// Copyright 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/output/gl_renderer.h" #include #include #include #include #include #include "base/debug/trace_event.h" #include "base/logging.h" #include "base/string_util.h" #include "base/strings/string_split.h" #include "build/build_config.h" #include "cc/base/math_util.h" #include "cc/layers/video_layer_impl.h" #include "cc/output/compositor_frame.h" #include "cc/output/compositor_frame_metadata.h" #include "cc/output/context_provider.h" #include "cc/output/copy_output_request.h" #include "cc/output/geometry_binding.h" #include "cc/output/gl_frame_data.h" #include "cc/output/output_surface.h" #include "cc/output/render_surface_filters.h" #include "cc/quads/picture_draw_quad.h" #include "cc/quads/render_pass.h" #include "cc/quads/stream_video_draw_quad.h" #include "cc/quads/texture_draw_quad.h" #include "cc/resources/layer_quad.h" #include "cc/resources/priority_calculator.h" #include "cc/resources/scoped_resource.h" #include "cc/resources/sync_point_helper.h" #include "cc/trees/damage_tracker.h" #include "cc/trees/proxy.h" #include "cc/trees/single_thread_proxy.h" #include "gpu/GLES2/gl2extchromium.h" #include "third_party/WebKit/Source/Platform/chromium/public/WebGraphicsContext3D.h" #include "third_party/khronos/GLES2/gl2.h" #include "third_party/khronos/GLES2/gl2ext.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkColor.h" #include "third_party/skia/include/core/SkColorFilter.h" #include "third_party/skia/include/core/SkSurface.h" #include "third_party/skia/include/gpu/GrContext.h" #include "third_party/skia/include/gpu/GrTexture.h" #include "third_party/skia/include/gpu/SkGpuDevice.h" #include "third_party/skia/include/gpu/SkGrTexturePixelRef.h" #include "third_party/skia/include/gpu/gl/GrGLInterface.h" #include "ui/gfx/quad_f.h" #include "ui/gfx/rect_conversions.h" using WebKit::WebGraphicsContext3D; using WebKit::WebGraphicsMemoryAllocation; namespace cc { namespace { // TODO(epenner): This should probably be moved to output surface. // // This implements a simple fence based on client side swaps. // This is to isolate the ResourceProvider from 'frames' which // it shouldn't need to care about, while still allowing us to // enforce good texture recycling behavior strictly throughout // the compositor (don't recycle a texture while it's in use). class SimpleSwapFence : public ResourceProvider::Fence { public: SimpleSwapFence() : has_passed_(false) {} virtual bool HasPassed() OVERRIDE { return has_passed_; } void SetHasPassed() { has_passed_ = true; } private: virtual ~SimpleSwapFence() {} bool has_passed_; }; bool NeedsIOSurfaceReadbackWorkaround() { #if defined(OS_MACOSX) // This isn't strictly required in DumpRenderTree-mode when Mesa is used, // but it doesn't seem to hurt. return true; #else return false; #endif } // Smallest unit that impact anti-aliasing output. We use this to // determine when anti-aliasing is unnecessary. const float kAntiAliasingEpsilon = 1.0f / 1024.0f; } // anonymous namespace struct GLRenderer::PendingAsyncReadPixels { PendingAsyncReadPixels() : buffer(0) {} scoped_ptr copy_request; base::CancelableClosure finished_read_pixels_callback; unsigned buffer; private: DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels); }; scoped_ptr GLRenderer::Create(RendererClient* client, OutputSurface* output_surface, ResourceProvider* resource_provider, int highp_threshold_min, bool use_skia_gpu_backend) { scoped_ptr renderer(new GLRenderer( client, output_surface, resource_provider, highp_threshold_min)); if (!renderer->Initialize()) return scoped_ptr(); if (use_skia_gpu_backend) { renderer->InitializeGrContext(); DCHECK(renderer->CanUseSkiaGPUBackend()) << "Requested Skia GPU backend, but can't use it."; } return renderer.Pass(); } GLRenderer::GLRenderer(RendererClient* client, OutputSurface* output_surface, ResourceProvider* resource_provider, int highp_threshold_min) : DirectRenderer(client, resource_provider), offscreen_framebuffer_id_(0), shared_geometry_quad_(gfx::RectF(-0.5f, -0.5f, 1.0f, 1.0f)), output_surface_(output_surface), context_(output_surface->context3d()), is_viewport_changed_(false), is_backbuffer_discarded_(false), discard_backbuffer_when_not_visible_(false), is_using_bind_uniform_(false), visible_(true), is_scissor_enabled_(false), highp_threshold_min_(highp_threshold_min), highp_threshold_cache_(0), on_demand_tile_raster_resource_id_(0) { DCHECK(context_); } bool GLRenderer::Initialize() { if (!context_->makeContextCurrent()) return false; context_->pushGroupMarkerEXT("CompositorContext"); std::string extensions_string = UTF16ToASCII(context_->getString(GL_EXTENSIONS)); std::vector extensions_list; base::SplitString(extensions_string, ' ', &extensions_list); std::set extensions(extensions_list.begin(), extensions_list.end()); if (Settings().accelerate_painting && extensions.count("GL_EXT_texture_format_BGRA8888") && extensions.count("GL_EXT_read_format_bgra")) capabilities_.using_accelerated_painting = true; else capabilities_.using_accelerated_painting = false; capabilities_.using_partial_swap = Settings().partial_swap_enabled && extensions.count("GL_CHROMIUM_post_sub_buffer"); // Use the SwapBuffers callback only with the threaded proxy. if (client_->HasImplThread()) capabilities_.using_swap_complete_callback = extensions.count("GL_CHROMIUM_swapbuffers_complete_callback") > 0; capabilities_.using_set_visibility = extensions.count("GL_CHROMIUM_set_visibility") > 0; if (extensions.count("GL_CHROMIUM_iosurface") > 0) DCHECK_GT(extensions.count("GL_ARB_texture_rectangle"), 0u); capabilities_.using_gpu_memory_manager = extensions.count("GL_CHROMIUM_gpu_memory_manager") > 0 && Settings().use_memory_management; if (capabilities_.using_gpu_memory_manager) context_->setMemoryAllocationChangedCallbackCHROMIUM(this); capabilities_.using_egl_image = extensions.count("GL_OES_EGL_image_external") > 0; capabilities_.max_texture_size = resource_provider_->max_texture_size(); capabilities_.best_texture_format = resource_provider_->best_texture_format(); // The updater can access textures while the GLRenderer is using them. capabilities_.allow_partial_texture_updates = true; // Check for texture fast paths. Currently we always use MO8 textures, // so we only need to avoid POT textures if we have an NPOT fast-path. capabilities_.avoid_pow2_textures = extensions.count("GL_CHROMIUM_fast_NPOT_MO8_textures") > 0; capabilities_.using_offscreen_context3d = true; capabilities_.using_map_image = extensions.count("GL_CHROMIUM_map_image") > 0 && Settings().use_map_image; is_using_bind_uniform_ = extensions.count("GL_CHROMIUM_bind_uniform_location") > 0; if (!InitializeSharedObjects()) return false; // Make sure the viewport and context gets initialized, even if it is to zero. ViewportChanged(); return true; } void GLRenderer::InitializeGrContext() { skia::RefPtr interface = skia::AdoptRef( context_->createGrGLInterface()); if (!interface) return; gr_context_ = skia::AdoptRef(GrContext::Create( kOpenGL_GrBackend, reinterpret_cast(interface.get()))); ReinitializeGrCanvas(); } GLRenderer::~GLRenderer() { while (!pending_async_read_pixels_.empty()) { PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back(); pending_read->finished_read_pixels_callback.Cancel(); pending_async_read_pixels_.pop_back(); } context_->setMemoryAllocationChangedCallbackCHROMIUM(NULL); CleanupSharedObjects(); } const RendererCapabilities& GLRenderer::Capabilities() const { return capabilities_; } WebGraphicsContext3D* GLRenderer::Context() { return context_; } void GLRenderer::DebugGLCall(WebGraphicsContext3D* context, const char* command, const char* file, int line) { unsigned error = context->getError(); if (error != GL_NO_ERROR) LOG(ERROR) << "GL command failed: File: " << file << "\n\tLine " << line << "\n\tcommand: " << command << ", error " << static_cast(error) << "\n"; } void GLRenderer::SetVisible(bool visible) { if (visible_ == visible) return; visible_ = visible; EnforceMemoryPolicy(); // TODO(jamesr): Replace setVisibilityCHROMIUM() with an extension to // explicitly manage front/backbuffers // crbug.com/116049 if (capabilities_.using_set_visibility) context_->setVisibilityCHROMIUM(visible); } void GLRenderer::SendManagedMemoryStats(size_t bytes_visible, size_t bytes_visible_and_nearby, size_t bytes_allocated) { WebKit::WebGraphicsManagedMemoryStats stats; stats.bytesVisible = bytes_visible; stats.bytesVisibleAndNearby = bytes_visible_and_nearby; stats.bytesAllocated = bytes_allocated; stats.backbufferRequested = !is_backbuffer_discarded_; context_->sendManagedMemoryStatsCHROMIUM(&stats); } void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); } void