// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/output/direct_renderer.h" #include #include #include "base/containers/hash_tables.h" #include "base/containers/scoped_ptr_hash_map.h" #include "base/debug/trace_event.h" #include "base/metrics/histogram.h" #include "cc/base/math_util.h" #include "cc/output/copy_output_request.h" #include "cc/quads/draw_quad.h" #include "cc/resources/raster_worker_pool.h" #include "ui/gfx/rect_conversions.h" #include "ui/gfx/transform.h" static gfx::Transform OrthoProjectionMatrix(float left, float right, float bottom, float top) { // Use the standard formula to map the clipping frustum to the cube from // [-1, -1, -1] to [1, 1, 1]. float delta_x = right - left; float delta_y = top - bottom; gfx::Transform proj; if (!delta_x || !delta_y) return proj; proj.matrix().set(0, 0, 2.0f / delta_x); proj.matrix().set(0, 3, -(right + left) / delta_x); proj.matrix().set(1, 1, 2.0f / delta_y); proj.matrix().set(1, 3, -(top + bottom) / delta_y); // Z component of vertices is always set to zero as we don't use the depth // buffer while drawing. proj.matrix().set(2, 2, 0); return proj; } static gfx::Transform window_matrix(int x, int y, int width, int height) { gfx::Transform canvas; // Map to window position and scale up to pixel coordinates. canvas.Translate3d(x, y, 0); canvas.Scale3d(width, height, 0); // Map from ([-1, -1] to [1, 1]) -> ([0, 0] to [1, 1]) canvas.Translate3d(0.5, 0.5, 0.5); canvas.Scale3d(0.5, 0.5, 0.5); return canvas; } namespace cc { DirectRenderer::DrawingFrame::DrawingFrame() : root_render_pass(NULL), current_render_pass(NULL), current_texture(NULL) { } DirectRenderer::DrawingFrame::~DrawingFrame() {} // // static gfx::RectF DirectRenderer::QuadVertexRect() { return gfx::RectF(-0.5f, -0.5f, 1.f, 1.f); } // static void DirectRenderer::QuadRectTransform(gfx::Transform* quad_rect_transform, const gfx::Transform& quad_transform, const gfx::RectF& quad_rect) { *quad_rect_transform = quad_transform; quad_rect_transform->Translate(0.5 * quad_rect.width() + quad_rect.x(), 0.5 * quad_rect.height() + quad_rect.y()); quad_rect_transform->Scale(quad_rect.width(), quad_rect.height()); } void DirectRenderer::InitializeViewport(DrawingFrame* frame, const gfx::Rect& draw_rect, const gfx::Rect& viewport_rect, const gfx::Size& surface_size) { bool flip_y = FlippedFramebuffer(); DCHECK_GE(viewport_rect.x(), 0); DCHECK_GE(viewport_rect.y(), 0); DCHECK_LE(viewport_rect.right(), surface_size.width()); DCHECK_LE(viewport_rect.bottom(), surface_size.height()); if (flip_y) { frame->projection_matrix = OrthoProjectionMatrix(draw_rect.x(), draw_rect.right(), draw_rect.bottom(), draw_rect.y()); } else { frame->projection_matrix = OrthoProjectionMatrix(draw_rect.x(), draw_rect.right(), draw_rect.y(), draw_rect.bottom()); } gfx::Rect window_rect = viewport_rect; if (flip_y) window_rect.set_y(surface_size.height() - viewport_rect.bottom()); frame->window_matrix = window_matrix(window_rect.x(), window_rect.y(), window_rect.width(), window_rect.height()); SetDrawViewport(window_rect); current_draw_rect_ = draw_rect; current_viewport_rect_ = viewport_rect; current_surface_size_ = surface_size; } gfx::Rect DirectRenderer::MoveFromDrawToWindowSpace( const gfx::Rect& draw_rect) const { gfx::Rect window_rect = draw_rect; window_rect -= current_draw_rect_.OffsetFromOrigin(); window_rect += current_viewport_rect_.OffsetFromOrigin(); if (FlippedFramebuffer()) window_rect.set_y(current_surface_size_.height() - window_rect.bottom()); return