_scale, MaximumContentsScale()); DCHECK(raster_source_->HasRecordings()); return tilings_->AddTiling(contents_scale, raster_source_); } void PictureLayerImpl::RemoveAllTilings() { tilings_->RemoveAllTilings(); // If there are no tilings, then raster scales are no longer meaningful. ResetRasterScale(); } void PictureLayerImpl::AddTilingsForRasterScale() { // Reset all resolution enums on tilings, we'll be setting new values in this // function. tilings_->MarkAllTilingsNonIdeal(); PictureLayerTiling* high_res = tilings_->FindTilingWithScale(raster_contents_scale_); if (!high_res) { // We always need a high res tiling, so create one if it doesn't exist. high_res = AddTiling(raster_contents_scale_); } else if (high_res->may_contain_low_resolution_tiles()) { // If the tiling we find here was LOW_RESOLUTION previously, it may not be // fully rastered, so destroy the old tiles. high_res->Reset(); // Reset the flag now that we'll make it high res, it will have fully // rastered content. high_res->reset_may_contain_low_resolution_tiles(); } high_res->set_resolution(HIGH_RESOLUTION); if (layer_tree_impl()->IsPendingTree()) { // On the pending tree, drop any tilings that are non-ideal since we don't // need them to activate anyway. tilings_->RemoveNonIdealTilings(); } SanityCheckTilingState(); } bool PictureLayerImpl::ShouldAdjustRasterScale() const { if (was_screen_space_transform_animating_ != draw_properties().screen_space_transform_is_animating) return true; if (draw_properties().screen_space_transform_is_animating && raster_contents_scale_ != ideal_contents_scale_ && ShouldAdjustRasterScaleDuringScaleAnimations()) return true; bool is_pinching = layer_tree_impl()->PinchGestureActive(); if (is_pinching && raster_page_scale_) { // We change our raster scale when it is: // - Higher than ideal (need a lower-res tiling available) // - Too far from ideal (need a higher-res tiling available) float ratio = ideal_page_scale_ / raster_page_scale_; if (raster_page_scale_ > ideal_page_scale_ || ratio > kMaxScaleRatioDuringPinch) return true; } if (!is_pinching) { // When not pinching, match the ideal page scale factor. if (raster_page_scale_ != ideal_page_scale_) return true; } // Always match the ideal device scale factor. if (raster_device_scale_ != ideal_device_scale_) return true; // When the source scale changes we want to match it, but not when animating // or when we've fixed the scale in place. if (!draw_properties().screen_space_transform_is_animating && !raster_source_scale_is_fixed_ && raster_source_scale_ != ideal_source_scale_) return true; if (raster_contents_scale_ > MaximumContentsScale()) return true; if (raster_contents_scale_ < MinimumContentsScale()) return true; return false; } void PictureLayerImpl::AddLowResolutionTilingIfNeeded() { DCHECK(layer_tree_impl()->IsActiveTree()); if (!layer_tree_impl()->create_low_res_tiling()) return; // We should have a high resolution tiling at raster_contents_scale, so if the // low res one is the same then we shouldn't try to override this tiling by // marking it as a low res. if (raster_contents_scale_ == low_res_raster_contents_scale_) return; PictureLayerTiling* low_res = tilings_->FindTilingWithScale(low_res_raster_contents_scale_); DCHECK_IMPLIES(low_res, low_res->resolution() != HIGH_RESOLUTION); // Only create new low res tilings when the transform is static. This // prevents wastefully creating a paired low res tiling for every new high // res tiling during a pinch or a CSS animation. bool is_pinching = layer_tree_impl()->PinchGestureActive(); bool is_animating = draw_properties().screen_space_transform_is_animating; if (!is_pinching && !is_animating) { if (!low_res) low_res = AddTiling(low_res_raster_contents_scale_); low_res->set_resolution(LOW_RESOLUTION); } } void PictureLayerImpl::RecalculateRasterScales() { float old_raster_contents_scale = raster_contents_scale_; float old_raster_page_scale = raster_page_scale_; float old_raster_source_scale = raster_source_scale_; raster_device_scale_ = ideal_device_scale_; raster_page_scale_ = ideal_page_scale_; raster_source_scale_ = ideal_source_scale_; raster_contents_scale_ = ideal_contents_scale_; // If we're not animating, or leaving an animation, and the // ideal_source_scale_ changes, then things are unpredictable, and we fix // the raster_source_scale_ in place. if (old_raster_source_scale && !draw_properties().screen_space_transform_is_animating && !was_screen_space_transform_animating_ && old_raster_source_scale != ideal_source_scale_) raster_source_scale_is_fixed_ = true; // TODO(danakj): Adjust raster source scale closer to ideal source scale at // a throttled rate. Possibly make use of invalidation_.IsEmpty() on pending // tree. This will allow CSS scale changes to get re-rastered at an // appropriate rate. (crbug.com/413636) if (raster_source_scale_is_fixed_) { raster_contents_scale_ /= raster_source_scale_; raster_source_scale_ = 1.f; } // During pinch we completely ignore the current ideal scale, and just use // a multiple of the previous scale. bool is_pinching = layer_tree_impl()->PinchGestureActive(); if (is_pinching && old_raster_contents_scale) { // See ShouldAdjustRasterScale: // - When zooming out, preemptively create new tiling at lower resolution. // - When zooming in, approximate ideal using multiple of kMaxScaleRatio. bool zooming_out = old_raster_page_scale > ideal_page_scale_; float desired_contents_scale = old_raster_contents_scale; if (zooming_out) { while (desired_contents_scale > ideal_contents_scale_) desired_contents_scale /= kMaxScaleRatioDuringPinch; } else { while (desired_contents_scale < ideal_contents_scale_) desired_contents_scale *= kMaxScaleRatioDuringPinch; } raster_contents_scale_ = tilings_->GetSnappedContentsScale( desired_contents_scale, kSnapToExistingTilingRatio); raster_page_scale_ = raster_contents_scale_ / raster_device_scale_ / raster_source_scale_; } // If we're not re-rasterizing during animation, rasterize at the maximum // scale that will occur during the animation, if the maximum scale is // known. However we want to avoid excessive memory use. If the scale is // smaller than what we would choose otherwise, then it's always better off // for us memory-wise. But otherwise, we don't choose a scale at which this // layer's rastered content would become larger than the viewport. if (draw_properties().screen_space_transform_is_animating && !ShouldAdjustRasterScaleDuringScaleAnimations()) { bool can_raster_at_maximum_scale = false; bool should_raster_at_starting_scale = false; float maximum_scale = draw_properties().maximum_animation_contents_scale; float starting_scale = draw_properties().starting_animation_contents_scale; if (maximum_scale) { gfx::Size bounds_at_maximum_scale = gfx::ToCeiledSize( gfx::ScaleSize(raster_source_->GetSize(), maximum_scale)); int64 maximum_area = static_cast(bounds_at_maximum_scale.width()) * static_cast(bounds_at_maximum_scale.height()); gfx::Size viewport = layer_tree_impl()->device_viewport_size(); int64 viewport_area = static_cast(viewport.width()) * static_cast(viewport.height()); if (maximum_area <= viewport_area) can_raster_at_maximum_scale = true; } if (starting_scale && starting_scale > maximum_scale) { gfx::Size bounds_at_starting_scale = gfx::ToCeiledSize( gfx::ScaleSize(raster_source_->GetSize(), starting_scale)); int64 start_area = static_cast(bounds_at_starting_scale.width()) * static_cast(bounds_at_starting_scale.height()); gfx::Size viewport = layer_tree_impl()->device_viewport_size(); int64 viewport_area = static_cast(viewport.width()) * static_cast(viewport.height()); if (start_area <= viewport_area) should_raster_at_starting_scale = true; } // Use the computed scales for the raster scale directly, do not try to use // the ideal scale here. The current ideal scale may be way too large in the // case of an animation with scale, and will be constantly changing. if (should_raster_at_starting_scale) raster_contents_scale_ = starting_scale; else if (can_raster_at_maximum_scale) raster_contents_scale_ = maximum_scale; else