GLRenderer::ViewportChanged() { is_viewport_changed_ = true; ReinitializeGrCanvas(); } void GLRenderer::ClearFramebuffer(DrawingFrame* frame) { // On DEBUG builds, opaque render passes are cleared to blue to easily see // regions that were not drawn on the screen. if (frame->current_render_pass->has_transparent_background) GLC(context_, context_->clearColor(0, 0, 0, 0)); else GLC(context_, context_->clearColor(0, 0, 1, 1)); bool always_clear = false; #ifndef NDEBUG always_clear = true; #endif if (always_clear || frame->current_render_pass->has_transparent_background) { GLbitfield clear_bits = GL_COLOR_BUFFER_BIT; // Only the Skia GPU backend uses the stencil buffer. No need to clear it // otherwise. if (CanUseSkiaGPUBackend()) clear_bits |= GL_STENCIL_BUFFER_BIT; context_->clear(clear_bits); } } void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) { // FIXME: Remove this once backbuffer is automatically recreated on first use EnsureBackbuffer(); if (ViewportSize().IsEmpty()) return; TRACE_EVENT0("cc", "GLRenderer::DrawLayers"); if (is_viewport_changed_) { // Only reshape when we know we are going to draw. Otherwise, the reshape // can leave the window at the wrong size if we never draw and the proper // viewport size is never set. is_viewport_changed_ = false; output_surface_->Reshape(gfx::Size(ViewportWidth(), ViewportHeight()), DeviceScaleFactor()); } MakeContextCurrent(); ReinitializeGLState(); } void GLRenderer::DoNoOp() { GLC(context_, context_->bindFramebuffer(GL_FRAMEBUFFER, 0)); GLC(context_, context_->flush()); } void GLRenderer::DoDrawQuad(DrawingFrame* frame, const DrawQuad* quad) { DCHECK(quad->rect.Contains(quad->visible_rect)); if (quad->material != DrawQuad::TEXTURE_CONTENT) { FlushTextureQuadCache(); } switch (quad->material) { case DrawQuad::INVALID: NOTREACHED(); break; case DrawQuad::CHECKERBOARD: DrawCheckerboardQuad(frame, CheckerboardDrawQuad::MaterialCast(quad)); break; case DrawQuad::DEBUG_BORDER: DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad)); break; case DrawQuad::IO_SURFACE_CONTENT: DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad)); break; case DrawQuad::PICTURE_CONTENT: DrawPictureQuad(frame, PictureDrawQuad::MaterialCast(quad)); break; case DrawQuad::RENDER_PASS: DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad)); break; case DrawQuad::SOLID_COLOR: DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad)); break; case DrawQuad::STREAM_VIDEO_CONTENT: DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad)); break; case DrawQuad::TEXTURE_CONTENT: EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad)); break; case DrawQuad::TILED_CONTENT: DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad)); break; case DrawQuad::YUV_VIDEO_CONTENT: DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad)); break; } } void GLRenderer::DrawCheckerboardQuad(const DrawingFrame* frame, const CheckerboardDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); const TileCheckerboardProgram* program = GetTileCheckerboardProgram(); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); SkColor color = quad->color; GLC(Context(), Context()->uniform4f(program->fragment_shader().color_location(), SkColorGetR(color) * (1.0f / 255.0f), SkColorGetG(color) * (1.0f / 255.0f), SkColorGetB(color) * (1.0f / 255.0f), 1)); const int checkerboard_width = 16; float frequency = 1.0f / checkerboard_width; gfx::Rect tile_rect = quad->rect; float tex_offset_x = tile_rect.x() % checkerboard_width; float tex_offset_y = tile_rect.y() % checkerboard_width; float tex_scale_x = tile_rect.width(); float tex_scale_y = tile_rect.height(); GLC(Context(), Context()->uniform4f(program->fragment_shader().tex_transform_location(), tex_offset_x, tex_offset_y, tex_scale_x, tex_scale_y)); GLC(Context(), Context()->uniform1f(program->fragment_shader().frequency_location(), frequency)); SetShaderOpacity(quad->opacity(), program->fragment_shader().alpha_location()); DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, program->vertex_shader().matrix_location()); } void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame, const DebugBorderDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); static float gl_matrix[16]; const DebugBorderProgram* program = GetDebugBorderProgram(); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); // Use the full quad_rect for debug quads to not move the edges based on // partial swaps. gfx::Rect layer_rect = quad->rect; gfx::Transform render_matrix = quad->quadTransform(); render_matrix.Translate(0.5f * layer_rect.width() + layer_rect.x(), 0.5f * layer_rect.height() + layer_rect.y()); render_matrix.Scale(layer_rect.width(), layer_rect.height()); GLRenderer::ToGLMatrix(&gl_matrix[0], frame->projection_matrix * render_matrix); GLC(Context(), Context()->uniformMatrix4fv( program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0])); SkColor color = quad->color; float alpha = SkColorGetA(color) * (1.0f / 255.0f); GLC(Context(), Context()->uniform4f(program->fragment_shader().color_location(), (SkColorGetR(color) * (1.0f / 255.0f)) * alpha, (SkColorGetG(color) * (1.0f / 255.0f)) * alpha, (SkColorGetB(color) * (1.0f / 255.0f)) * alpha, alpha)); GLC(Context(), Context()->lineWidth(quad->width)); // The indices for the line are stored in the same array as the triangle // indices. GLC(Context(), Context()->drawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0)); } static inline SkBitmap ApplyFilters(GLRenderer* renderer, const WebKit::WebFilterOperations& filters, ScopedResource* source_texture_resource) { if (filters.isEmpty()) return SkBitmap(); ContextProvider* offscreen_contexts = renderer->resource_provider()->offscreen_context_provider(); if (!offscreen_contexts || !offscreen_contexts->GrContext()) return SkBitmap(); ResourceProvider::ScopedWriteLockGL lock(renderer->resource_provider(), source_texture_resource->id()); // Flush the compositor context to ensure that textures there are available // in the shared context. Do this after locking/creating the compositor // texture. renderer->resource_provider()->Flush(); // Make sure skia uses the correct GL context. offscreen_contexts->Context3d()->makeContextCurrent(); SkBitmap source = RenderSurfaceFilters::Apply(filters, lock.texture_id(), source_texture_resource->size(), offscreen_contexts->GrContext()); // Flush skia context so that all the rendered stuff appears on the // texture. offscreen_contexts->GrContext()->flush(); // Flush the GL context so rendering results from this context are // visible in the compositor's context. offscreen_contexts->Context3d()->flush(); // Use the compositor's GL context again. renderer->resource_provider()->GraphicsContext3D()->makeContextCurrent(); return source; } static SkBitmap ApplyImageFilter(GLRenderer* renderer, SkImageFilter* filter, ScopedResource* source_texture_resource) { if (!filter) return SkBitmap(); ContextProvider* offscreen_contexts = renderer->resource_provider()->offscreen_context_provider(); if (!offscreen_contexts || !offscreen_contexts->GrContext()) return SkBitmap(); ResourceProvider::ScopedWriteLockGL lock(renderer->resource_provider(), source_texture_resource->id()); // Flush the compositor context to ensure that textures there are available // in the shared context. Do this after locking/creating the compositor // texture. renderer->resource_provider()->Flush(); // Make sure skia uses the correct GL context. offscreen_contexts->Context3d()->makeContextCurrent(); // Wrap the source texture in a Ganesh platform texture. GrBackendTextureDesc backend_texture_description; backend_texture_description.fWidth = source_texture_resource->size().width(); backend_texture_description.fHeight = source_texture_resource->size().height(); backend_texture_description.fConfig = kSkia8888_GrPixelConfig; backend_texture_description.fTextureHandle = lock.texture_id(); backend_texture_description.fOrigin = kTopLeft_GrSurfaceOrigin; skia::RefPtr texture = skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture( backend_texture_description)); // Place the platform texture inside an SkBitmap. SkBitmap source; source.setConfig(SkBitmap::kARGB_8888_Config, source_texture_resource->size().width(), source_texture_resource->size().height()); skia::RefPtr pixel_ref = skia::AdoptRef(new SkGrPixelRef(texture.get())); source.setPixelRef(pixel_ref.get()); // Create a scratch texture for backing store. GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; desc.fSampleCnt = 0; desc.fWidth = source.width(); desc.fHeight = source.height(); desc.fConfig = kSkia8888_GrPixelConfig; desc.fOrigin = kTopLeft_GrSurfaceOrigin; GrAutoScratchTexture scratch_texture( offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch); skia::RefPtr