window_rect; } DirectRenderer::DirectRenderer(RendererClient* client, const LayerTreeSettings* settings, OutputSurface* output_surface, ResourceProvider* resource_provider) : Renderer(client, settings), output_surface_(output_surface), resource_provider_(resource_provider), overlay_processor_( new OverlayProcessor(output_surface, resource_provider)) { overlay_processor_->Initialize(); } DirectRenderer::~DirectRenderer() {} void DirectRenderer::SetEnlargePassTextureAmountForTesting( const gfx::Vector2d& amount) { enlarge_pass_texture_amount_ = amount; } void DirectRenderer::DecideRenderPassAllocationsForFrame( const RenderPassList& render_passes_in_draw_order) { if (!resource_provider_) return; base::hash_map render_passes_in_frame; for (size_t i = 0; i < render_passes_in_draw_order.size(); ++i) render_passes_in_frame.insert(std::pair( render_passes_in_draw_order[i]->id, RenderPassTextureSize(render_passes_in_draw_order[i]))); std::vector passes_to_delete; base::ScopedPtrHashMap::const_iterator pass_iter; for (pass_iter = render_pass_textures_.begin(); pass_iter != render_pass_textures_.end(); ++pass_iter) { base::hash_map::const_iterator it = render_passes_in_frame.find(pass_iter->first); if (it == render_passes_in_frame.end()) { passes_to_delete.push_back(pass_iter->first); continue; } gfx::Size required_size = it->second; ScopedResource* texture = pass_iter->second; DCHECK(texture); bool size_appropriate = texture->size().width() >= required_size.width() && texture->size().height() >= required_size.height(); if (texture->id() && !size_appropriate) texture->Free(); } // Delete RenderPass textures from the previous frame that will not be used // again. for (size_t i = 0; i < passes_to_delete.size(); ++i) render_pass_textures_.erase(passes_to_delete[i]); for (size_t i = 0; i < render_passes_in_draw_order.size(); ++i) { if (!render_pass_textures_.contains(render_passes_in_draw_order[i]->id)) { scoped_ptr texture = ScopedResource::Create(resource_provider_); render_pass_textures_.set(render_passes_in_draw_order[i]->id, texture.Pass()); } } } void DirectRenderer::DrawFrame(RenderPassList* render_passes_in_draw_order, float device_scale_factor, const gfx::Rect& device_viewport_rect, const gfx::Rect& device_clip_rect, bool disable_picture_quad_image_filtering) { TRACE_EVENT0("cc", "DirectRenderer::DrawFrame"); UMA_HISTOGRAM_COUNTS("Renderer4.renderPassCount", render_passes_in_draw_order->size()); const RenderPass* root_render_pass = render_passes_in_draw_order->back(); DCHECK(root_render_pass); DrawingFrame frame; frame.root_render_pass = root_render_pass; frame.root_damage_rect = Capabilities().using_partial_swap ? root_render_pass->damage_rect : root_render_pass->output_rect; frame.root_damage_rect.Intersect(gfx::Rect(device_viewport_rect.size())); frame.device_viewport_rect = device_viewport_rect; frame.device_clip_rect = device_clip_rect; frame.disable_picture_quad_image_filtering = disable_picture_quad_image_filtering; overlay_processor_->ProcessForOverlays(render_passes_in_draw_order, &frame.overlay_list); EnsureBackbuffer(); // Only reshape when we know we are going to draw. Otherwise, the reshape // can leave the window at the wrong size if we never draw and the proper // viewport size is never set. output_surface_->Reshape(device_viewport_rect.size(), device_scale_factor); BeginDrawingFrame(&frame); for (size_t i = 0; i < render_passes_in_draw_order->size(); ++i) { RenderPass* pass = render_passes_in_draw_order->at(i); DrawRenderPass(&frame, pass); for (ScopedPtrVector::iterator it = pass->copy_requests.begin(); it != pass->copy_requests.end(); ++it) { if (i > 0) { // Doing a readback is destructive of our state on Mac, so make sure // we restore the state between readbacks. http://crbug.com/99393. UseRenderPass(&frame, pass); } CopyCurrentRenderPassToBitmap(&frame, pass->copy_requests.take(it)); } } FinishDrawingFrame(&frame); render_passes_in_draw_order->clear(); } gfx::Rect DirectRenderer::ComputeScissorRectForRenderPass( const DrawingFrame* frame) { gfx::Rect render_pass_scissor = frame->current_render_pass->output_rect; if (frame->root_damage_rect == frame->root_render_pass->output_rect || !frame->current_render_pass->copy_requests.empty()) return render_pass_scissor; gfx::Transform inverse_transform(gfx::Transform::kSkipInitialization); if (frame->current_render_pass->transform_to_root_target.GetInverse( &inverse_transform)) { // Only intersect inverse-projected damage if the transform is invertible. gfx::Rect damage_rect_in_render_pass_space = MathUtil::ProjectEnclosingClippedRect(inverse_transform, frame->root_damage_rect); render_pass_scissor.Intersect(damage_rect_in_render_pass_space); } return render_pass_scissor; } bool DirectRenderer::NeedDeviceClip(const DrawingFrame* frame) const { if (frame->current_render_pass != frame->root_render_pass) return false; return !frame->device_clip_rect.Contains(frame->device_viewport_rect); } gfx::Rect DirectRenderer::DeviceClipRectInWindowSpace(const DrawingFrame* frame) const { gfx::Rect device_clip_rect = frame->device_clip_rect; if (FlippedFramebuffer()) device_clip_rect.set_y(current_surface_size_.height() - device_clip_rect.bottom()); return device_clip_rect; } void DirectRenderer::SetScissorStateForQuad(const DrawingFrame* frame, const DrawQuad& quad) { if (quad.isClipped()) { SetScissorTestRectInDrawSpace(frame, quad.clipRect()); return; } if (NeedDeviceClip(frame)) { SetScissorTestRect(DeviceClipRectInWindowSpace(frame)); return; } EnsureScissorTestDisabled(); } void DirectRenderer::SetScissorStateForQuadWithRenderPassScissor( const DrawingFrame* frame, const DrawQuad& quad, const gfx::Rect& render_pass_scissor, bool* should_skip_quad) { gfx::Rect quad_scissor_rect = render_pass_scissor; if (quad.isClipped()) quad_scissor_rect.Intersect(quad.clipRect()); if (quad_scissor_rect.IsEmpty()) { *should_skip_quad = true; return; } *should_skip_quad = false; SetScissorTestRectInDrawSpace(frame, quad_scissor_rect); } void DirectRenderer::SetScissorTestRectInDrawSpace( const DrawingFrame* frame, const gfx::Rect& draw_space_rect) { gfx::Rect window_space_rect = MoveFromDrawToWindowSpace(draw_space_rect); if (NeedDeviceClip(frame)) window_space_rect.Intersect(DeviceClipRectInWindowSpace(frame)); SetScissorTestRect(window_space_rect); } void DirectRenderer::FinishDrawingQuadList() {} void DirectRenderer::DrawRenderPass(DrawingFrame* frame, const RenderPass* render_pass) { TRACE_EVENT0("cc", "DirectRenderer::DrawRenderPass"); if (!UseRenderPass(frame, render_pass)) return; bool using_scissor_as_optimization = Capabilities().using_partial_swap; gfx::Rect render_pass_scissor; bool draw_rect_covers_full_surface = true; if (frame->current_render_pass == frame->root_render_pass && !frame->device_viewport_rect.Contains( gfx::Rect(output_surface_->SurfaceSize()))) draw_rect_covers_full_surface = false; if (using_scissor_as_optimization) { render_pass_scissor = ComputeScissorRectForRenderPass(frame); SetScissorTestRectInDrawSpace(frame, render_pass_scissor); if (!render_pass_scissor.Contains(frame->current_render_pass->output_rect)) draw_rect_covers_full_surface = false; } if (frame->current_render_pass != frame->root_render_pass || settings_->should_clear_root_render_pass) { if (NeedDeviceClip(frame)) { SetScissorTestRect(DeviceClipRectInWindowSpace(frame)); draw_rect_covers_full_surface = false; } else if (!using_scissor_as_optimization) { EnsureScissorTestDisabled(); } bool has_external_stencil_test = output_surface_->HasExternalStencilTest() && frame->current_render_pass == frame->root_render_pass; DiscardPixels(has_external_stencil_test, draw_rect_covers_full_surface); ClearFramebuffer(frame, has_external_stencil_test); } const QuadList& quad_list = render_pass->quad_list; for (QuadList::ConstBackToFrontIterator it = quad_list.BackToFrontBegin(); it != quad_list.BackToFrontEnd(); ++it) { const DrawQuad& quad = *(*it); bool should_skip_quad = false; if (using_scissor_as_optimization) { SetScissorStateForQuadWithRenderPassScissor( frame, quad, render_pass_scissor, &should_skip_quad); } else { SetScissorStateForQuad(frame, quad); } if (!should_skip_quad) DoDrawQuad(frame, *it); } FinishDrawingQuadList(); } bool DirectRenderer::UseRenderPass(DrawingFrame* frame, const RenderPass* render_pass) { frame->current_render_pass = render_pass; frame->current_texture = NULL; if (render_pass == frame->root_render_pass) { BindFramebufferToOutputSurface(frame); InitializeViewport(frame, render_pass->output_rect, frame->device_viewport_rect, output_surface_->SurfaceSize()); return true; } ScopedResource* texture = render_pass_textures_.get(render_pass->id); DCHECK(texture); gfx::Size size = RenderPassTextureSize(render_pass); size.Enlarge(enlarge_pass_texture_amount_.x(), enlarge_pass_texture_amount_.y()); if (!texture->id()) texture->Allocate( size, ResourceProvider::TextureUsageFramebuffer, RGBA_8888); DCHECK(texture->id()); return BindFramebufferToTexture(frame, texture, render_pass->output_rect); } void DirectRenderer::RunOnDemandRasterTask(Task* on_demand_raster_task) { TaskGraphRunner* task_graph_runner = RasterWorkerPool::GetTaskGraphRunner(); DCHECK(task_graph_runner); // Make sure we have a unique task namespace token. if (!on_demand_task_namespace_.IsValid()) on_demand_task_namespace_ = task_graph_runner->GetNamespaceToken(); // Construct a task graph that contains this single raster task. TaskGraph graph; graph.nodes.push_back( TaskGraph::Node(on_demand_raster_task, RasterWorkerPool::kOnDemandRasterTaskPriority, 0u)); // Schedule task and wait for task graph runner to finish running it. task_graph_runner->ScheduleTasks(on_demand_task_namespace_, &graph); task_graph_runner->WaitForTasksToFinishRunning(on_demand_task_namespace_); // Collect task now that it has finished running. Task::Vector completed_tasks; task_graph_runner->CollectCompletedTasks(on_demand_task_namespace_, &completed_tasks); DCHECK_EQ(1u, completed_tasks.size()); DCHECK_EQ(completed_tasks[0], on_demand_raster_task); } bool DirectRenderer::HasAllocatedResourcesForTesting(RenderPass::Id id) const { ScopedResource* texture = render_pass_textures_.get(id); return texture && texture->id(); } // static gfx::Size DirectRenderer::RenderPassTextureSize(const RenderPass* render_pass) { return render_pass->output_rect.size(); } } // namespace cc