raster_contents_scale_ = 1.f * ideal_page_scale_ * ideal_device_scale_; } raster_contents_scale_ = std::max(raster_contents_scale_, MinimumContentsScale()); raster_contents_scale_ = std::min(raster_contents_scale_, MaximumContentsScale()); DCHECK_GE(raster_contents_scale_, MinimumContentsScale()); DCHECK_LE(raster_contents_scale_, MaximumContentsScale()); // If this layer would create zero or one tiles at this content scale, // don't create a low res tiling. gfx::Size raster_bounds = gfx::ToCeiledSize( gfx::ScaleSize(raster_source_->GetSize(), raster_contents_scale_)); gfx::Size tile_size = CalculateTileSize(raster_bounds); bool tile_covers_bounds = tile_size.width() >= raster_bounds.width() && tile_size.height() >= raster_bounds.height(); if (tile_size.IsEmpty() || tile_covers_bounds) { low_res_raster_contents_scale_ = raster_contents_scale_; return; } float low_res_factor = layer_tree_impl()->settings().low_res_contents_scale_factor; low_res_raster_contents_scale_ = std::max(raster_contents_scale_ * low_res_factor, MinimumContentsScale()); DCHECK_LE(low_res_raster_contents_scale_, raster_contents_scale_); DCHECK_GE(low_res_raster_contents_scale_, MinimumContentsScale()); DCHECK_LE(low_res_raster_contents_scale_, MaximumContentsScale()); } void PictureLayerImpl::CleanUpTilingsOnActiveLayer( const std::vector& used_tilings) { DCHECK(layer_tree_impl()->IsActiveTree()); if (tilings_->num_tilings() == 0) return; float min_acceptable_high_res_scale = std::min( raster_contents_scale_, ideal_contents_scale_); float max_acceptable_high_res_scale = std::max( raster_contents_scale_, ideal_contents_scale_); PictureLayerImpl* twin = GetPendingOrActiveTwinLayer(); if (twin && twin->CanHaveTilings()) { min_acceptable_high_res_scale = std::min( min_acceptable_high_res_scale, std::min(twin->raster_contents_scale_, twin->ideal_contents_scale_)); max_acceptable_high_res_scale = std::max( max_acceptable_high_res_scale, std::max(twin->raster_contents_scale_, twin->ideal_contents_scale_)); } PictureLayerTilingSet* twin_set = twin ? twin->tilings_.get() : nullptr; tilings_->CleanUpTilings(min_acceptable_high_res_scale, max_acceptable_high_res_scale, used_tilings, twin_set); DCHECK_GT(tilings_->num_tilings(), 0u); SanityCheckTilingState(); } float PictureLayerImpl::MinimumContentsScale() const { float setting_min = layer_tree_impl()->settings().minimum_contents_scale; // If the contents scale is less than 1 / width (also for height), // then it will end up having less than one pixel of content in that // dimension. Bump the minimum contents scale up in this case to prevent // this from happening. int min_dimension = std::min(raster_source_->GetSize().width(), raster_source_->GetSize().height()); if (!min_dimension) return setting_min; return std::max(1.f / min_dimension, setting_min); } float PictureLayerImpl::MaximumContentsScale() const { // Masks can not have tilings that would become larger than the // max_texture_size since they use a single tile for the entire // tiling. Other layers can have tilings of any scale. if (!is_mask_) return std::numeric_limits::max(); int max_texture_size = layer_tree_impl()->resource_provider()->max_texture_size(); float max_scale_width = static_cast(max_texture_size) / bounds().width(); float max_scale_height = static_cast(max_texture_size) / bounds().height(); float max_scale = std::min(max_scale_width, max_scale_height); // We require that multiplying the layer size by the contents scale and // ceiling produces a value <= |max_texture_size|. Because for large layer // sizes floating point ambiguity may crop up, making the result larger or // smaller than expected, we use a slightly smaller floating point value for // the scale, to help ensure that the resulting content bounds will never end // up larger than |max_texture_size|. return nextafterf(max_scale, 0.f); } void PictureLayerImpl::ResetRasterScale() { raster_page_scale_ = 0.f; raster_device_scale_ = 0.f; raster_source_scale_ = 0.f; raster_contents_scale_ = 0.f; low_res_raster_contents_scale_ = 0.f; raster_source_scale_is_fixed_ = false; } bool PictureLayerImpl::CanHaveTilings() const { if (raster_source_->IsSolidColor()) return false; if (!DrawsContent()) return false; if (!raster_source_->HasRecordings()) return false; // If the |raster_source_| has a recording it should have non-empty bounds. DCHECK(!raster_source_->GetSize().IsEmpty()); if (MaximumContentsScale() < MinimumContentsScale()) return false; return true; } void PictureLayerImpl::SanityCheckTilingState() const { #if DCHECK_IS_ON() if (!CanHaveTilings()) { DCHECK_EQ(0u, tilings_->num_tilings()); return; } if (tilings_->num_tilings() == 0) return; // We should only have one high res tiling. DCHECK_EQ(1, tilings_->NumHighResTilings()); #endif } bool PictureLayerImpl::ShouldAdjustRasterScaleDuringScaleAnimations() const { return layer_tree_impl()->use_gpu_rasterization(); } float PictureLayerImpl::MaximumTilingContentsScale() const { float max_contents_scale = tilings_->GetMaximumContentsScale(); return std::max(max_contents_scale, MinimumContentsScale()); } scoped_ptr PictureLayerImpl::CreatePictureLayerTilingSet() { const LayerTreeSettings& settings = layer_tree_impl()->settings(); return PictureLayerTilingSet::Create( GetTree(), this, settings.tiling_interest_area_padding, layer_tree_impl()->use_gpu_rasterization() ? settings.gpu_rasterization_skewport_target_time_in_seconds : settings.skewport_target_time_in_seconds, settings.skewport_extrapolation_limit_in_content_pixels); } void PictureLayerImpl::UpdateIdealScales() { DCHECK(CanHaveTilings()); float min_contents_scale = MinimumContentsScale(); DCHECK_GT(min_contents_scale, 0.f); ideal_page_scale_ = IsAffectedByPageScale() ? layer_tree_impl()->current_page_scale_factor() : 1.f; ideal_device_scale_ = layer_tree_impl()->device_scale_factor(); ideal_contents_scale_ = std::max(GetIdealContentsScale(), min_contents_scale); ideal_source_scale_ = ideal_contents_scale_ / ideal_page_scale_ / ideal_device_scale_; } void PictureLayerImpl::GetDebugBorderProperties( SkColor* color, float* width) const { *color = DebugColors::TiledContentLayerBorderColor(); *width = DebugColors::TiledContentLayerBorderWidth(layer_tree_impl()); } void PictureLayerImpl::GetAllPrioritizedTilesForTracing( std::vector* prioritized_tiles) const { if (!tilings_) return; tilings_->GetAllPrioritizedTilesForTracing(prioritized_tiles); } void PictureLayerImpl::AsValueInto( base::trace_event::TracedValue* state) const { LayerImpl::AsValueInto(state); state->SetDouble("ideal_contents_scale", ideal_contents_scale_); state->SetDouble("geometry_contents_scale", MaximumTilingContentsScale()); state->BeginArray("tilings"); tilings_->AsValueInto(state); state->EndArray(); MathUtil::AddToTracedValue("tile_priority_rect", viewport_rect_for_tile_priority_in_content_space_, state); MathUtil::AddToTracedValue("visible_rect", visible_layer_rect(), state); state->BeginArray("pictures"); raster_source_->AsValueInto(state); state->EndArray(); state->BeginArray("invalidation"); invalidation_.AsValueInto(state); state->EndArray(); state->BeginArray("coverage_tiles"); for (PictureLayerTilingSet::CoverageIterator iter( tilings_.get(), 1.f, gfx::Rect(raster_source_->GetSize()), ideal_contents_scale_); iter; ++iter) { state->BeginDictionary(); MathUtil::AddToTracedValue("geometry_rect", iter.geometry_rect(), state); if (*iter) TracedValue::SetIDRef(*iter, state, "tile"); state->EndDictionary(); } state->EndArray(); } size_t PictureLayerImpl::GPUMemoryUsageInBytes() const { return tilings_->GPUMemoryUsageInBytes(); } void PictureLayerImpl::RunMicroBenchmark(MicroBenchmarkImpl* benchmark) { benchmark->RunOnLayer(this); } WhichTree PictureLayerImpl::GetTree() const { return layer_tree_impl()->IsActiveTree() ? ACTIVE_TREE : PENDING_TREE; } bool PictureLayerImpl::IsOnActiveOrPendingTree() const { return !layer_tree_impl()->IsRecycleTree(); } bool PictureLayerImpl::HasValidTilePriorities() const { return IsOnActiveOrPendingTree() && IsDrawnRenderSurfaceLayerListMember(); } } // namespace cc