backing_store = skia::AdoptRef(scratch_texture.detach()); // Create a device and canvas using that backing store. SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get()); SkCanvas canvas(&device); // Draw the source bitmap through the filter to the canvas. SkPaint paint; paint.setImageFilter(filter); canvas.clear(SK_ColorTRANSPARENT); canvas.drawSprite(source, 0, 0, &paint); // Flush skia context so that all the rendered stuff appears on the // texture. offscreen_contexts->GrContext()->flush(); // Flush the GL context so rendering results from this context are // visible in the compositor's context. offscreen_contexts->Context3d()->flush(); // Use the compositor's GL context again. renderer->resource_provider()->GraphicsContext3D()->makeContextCurrent(); return device.accessBitmap(false); } scoped_ptr GLRenderer::DrawBackgroundFilters( DrawingFrame* frame, const RenderPassDrawQuad* quad, const gfx::Transform& contents_device_transform, const gfx::Transform& contents_device_transform_inverse) { // This method draws a background filter, which applies a filter to any pixels // behind the quad and seen through its background. The algorithm works as // follows: // 1. Compute a bounding box around the pixels that will be visible through // the quad. // 2. Read the pixels in the bounding box into a buffer R. // 3. Apply the background filter to R, so that it is applied in the pixels' // coordinate space. // 4. Apply the quad's inverse transform to map the pixels in R into the // quad's content space. This implicitly clips R by the content bounds of the // quad since the destination texture has bounds matching the quad's content. // 5. Draw the background texture for the contents using the same transform as // used to draw the contents itself. This is done without blending to replace // the current background pixels with the new filtered background. // 6. Draw the contents of the quad over drop of the new background with // blending, as per usual. The filtered background pixels will show through // any non-opaque pixels in this draws. // // Pixel copies in this algorithm occur at steps 2, 3, 4, and 5. // FIXME: When this algorithm changes, update // LayerTreeHost::PrioritizeTextures() accordingly. const WebKit::WebFilterOperations& filters = quad->background_filters; DCHECK(!filters.isEmpty()); // FIXME: We only allow background filters on an opaque render surface because // other surfaces may contain translucent pixels, and the contents behind // those translucent pixels wouldn't have the filter applied. if (frame->current_render_pass->has_transparent_background) return scoped_ptr(); DCHECK(!frame->current_texture); // FIXME: Do a single readback for both the surface and replica and cache the // filtered results (once filter textures are not reused). gfx::Rect device_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect( contents_device_transform, SharedGeometryQuad().BoundingBox())); int top, right, bottom, left; filters.getOutsets(top, right, bottom, left); device_rect.Inset(-left, -top, -right, -bottom); device_rect.Intersect(frame->current_render_pass->output_rect); scoped_ptr device_background_texture = ScopedResource::create(resource_provider_); if (!GetFramebufferTexture(device_background_texture.get(), device_rect)) return scoped_ptr(); SkBitmap filtered_device_background = ApplyFilters(this, filters, device_background_texture.get()); if (!filtered_device_background.getTexture()) return scoped_ptr(); GrTexture* texture = reinterpret_cast(filtered_device_background.getTexture()); int filtered_device_background_texture_id = texture->getTextureHandle(); scoped_ptr background_texture = ScopedResource::create(resource_provider_); if (!background_texture->Allocate(quad->rect.size(), GL_RGBA, ResourceProvider::TextureUsageFramebuffer)) return scoped_ptr(); const RenderPass* target_render_pass = frame->current_render_pass; bool using_background_texture = UseScopedTexture(frame, background_texture.get(), quad->rect); if (using_background_texture) { // Copy the readback pixels from device to the background texture for the // surface. gfx::Transform device_to_framebuffer_transform; device_to_framebuffer_transform.Translate( quad->rect.width() * 0.5f + quad->rect.x(), quad->rect.height() * 0.5f + quad->rect.y()); device_to_framebuffer_transform.Scale(quad->rect.width(), quad->rect.height()); device_to_framebuffer_transform.PreconcatTransform( contents_device_transform_inverse); #ifndef NDEBUG GLC(Context(), Context()->clearColor(0, 0, 1, 1)); Context()->clear(GL_COLOR_BUFFER_BIT); #endif CopyTextureToFramebuffer(frame, filtered_device_background_texture_id, device_rect, device_to_framebuffer_transform); } UseRenderPass(frame, target_render_pass); if (!using_background_texture) return scoped_ptr(); return background_texture.Pass(); } void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame, const RenderPassDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); CachedResource* contents_texture = render_pass_textures_.get(quad->render_pass_id); if (!contents_texture || !contents_texture->id()) return; gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect); gfx::Transform contents_device_transform = frame->window_matrix * frame->projection_matrix * quad_rect_matrix; contents_device_transform.FlattenTo2d(); // Can only draw surface if device matrix is invertible. gfx::Transform contents_device_transform_inverse( gfx::Transform::kSkipInitialization); if (!contents_device_transform.GetInverse(&contents_device_transform_inverse)) return; scoped_ptr background_texture; if (!quad->background_filters.isEmpty()) { // The pixels from the filtered background should completely replace the // current pixel values. bool disable_blending = blend_enabled(); if (disable_blending) SetBlendEnabled(false); background_texture = DrawBackgroundFilters( frame, quad, contents_device_transform, contents_device_transform_inverse); if (disable_blending) SetBlendEnabled(true); } // FIXME: Cache this value so that we don't have to do it for both the surface // and its replica. Apply filters to the contents texture. SkBitmap filter_bitmap; SkScalar color_matrix[20]; bool use_color_matrix = false; if (quad->filter) { SkColorFilter* cf; if ((quad->filter->asColorFilter(&cf)) && cf->asColorMatrix(color_matrix) && !quad->filter->getInput(0)) { // We have a single color matrix as a filter; apply it locally // in the compositor. use_color_matrix = true; } else { filter_bitmap = ApplyImageFilter(this, quad->filter.get(), contents_texture); } } else { filter_bitmap = ApplyFilters(this, quad->filters, contents_texture); } // Draw the background texture if there is one. if (background_texture) { DCHECK(background_texture->size() == quad->rect.size()); ResourceProvider::ScopedReadLockGL lock(resource_provider_, background_texture->id()); CopyTextureToFramebuffer( frame, lock.texture_id(), quad->rect, quad->quadTransform()); } bool clipped = false; gfx::QuadF device_quad = MathUtil::MapQuad( contents_device_transform, SharedGeometryQuad(), &clipped); LayerQuad device_layer_bounds(gfx::QuadF(device_quad.BoundingBox())); LayerQuad device_layer_edges(device_quad); // Use anti-aliasing programs only when necessary. bool use_aa = !clipped && (!device_quad.IsRectilinear() || !gfx::IsNearestRectWithinDistance(device_quad.BoundingBox(), kAntiAliasingEpsilon)); if (use_aa) { device_layer_bounds.InflateAntiAliasingDistance(); device_layer_edges.InflateAntiAliasingDistance(); } scoped_ptr mask_resource_lock; unsigned mask_texture_id = 0; if (quad->mask_resource_id) { mask_resource_lock.reset(new ResourceProvider::ScopedReadLockGL( resource_provider_, quad->mask_resource_id)); mask_texture_id = mask_resource_lock->texture_id(); } // FIXME: use the background_texture and blend the background in with this // draw instead of having a separate copy of the background texture. scoped_ptr contents_resource_lock; if (filter_bitmap.getTexture()) { GrTexture* texture = reinterpret_cast(filter_bitmap.getTexture()); Context()->bindTexture(GL_TEXTURE_2D, texture->getTextureHandle()); } else { contents_resource_lock = make_scoped_ptr( new ResourceProvider::ScopedSamplerGL(resource_provider_, contents_texture->id(), GL_TEXTURE_2D, GL_LINEAR)); } TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( context_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); int shader_quad_location = -1; int shader_edge_location = -1; int shader_mask_sampler_location = -1; int shader_mask_tex_coord_scale_location = -1; int shader_mask_tex_coord_offset_location = -1; int shader_matrix_location = -1; int shader_alpha_location = -1; int shader_color_matrix_location = -1; int shader_color_offset_location = -1; int shader_tex_transform_location = -1; int shader_tex_scale_location = -1; if (use_aa && mask_texture_id && !use_color_matrix) { const RenderPassMaskProgramAA* program = GetRenderPassMaskProgramAA(tex_coord_precision); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); shader_quad_location = program->vertex_shader().quad_location(); shader_edge_location = program->fragment_shader().edge_location(); shader_mask_sampler_location = program->fragment_shader().mask_sampler_location(); shader_mask_tex_coord_scale_location = program->fragment_shader().mask_tex_coord_scale_location(); shader_mask_tex_coord_offset_location = program->fragment_shader().mask_tex_coord_offset_location(); shader_matrix_location = program->vertex_shader().matrix_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_tex_scale_location = program->vertex_shader().tex_scale_location(); } else if (!use_aa && mask_texture_id && !use_color_matrix) { const RenderPassMaskProgram* program = GetRenderPassMaskProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); shader_mask_sampler_location = program->fragment_shader().mask_sampler_location(); shader_mask_tex_coord_scale_location = program->fragment_shader().mask_tex_coord_scale_location(); shader_mask_tex_coord_offset_location = program->fragment_shader().mask_tex_coord_offset_location(); shader_matrix_location = program->vertex_shader().matrix_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); } else if (use_aa && !mask_texture_id && !use_color_matrix) { const RenderPassProgramAA* program = GetRenderPassProgramAA(tex_coord_precision); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); shader_quad_location = program->vertex_shader().quad_location(); shader_edge_location = program->fragment_shader().edge_location(); shader_matrix_location = program->vertex_shader().matrix_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_tex_scale_location = program->vertex_shader().tex_scale_location(); } else if (use_aa && mask_texture_id && use_color_matrix) { const RenderPassMaskColorMatrixProgramAA* program = GetRenderPassMaskColorMatrixProgramAA(tex_coord_precision); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_quad_location = program->vertex_shader().quad_location(); shader_tex_scale_location = program->vertex_shader().tex_scale_location(); shader_edge_location = program->fragment_shader().edge_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_mask_sampler_location = program->fragment_shader().mask_sampler_location(); shader_mask_tex_coord_scale_location = program->fragment_shader().mask_tex_coord_scale_location(); shader_mask_tex_coord_offset_location = program->fragment_shader().mask_tex_coord_offset_location(); shader_color_matrix_location = program->fragment_shader().color_matrix_location(); shader_color_offset_location = program->fragment_shader().color_offset_location(); } else if (use_aa && !mask_texture_id && use_color_matrix) { const RenderPassColorMatrixProgramAA* program = GetRenderPassColorMatrixProgramAA(tex_coord_precision); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_quad_location = program->vertex_shader().quad_location(); shader_tex_scale_location = program->vertex_shader().tex_scale_location(); shader_edge_location = program->fragment_shader().edge_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_color_matrix_location = program->fragment_shader().color_matrix_location(); shader_color_offset_location = program->fragment_shader().color_offset_location(); } else if (!use_aa && mask_texture_id && use_color_matrix) { const RenderPassMaskColorMatrixProgram* program = GetRenderPassMaskColorMatrixProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); shader_mask_sampler_location = program->fragment_shader().mask_sampler_location(); shader_mask_tex_coord_scale_location = program->fragment_shader().mask_tex_coord_scale_location(); shader_mask_tex_coord_offset_location = program->fragment_shader().mask_tex_coord_offset_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_color_matrix_location = program->fragment_shader().color_matrix_location(); shader_color_offset_location = program->fragment_shader().color_offset_location(); } else if (!use_aa && !mask_texture_id && use_color_matrix) { const RenderPassColorMatrixProgram* program = GetRenderPassColorMatrixProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_color_matrix_location = program->fragment_shader().color_matrix_location(); shader_color_offset_location = program->fragment_shader().color_offset_location(); } else { const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); } float tex_scale_x = quad->rect.width() / static_cast(contents_texture->size().width()); float tex_scale_y = quad->rect.height() / static_cast(contents_texture->size().height()); DCHECK_LE(tex_scale_x, 1.0f); DCHECK_LE(tex_scale_y, 1.0f); if (shader_tex_transform_location != -1) { GLC(Context(), Context()->uniform4f(shader_tex_transform_location, 0.0f, 0.0f, tex_scale_x, tex_scale_y)); } else if (shader_tex_scale_location != -1) { GLC(Context(), Context()->uniform2f( shader_tex_scale_location, tex_scale_x, tex_scale_y)); } else { DCHECK(IsContextLost()); } if (shader_mask_sampler_location != -1) { DCHECK_NE(shader_mask_tex_coord_scale_location, 1); DCHECK_NE(shader_mask_tex_coord_offset_location, 1); GLC(Context(), Context()->activeTexture(GL_TEXTURE1)); GLC(Context(), Context()->uniform1i(shader_mask_sampler_location, 1)); GLC(Context(), Context()->uniform2f(shader_mask_tex_coord_offset_location, quad->mask_uv_rect.x(), quad->mask_uv_rect.y())); GLC(Context(), Context()->uniform2f(shader_mask_tex_coord_scale_location, quad->mask_uv_rect.width() / tex_scale_x, quad->mask_uv_rect.height() / tex_scale_y)); resource_provider_->BindForSampling( quad->mask_resource_id, GL_TEXTURE_2D, GL_LINEAR); GLC(Context(), Context()->activeTexture(GL_TEXTURE0)); } if (shader_edge_location != -1) { float edge[24]; device_layer_edges.ToFloatArray(edge); device_layer_bounds.ToFloatArray(&edge[12]); GLC(Context(), Context()->uniform3fv(shader_edge_location, 8, edge)); } if (shader_color_matrix_location != -1) { float matrix[16]; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]); } GLC(Context(), Context()->uniformMatrix4fv( shader_color_matrix_location, 1, false, matrix)); } static const float kScale = 1.0f / 255.0f; if (shader_color_offset_location != -1) { float offset[4]; for (int i = 0; i < 4; ++i) offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale; GLC(Context(), Context()->uniform4fv(shader_color_offset_location, 1, offset)); } // Map device space quad to surface space. contents_device_transform has no 3d // component since it was flattened, so we don't need to project. gfx::QuadF surface_quad = MathUtil::MapQuad(contents_device_transform_inverse, device_layer_edges.ToQuadF(), &clipped); SetShaderOpacity(quad->opacity(), shader_alpha_location); SetShaderQuadF(surface_quad, shader_quad_location); DrawQuadGeometry( frame, quad->quadTransform(), quad->rect, shader_matrix_location); // Flush the compositor context before the filter bitmap goes out of // scope, so the draw gets processed before the filter texture gets deleted. if (filter_bitmap.getTexture()) context_->flush(); } struct SolidColorProgramUniforms { unsigned program; unsigned matrix_location; unsigned color_location; unsigned quad_location; unsigned edge_location; }; template static void SolidColorUniformLocation(T program, SolidColorProgramUniforms* uniforms) { uniforms->program = program->program(); uniforms->matrix_location = program->vertex_shader().matrix_location(); uniforms->color_location = program->fragment_shader().color_location(); uniforms->quad_location = program->vertex_shader().quad_location(); uniforms->edge_location = program->fragment_shader().edge_location(); } bool GLRenderer::SetupQuadForAntialiasing( const gfx::Transform& device_transform, const DrawQuad* quad, gfx::QuadF* local_quad, float edge[24]) const { gfx::Rect tile_rect = quad->visible_rect; bool clipped = false; gfx::QuadF device_layer_quad = MathUtil::MapQuad( device_transform, gfx::QuadF(quad->visibleContentRect()), &clipped); DCHECK(!clipped); bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear(); bool is_nearest_rect_within_epsilon = is_axis_aligned_in_target && gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(), kAntiAliasingEpsilon); bool use_aa = !clipped && !is_nearest_rect_within_epsilon && quad->IsEdge(); if (!use_aa) return false; LayerQuad device_layer_bounds(gfx::QuadF(device_layer_quad.BoundingBox())); device_layer_bounds.InflateAntiAliasingDistance(); LayerQuad device_layer_edges(device_layer_quad); device_layer_edges.InflateAntiAliasingDistance(); device_layer_edges.ToFloatArray(edge); device_layer_bounds.ToFloatArray(&edge[12]); gfx::PointF bottom_right = tile_rect.bottom_right(); gfx::PointF bottom_left = tile_rect.bottom_left(); gfx::PointF top_left = tile_rect.origin(); gfx::PointF top_right = tile_rect.top_right(); // Map points to device space. bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped); DCHECK(!clipped); bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped); DCHECK(!clipped); top_left = MathUtil::MapPoint(device_transform, top_left, &clipped); DCHECK(!clipped); top_right = MathUtil::MapPoint(device_transform, top_right, &clipped); DCHECK(!clipped); LayerQuad::Edge bottom_edge(bottom_right, bottom_left); LayerQuad::Edge left_edge(bottom_left, top_left); LayerQuad::Edge top_edge(top_left, top_right); LayerQuad::Edge right_edge(top_right, bottom_right); // Only apply anti-aliasing to edges not clipped by culling or scissoring. if (quad->IsTopEdge() && tile_rect.y() == quad->rect.y()) top_edge = device_layer_edges.top(); if (quad->IsLeftEdge() && tile_rect.x() == quad->rect.x()) left_edge = device_layer_edges.left(); if (quad->IsRightEdge() && tile_rect.right() == quad->rect.right()) right_edge = device_layer_edges.right(); if (quad->IsBottomEdge() && tile_rect.bottom() == quad->rect.bottom()) bottom_edge = device_layer_edges.bottom(); float sign = gfx::QuadF(tile_rect).IsCounterClockwise() ? -1 : 1; bottom_edge.scale(sign); left_edge.scale(sign); top_edge.scale(sign); right_edge.scale(sign); // Create device space quad. LayerQuad device_quad(left_edge, top_edge, right_edge, bottom_edge); // Map device space quad to local space. device_transform has no 3d // component since it was flattened, so we don't need to project. We should // have already checked that the transform was uninvertible above. gfx::Transform inverse_device_transform( gfx::Transform::kSkipInitialization); bool did_invert = device_transform.GetInverse(&inverse_device_transform); DCHECK(did_invert); *local_quad = MathUtil::MapQuad( inverse_device_transform, device_quad.ToQuadF(), &clipped); // We should not DCHECK(!clipped) here, because anti-aliasing inflation may // cause device_quad to become clipped. To our knowledge this scenario does // not need to be handled differently than the unclipped case. return true; } void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame, const SolidColorDrawQuad* quad) { gfx::Rect tile_rect = quad->visible_rect; SkColor color = quad->color; float opacity = quad->opacity(); float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity; // Early out if alpha is small enough that quad doesn't contribute to output. if (alpha < std::numeric_limits::epsilon() && quad->ShouldDrawWithBlending()) return; gfx::Transform device_transform = frame->window_matrix * frame->projection_matrix * quad->quadTransform(); device_transform.FlattenTo2d(); if (!device_transform.IsInvertible()) return; gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect)); float edge[24]; bool use_aa = !quad->force_anti_aliasing_off && SetupQuadForAntialiasing( device_transform, quad, &local_quad, edge); SolidColorProgramUniforms uniforms; if (use_aa) SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms); else SolidColorUniformLocation(GetSolidColorProgram(), &uniforms); SetUseProgram(uniforms.program); GLC(Context(), Context()->uniform4f(uniforms.color_location, (SkColorGetR(color) * (1.0f / 255.0f)) * alpha, (SkColorGetG(color) * (1.0f / 255.0f)) * alpha, (SkColorGetB(color) * (1.0f / 255.0f)) * alpha, alpha)); if (use_aa) GLC(Context(), Context()->uniform3fv(uniforms.edge_location, 8, edge)); // Enable blending when the quad properties require it or if we decided // to use antialiasing. SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa); // Normalize to tile_rect. local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); SetShaderQuadF(local_quad, uniforms.quad_location); // The transform and vertex data are used to figure out the extents that the // un-antialiased quad should have and which vertex this is and the float // quad passed in via uniform is the actual geometry that gets used to draw // it. This is why this centered rect is used and not the original quad_rect. gfx::RectF centered_rect(gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()), tile_rect.size()); DrawQuadGeometry(frame, quad->quadTransform(), centered_rect, uniforms.matrix_location); } struct TileProgramUniforms { unsigned program; unsigned sampler_location; unsigned vertex_tex_transform_location; unsigned fragment_tex_transform_location; unsigned edge_location; unsigned matrix_location; unsigned alpha_location; unsigned quad_location; }; template static void TileUniformLocation(T program, TileProgramUniforms* uniforms) { uniforms->program = program->program(); uniforms->vertex_tex_transform_location = program->vertex_shader().vertex_tex_transform_location(); uniforms->matrix_location = program->vertex_shader().matrix_location(); uniforms->quad_location = program->vertex_shader().quad_location(); uniforms->sampler_location = program->fragment_shader().sampler_location(); uniforms->alpha_location = program->fragment_shader().alpha_location(); uniforms->fragment_tex_transform_location = program->fragment_shader().fragment_tex_transform_location(); uniforms->edge_location = program->fragment_shader().edge_location(); } void GLRenderer::DrawTileQuad(const DrawingFrame* frame, const TileDrawQuad* quad) { DrawContentQuad(frame, quad, quad->resource_id); } void GLRenderer::DrawContentQuad(const DrawingFrame* frame, const ContentDrawQuadBase* quad, ResourceProvider::ResourceId resource_id) { gfx::Rect tile_rect = quad->visible_rect; gfx::RectF tex_coord_rect = quad->tex_coord_rect; float tex_to_geom_scale_x = quad->rect.width() / tex_coord_rect.width(); float tex_to_geom_scale_y = quad->rect.height() / tex_coord_rect.height(); // tex_coord_rect corresponds to quad_rect, but quad_visible_rect may be // smaller than quad_rect due to occlusion or clipping. Adjust // tex_coord_rect to match. gfx::Vector2d top_left_diff = tile_rect.origin() - quad->rect.origin(); gfx::Vector2d bottom_right_diff = tile_rect.bottom_right() - quad->rect.bottom_right(); tex_coord_rect.Inset(top_left_diff.x() / tex_to_geom_scale_x, top_left_diff.y() / tex_to_geom_scale_y, -bottom_right_diff.x() / tex_to_geom_scale_x, -bottom_right_diff.y() / tex_to_geom_scale_y); gfx::RectF clamp_geom_rect(tile_rect); gfx::RectF clamp_tex_rect(tex_coord_rect); // Clamp texture coordinates to avoid sampling outside the layer // by deflating the tile region half a texel or half a texel // minus epsilon for one pixel layers. The resulting clamp region // is mapped to the unit square by the vertex shader and mapped // back to normalized texture coordinates by the fragment shader // after being clamped to 0-1 range. float tex_clamp_x = std::min( 0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon); float tex_clamp_y = std::min( 0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon); float geom_clamp_x = std::min( tex_clamp_x * tex_to_geom_scale_x, 0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon); float geom_clamp_y = std::min( tex_clamp_y * tex_to_geom_scale_y, 0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon); clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y); clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y); // Map clamping rectangle to unit square. float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width(); float vertex_tex_translate_y = -clamp_geom_rect.y() / clamp_geom_rect.height(); float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width(); float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height(); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( context_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size); // Map to normalized texture coordinates. gfx::Size texture_size = quad->texture_size; float fragment_tex_translate_x = clamp_tex_rect.x() / texture_size.width(); float fragment_tex_translate_y = clamp_tex_rect.y() / texture_size.height(); float fragment_tex_scale_x = clamp_tex_rect.width() / texture_size.width(); float fragment_tex_scale_y = clamp_tex_rect.height() / texture_size.height(); gfx::Transform device_transform = frame->window_matrix * frame->projection_matrix * quad->quadTransform(); device_transform.FlattenTo2d(); if (!device_transform.IsInvertible()) return; gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect)); float edge[24]; bool use_aa = SetupQuadForAntialiasing( device_transform, quad, &local_quad, edge); TileProgramUniforms uniforms; if (use_aa) { if (quad->swizzle_contents) { TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision), &uniforms); } else { TileUniformLocation(GetTileProgramAA(tex_coord_precision), &uniforms); } } else { if (quad->ShouldDrawWithBlending()) { if (quad->swizzle_contents) { TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision), &uniforms); } else { TileUniformLocation(GetTileProgram(tex_coord_precision), &uniforms); } } else { if (quad->swizzle_contents) { TileUniformLocation(GetTileProgramSwizzleOpaque(tex_coord_precision), &uniforms); } else { TileUniformLocation(GetTileProgramOpaque(tex_coord_precision), &uniforms); } } } SetUseProgram(uniforms.program); GLC(Context(), Context()->uniform1i(uniforms.sampler_location, 0)); bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f); GLenum filter = (use_aa || scaled || !quad->quadTransform().IsIdentityOrIntegerTranslation()) ? GL_LINEAR : GL_NEAREST; ResourceProvider::ScopedSamplerGL quad_resource_lock( resource_provider_, resource_id, GL_TEXTURE_2D, filter); if (use_aa) { GLC(Context(), Context()->uniform3fv(uniforms.edge_location, 8, edge)); GLC(Context(), Context()->uniform4f(uniforms.vertex_tex_transform_location, vertex_tex_translate_x, vertex_tex_translate_y, vertex_tex_scale_x, vertex_tex_scale_y)); GLC(Context(), Context()->uniform4f(uniforms.fragment_tex_transform_location, fragment_tex_translate_x, fragment_tex_translate_y, fragment_tex_scale_x, fragment_tex_scale_y)); } else { // Move fragment shader transform to vertex shader. We can do this while // still producing correct results as fragment_tex_transform_location // should always be non-negative when tiles are transformed in a way // that could result in sampling outside the layer. vertex_tex_scale_x *= fragment_tex_scale_x; vertex_tex_scale_y *= fragment_tex_scale_y; vertex_tex_translate_x *= fragment_tex_scale_x; vertex_tex_translate_y *= fragment_tex_scale_y; vertex_tex_translate_x += fragment_tex_translate_x; vertex_tex_translate_y += fragment_tex_translate_y; GLC(Context(), Context()->uniform4f(uniforms.vertex_tex_transform_location, vertex_tex_translate_x, vertex_tex_translate_y, vertex_tex_scale_x, vertex_tex_scale_y)); } // Enable blending when the quad properties require it or if we decided // to use antialiasing. SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa); // Normalize to tile_rect. local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); SetShaderOpacity(quad->opacity(), uniforms.alpha_location); SetShaderQuadF(local_quad, uniforms.quad_location); // The transform and vertex data are used to figure out the extents that the // un-antialiased quad should have and which vertex this is and the float // quad passed in via uniform is the actual geometry that gets used to draw // it. This is why this centered rect is used and not the original quad_rect. gfx::RectF centered_rect( gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()), tile_rect.size()); DrawQuadGeometry( frame, quad->quadTransform(), centered_rect, uniforms.matrix_location); } void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame, const YUVVideoDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( context_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision); DCHECK(program && (program->initialized() || IsContextLost())); GLC(Context(), Context()->activeTexture(GL_TEXTURE1)); ResourceProvider::ScopedSamplerGL y_plane_lock( resource_provider_, quad->y_plane_resource_id, GL_TEXTURE_2D, GL_LINEAR); GLC(Context(), Context()->activeTexture(GL_TEXTURE2)); ResourceProvider::ScopedSamplerGL u_plane_lock( resource_provider_, quad->u_plane_resource_id, GL_TEXTURE_2D, GL_LINEAR); GLC(Context(), Context()->activeTexture(GL_TEXTURE3)); ResourceProvider::ScopedSamplerGL v_plane_lock( resource_provider_, quad->v_plane_resource_id, GL_TEXTURE_2D, GL_LINEAR); SetUseProgram(program->program()); GLC(Context(), Context()->uniform2f(program->vertex_shader().tex_scale_location(), quad->tex_scale.width(), quad->tex_scale.height())); GLC(Context(), Context()->uniform1i(program->fragment_shader().y_texture_location(), 1)); GLC(Context(), Context()->uniform1i(program->fragment_shader().u_texture_location(), 2)); GLC(Context(), Context()->uniform1i(program->fragment_shader().v_texture_location(), 3)); // These values are magic numbers that are used in the transformation from YUV // to RGB color values. They are taken from the following webpage: // http://www.fourcc.org/fccyvrgb.php float yuv_to_rgb[9] = { 1.164f, 1.164f, 1.164f, 0.0f, -.391f, 2.018f, 1.596f, -.813f, 0.0f, }; GLC(Context(), Context()->uniformMatrix3fv( program->fragment_shader().yuv_matrix_location(), 1, 0, yuv_to_rgb)); // These values map to 16, 128, and 128 respectively, and are computed // as a fraction over 256 (e.g. 16 / 256 = 0.0625). // They are used in the YUV to RGBA conversion formula: // Y - 16 : Gives 16 values of head and footroom for overshooting // U - 128 : Turns unsigned U into signed U [-128,127] // V - 128 : Turns unsigned V into signed V [-128,127] float yuv_adjust[3] = { -0.0625f, -0.5f, -0.5f, }; GLC(Context(), Context()->uniform3fv( program->fragment_shader().yuv_adj_location(), 1, yuv_adjust)); SetShaderOpacity(quad->opacity(), program->fragment_shader().alpha_location()); DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, program->vertex_shader().matrix_location()); // Reset active texture back to texture 0. GLC(Context(), Context()->activeTexture(GL_TEXTURE0)); } void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame, const StreamVideoDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); static float gl_matrix[16]; DCHECK(capabilities_.using_egl_image); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( context_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); const VideoStreamTextureProgram* program = GetVideoStreamTextureProgram(tex_coord_precision); SetUseProgram(program->program()); ToGLMatrix(&gl_matrix[0], quad->matrix); GLC(Context(), Context()->uniformMatrix4fv( program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix)); ResourceProvider::ScopedReadLockGL lock(resource_provider_, quad->resource_id); GLC(Context(), Context()->bindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id())); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); SetShaderOpacity(quad->opacity(), program->fragment_shader().alpha_location()); DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, program->vertex_shader().matrix_location()); } void GLRenderer::DrawPictureQuadDirectToBackbuffer( const DrawingFrame* frame, const PictureDrawQuad* quad) { DCHECK(CanUseSkiaGPUBackend()); DCHECK_EQ(quad->opacity(), 1.f) << "Need to composite to a bitmap or a " "render surface for non-1 opacity quads"; // TODO(enne): This should be done more lazily / efficiently. gr_context_->resetContext(); // Reset the canvas matrix to identity because the clip rect is in target // space. SkMatrix sk_identity; sk_identity.setIdentity(); sk_canvas_->setMatrix(sk_identity); if (is_scissor_enabled_) { sk_canvas_->clipRect(gfx::RectToSkRect(scissor_rect_), SkRegion::kReplace_Op); } else { sk_canvas_->clipRect(gfx::RectToSkRect(gfx::Rect(ViewportSize())), SkRegion::kReplace_Op); } gfx::Transform contents_device_transform = frame->window_matrix * frame->projection_matrix * quad->quadTransform(); contents_device_transform.Translate(quad->rect.x(), quad->rect.y()); contents_device_transform.FlattenTo2d(); SkMatrix sk_device_matrix; gfx::TransformToFlattenedSkMatrix(contents_device_transform, &sk_device_matrix); sk_canvas_->setMatrix(sk_device_matrix); quad->picture_pile->RasterDirect( sk_canvas_.get(), quad->content_rect, quad->contents_scale, NULL); // Flush any drawing buffers that have been deferred. sk_canvas_->flush(); // TODO(enne): This should be done more lazily / efficiently. ReinitializeGLState(); } void GLRenderer::DrawPictureQuad(const DrawingFrame* frame, const PictureDrawQuad* quad) { if (quad->can_draw_direct_to_backbuffer && CanUseSkiaGPUBackend()) { DrawPictureQuadDirectToBackbuffer(frame, quad); return; } if (on_demand_tile_raster_bitmap_.width() != quad->texture_size.width() || on_demand_tile_raster_bitmap_.height() != quad->texture_size.height()) { on_demand_tile_raster_bitmap_.setConfig( SkBitmap::kARGB_8888_Config, quad->texture_size.width(), quad->texture_size.height()); on_demand_tile_raster_bitmap_.allocPixels(); if (on_demand_tile_raster_resource_id_) resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_); on_demand_tile_raster_resource_id_ = resource_provider_->CreateGLTexture( quad->texture_size, GL_RGBA, GL_TEXTURE_POOL_UNMANAGED_CHROMIUM, ResourceProvider::TextureUsageAny); } SkDevice device(on_demand_tile_raster_bitmap_); SkCanvas canvas(&device); quad->picture_pile->RasterToBitmap(&canvas, quad->content_rect, quad->contents_scale, NULL); resource_provider_->SetPixels( on_demand_tile_raster_resource_id_, reinterpret_cast(on_demand_tile_raster_bitmap_.getPixels()), gfx::Rect(quad->texture_size), gfx::Rect(quad->texture_size), gfx::Vector2d()); DrawContentQuad(frame, quad, on_demand_tile_raster_resource_id_); } struct TextureProgramBinding { template void Set(Program* program, WebKit::WebGraphicsContext3D* context) { DCHECK(program && (program->initialized() || context->isContextLost())); program_id = program->program(); sampler_location = program->fragment_shader().sampler_location(); matrix_location = program->vertex_shader().matrix_location(); alpha_location = program->fragment_shader().alpha_location(); } int program_id; int sampler_location; int matrix_location; int alpha_location; }; struct TexTransformTextureProgramBinding : TextureProgramBinding { template void Set(Program* program, WebKit::WebGraphicsContext3D* context) { TextureProgramBinding::Set(program, context); tex_transform_location = program->vertex_shader().tex_transform_location(); vertex_opacity_location = program->vertex_shader().vertex_opacity_location(); } int tex_transform_location; int vertex_opacity_location; }; void GLRenderer::FlushTextureQuadCache() { // Check to see if we have anything to draw. if (draw_cache_.program_id == 0) return; // Set the correct blending mode. SetBlendEnabled(draw_cache_.needs_blending); // Bind the program to the GL state. SetUseProgram(draw_cache_.program_id); // Bind the correct texture sampler location. GLC(Context(), Context()->uniform1i(draw_cache_.sampler_location, 0)); // Assume the current active textures is 0. ResourceProvider::ScopedReadLockGL locked_quad(resource_provider_, draw_cache_.resource_id); GLC(Context(), Context()->bindTexture(GL_TEXTURE_2D, locked_quad.texture_id())); // set up premultiplied alpha. if (!draw_cache_.use_premultiplied_alpha) { // As it turns out, the premultiplied alpha blending function (ONE, // ONE_MINUS_SRC_ALPHA) will never cause the alpha channel to be set to // anything less than 1.0f if it is initialized to that value! Therefore, // premultiplied_alpha being false is the first situation we can generally // see an alpha channel less than 1.0f coming out of the compositor. This is // causing platform differences in some layout tests (see // https://bugs.webkit.org/show_bug.cgi?id=82412), so in this situation, use // a separate blend function for the alpha channel to avoid modifying it. // Don't use colorMask() for this as it has performance implications on some // platforms. GLC(Context(), Context()->blendFuncSeparate( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE)); } COMPILE_ASSERT( sizeof(Float4) == 4 * sizeof(float), // NOLINT(runtime/sizeof) struct_is_densely_packed); COMPILE_ASSERT( sizeof(Float16) == 16 * sizeof(float), // NOLINT(runtime/sizeof) struct_is_densely_packed); // Upload the tranforms for both points and uvs. GLC(context_, context_->uniformMatrix4fv( static_cast(draw_cache_.matrix_location), static_cast(draw_cache_.matrix_data.size()), false, reinterpret_cast(&draw_cache_.matrix_data.front()))); GLC(context_, context_->uniform4fv( static_cast(draw_cache_.uv_xform_location), static_cast(draw_cache_.uv_xform_data.size()), reinterpret_cast(&draw_cache_.uv_xform_data.front()))); GLC(context_, context_->uniform1fv( static_cast(draw_cache_.vertex_opacity_location), static_cast(draw_cache_.vertex_opacity_data.size()), static_cast(&draw_cache_.vertex_opacity_data.front()))); // Draw the quads! GLC(context_, context_->drawElements(GL_TRIANGLES, 6 * draw_cache_.matrix_data.size(), GL_UNSIGNED_SHORT, 0)); // Clean up after ourselves (reset state set above). if (!draw_cache_.use_premultiplied_alpha) GLC(context_, context_->blendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA)); // Clear the cache. draw_cache_.program_id = 0; draw_cache_.uv_xform_data.resize(0); draw_cache_.vertex_opacity_data.resize(0); draw_cache_.matrix_data.resize(0); } void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame, const TextureDrawQuad* quad) { TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( context_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); // Choose the correct texture program binding TexTransformTextureProgramBinding binding; if (quad->flipped) binding.Set(GetTextureProgramFlip(tex_coord_precision), Context()); else binding.Set(GetTextureProgram(tex_coord_precision), Context()); int resource_id = quad->resource_id; if (draw_cache_.program_id != binding.program_id || draw_cache_.resource_id != resource_id || draw_cache_.use_premultiplied_alpha != quad->premultiplied_alpha || draw_cache_.needs_blending != quad->ShouldDrawWithBlending() || draw_cache_.matrix_data.size() >= 8) { FlushTextureQuadCache(); draw_cache_.program_id = binding.program_id; draw_cache_.resource_id = resource_id; draw_cache_.use_premultiplied_alpha = quad->premultiplied_alpha; draw_cache_.needs_blending = quad->ShouldDrawWithBlending(); draw_cache_.uv_xform_location = binding.tex_transform_location; draw_cache_.vertex_opacity_location = binding.vertex_opacity_location; draw_cache_.matrix_location = binding.matrix_location; draw_cache_.sampler_location = binding.sampler_location; } // Generate the uv-transform gfx::PointF uv0 = quad->uv_top_left; gfx::PointF uv1 = quad->uv_bottom_right; Float4 uv = { { uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y() } }; draw_cache_.uv_xform_data.push_back(uv); // Generate the vertex opacity const float opacity = quad->opacity(); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity); // Generate the transform matrix gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect); quad_rect_matrix = frame->projection_matrix * quad_rect_matrix; Float16 m; quad_rect_matrix.matrix().asColMajorf(m.data); draw_cache_.matrix_data.push_back(m); } void GLRenderer::DrawTextureQuad(const DrawingFrame* frame, const TextureDrawQuad* quad) { TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( context_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); TexTransformTextureProgramBinding binding; if (quad->flipped) binding.Set(GetTextureProgramFlip(tex_coord_precision), Context()); else binding.Set(GetTextureProgram(tex_coord_precision), Context()); SetUseProgram(binding.program_id); GLC(Context(), Context()->uniform1i(binding.sampler_location, 0)); gfx::PointF uv0 = quad->uv_top_left; gfx::PointF uv1 = quad->uv_bottom_right; GLC(Context(), Context()->uniform4f(binding.tex_transform_location, uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y())); GLC(Context(), Context()->uniform1fv( binding.vertex_opacity_location, 4, quad->vertex_opacity)); ResourceProvider::ScopedSamplerGL quad_resource_lock( resource_provider_, quad->resource_id, GL_TEXTURE_2D, GL_LINEAR); if (!quad->premultiplied_alpha) { // As it turns out, the premultiplied alpha blending function (ONE, // ONE_MINUS_SRC_ALPHA) will never cause the alpha channel to be set to // anything less than 1.0f if it is initialized to that value! Therefore, // premultiplied_alpha being false is the first situation we can generally // see an alpha channel less than 1.0f coming out of the compositor. This is // causing platform differences in some layout tests (see // https://bugs.webkit.org/show_bug.cgi?id=82412), so in this situation, use // a separate blend function for the alpha channel to avoid modifying it. // Don't use colorMask() for this as it has performance implications on some // platforms. GLC(Context(), Context()->blendFuncSeparate( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE)); } DrawQuadGeometry( frame, quad->quadTransform(), quad->rect, binding.matrix_location); if (!quad->premultiplied_alpha) GLC(context_, context_->blendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA)); } void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame, const IOSurfaceDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( context_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); TexTransformTextureProgramBinding binding; binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision), Context()); SetUseProgram(binding.program_id); GLC(Context(), Context()->uniform1i(binding.sampler_location, 0)); if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) { GLC(Context(), Context()->uniform4f(binding.tex_transform_location, 0, quad->io_surface_size.height(), quad->io_surface_size.width(), quad->io_surface_size.height() * -1.0f)); } else { GLC(Context(), Context()->uniform4f(binding.tex_transform_location, 0, 0, quad->io_surface_size.width(), quad->io_surface_size.height())); } const float vertex_opacity[] = { quad->opacity(), quad->opacity(), quad->opacity(), quad->opacity() }; GLC(Context(), Context()->uniform1fv( binding.vertex_opacity_location, 4, vertex_opacity)); ResourceProvider::ScopedReadLockGL lock(resource_provider_, quad->io_surface_resource_id); GLC(Context(), Context()->bindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id())); DrawQuadGeometry( frame, quad->quadTransform(), quad->rect, binding.matrix_location); GLC(Context(), Context()->bindTexture(GL_TEXTURE_RECTANGLE_ARB, 0)); } void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) { current_framebuffer_lock_.reset(); swap_buffer_rect_.Union(gfx::ToEnclosingRect(frame->root_damage_rect)); GLC(context_, context_->disable(GL_BLEND)); blend_shadow_ = false; if (Settings().compositor_frame_message) { CompositorFrame compositor_frame; compositor_frame.metadata = client_->MakeCompositorFrameMetadata(); output_surface_->SendFrameToParentCompositor(&compositor_frame); } } void GLRenderer::FinishDrawingQuadList() { FlushTextureQuadCache(); } bool GLRenderer::FlippedFramebuffer() const { return true; } void GLRenderer::EnsureScissorTestEnabled() { if (is_scissor_enabled_) return; FlushTextureQuadCache(); GLC(context_, context_->enable(GL_SCISSOR_TEST)); is_scissor_enabled_ = true; } void GLRenderer::EnsureScissorTestDisabled() { if (!is_scissor_enabled_) return; FlushTextureQuadCache(); GLC(context_, context_->disable(GL_SCISSOR_TEST)); is_scissor_enabled_ = false; } void GLRenderer::CopyCurrentRenderPassToBitmap( DrawingFrame* frame, scoped_ptr request) { GetFramebufferPixelsAsync(frame->current_render_pass->output_rect, frame->flipped_y, request.Pass()); } void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) { transform.matrix().asColMajorf(gl_matrix); } void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) { if (quad_location == -1) return; float gl_quad[8]; gl_quad[0] = quad.p1().x(); gl_quad[1] = quad.p1().y(); gl_quad[2] = quad.p2().x(); gl_quad[3] = quad.p2().y(); gl_quad[4] = quad.p3().x(); gl_quad[5] = quad.p3().y(); gl_quad[6] = quad.p4().x(); gl_quad[7] = quad.p4().y(); GLC(context_, context_->uniform2fv(quad_location, 4, gl_quad)); } void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) { if (alpha_location != -1) GLC(context_, context_->uniform1f(alpha_location, opacity)); } void GLRenderer::SetBlendEnabled(bool enabled) { if (enabled == blend_shadow_) return; if (enabled) GLC(context_, context_->enable(GL_BLEND)); else GLC(context_, context_->disable(GL_BLEND)); blend_shadow_ = enabled; } void GLRenderer::SetUseProgram(unsigned program) { if (program == program_shadow_) return; GLC(context_, context_->useProgram(program)); program_shadow_ = program; } void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame, const gfx::Transform& draw_transform, const gfx::RectF& quad_rect, int matrix_location) { gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect); static float gl_matrix[16]; ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix); GLC(context_, context_->uniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0])); GLC(context_, context_->drawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0)); } void GLRenderer::CopyTextureToFramebuffer(const DrawingFrame* frame, int texture_id, gfx::Rect rect, const gfx::Transform& draw_matrix) { TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( context_, &highp_threshold_cache_, highp_threshold_min_, rect.bottom_right()); const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision); GLC(Context(), Context()->bindTexture(GL_TEXTURE_2D, texture_id)); SetUseProgram(program->program()); GLC(Context(), Context()->uniform1i(program->fragment_shader().sampler_location(), 0)); GLC(Context(), Context()->uniform4f(program->vertex_shader().tex_transform_location(), 0.0f, 0.0f, 1.0f, 1.0f)); SetShaderOpacity(1, program->fragment_shader().alpha_location()); DrawQuadGeometry( frame, draw_matrix, rect, program->vertex_shader().matrix_location()); } void GLRenderer::Finish() { TRACE_EVENT0("cc", "GLRenderer::finish"); context_->finish(); } void GLRenderer::SwapBuffers(const LatencyInfo& latency_info) { DCHECK(visible_); DCHECK(!is_backbuffer_discarded_); TRACE_EVENT0("cc", "GLRenderer::SwapBuffers"); // We're done! Time to swapbuffers! if (capabilities_.using_partial_swap && client_->AllowPartialSwap()) { // If supported, we can save significant bandwidth by only swapping the // damaged/scissored region (clamped to the viewport) swap_buffer_rect_.Intersect(gfx::Rect(ViewportSize())); int flipped_y_pos_of_rect_bottom = ViewportHeight() - swap_buffer_rect_.y() - swap_buffer_rect_.height(); output_surface_->PostSubBuffer(gfx::Rect(swap_buffer_rect_.x(), flipped_y_pos_of_rect_bottom, swap_buffer_rect_.width(), swap_buffer_rect_.height()), latency_info); } else { output_surface_->SwapBuffers(latency_info); } swap_buffer_rect_ = gfx::Rect(); // We don't have real fences, so we mark read fences as passed // assuming a double-buffered GPU pipeline. A texture can be // written to after one full frame has past since it was last read. if (last_swap_fence_) static_cast(last_swap_fence_.get())->SetHasPassed(); last_swap_fence_ = resource_provider_->GetReadLockFence(); resource_provider_->SetReadLockFence(new SimpleSwapFence()); } void GLRenderer::onMemoryAllocationChanged( WebGraphicsMemoryAllocation allocation) { // Just ignore the memory manager when it says to set the limit to zero // bytes. This will happen when the memory manager thinks that the renderer // is not visible (which the renderer knows better). if (allocation.bytesLimitWhenVisible) { ManagedMemoryPolicy policy( allocation.bytesLimitWhenVisible, PriorityCutoff(allocation.priorityCutoffWhenVisible), allocation.bytesLimitWhenNotVisible, PriorityCutoff(allocation.priorityCutoffWhenNotVisible)); if (allocation.enforceButDoNotKeepAsPolicy) client_->EnforceManagedMemoryPolicy(policy); else client_->SetManagedMemoryPolicy(policy); } bool old_discard_backbuffer_when_not_visible = discard_backbuffer_when_not_visible_; discard_backbuffer_when_not_visible_ = !allocation.suggestHaveBackbuffer; EnforceMemoryPolicy(); if (allocation.enforceButDoNotKeepAsPolicy) discard_backbuffer_when_not_visible_ = old_discard_backbuffer_when_not_visible; } ManagedMemoryPolicy::PriorityCutoff GLRenderer::PriorityCutoff( WebKit::WebGraphicsMemoryAllocation::PriorityCutoff priority_cutoff) { // This is simple a 1:1 map, the names differ only because the WebKit names // should be to match the cc names. switch (priority_cutoff) { case WebKit::WebGraphicsMemoryAllocation::PriorityCutoffAllowNothing: return ManagedMemoryPolicy::CUTOFF_ALLOW_NOTHING; case WebKit::WebGraphicsMemoryAllocation::PriorityCutoffAllowVisibleOnly: return ManagedMemoryPolicy::CUTOFF_ALLOW_REQUIRED_ONLY; case WebKit::WebGraphicsMemoryAllocation:: PriorityCutoffAllowVisibleAndNearby: return ManagedMemoryPolicy::CUTOFF_ALLOW_NICE_TO_HAVE; case WebKit::WebGraphicsMemoryAllocation::PriorityCutoffAllowEverything: return ManagedMemoryPolicy::CUTOFF_ALLOW_EVERYTHING; } NOTREACHED(); return ManagedMemoryPolicy::CUTOFF_ALLOW_NOTHING; } void GLRenderer::EnforceMemoryPolicy() { if (!visible_) { TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources"); ReleaseRenderPassTextures(); if (discard_backbuffer_when_not_visible_) DiscardBackbuffer(); resource_provider_->ReleaseCachedData(); GLC(context_, context_->flush()); } } void GLRenderer::DiscardBackbuffer() { if (is_backbuffer_discarded_) return; output_surface_->DiscardBackbuffer(); is_backbuffer_discarded_ = true; // Damage tracker needs a full reset every time framebuffer is discarded. client_->SetFullRootLayerDamage(); } void GLRenderer::EnsureBackbuffer() { if (!is_backbuffer_discarded_) return; output_surface_->EnsureBackbuffer(); is_backbuffer_discarded_ = false; } void GLRenderer::GetFramebufferPixels(void* pixels, gfx::Rect rect) { if (!pixels || rect.IsEmpty()) return; // This function assumes that it is reading the root frame buffer. DCHECK(!current_framebuffer_lock_); bool flipped_y = FlippedFramebuffer(); scoped_ptr pending_read(new PendingAsyncReadPixels); pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(), pending_read.Pass()); // This is a syncronous call since the callback is null. DoGetFramebufferPixels(static_cast(pixels), rect, flipped_y, AsyncGetFramebufferPixelsCleanupCallback()); } void GLRenderer::GetFramebufferPixelsAsync( gfx::Rect rect, bool flipped_y, scoped_ptr request) { DCHECK(!request->IsEmpty()); if (request->IsEmpty()) return; if (rect.IsEmpty()) return; scoped_ptr bitmap(new SkBitmap); bitmap->setConfig(SkBitmap::kARGB_8888_Config, rect.width(), rect.height()); bitmap->allocPixels(); scoped_ptr lock(new SkAutoLockPixels(*bitmap)); // Save a pointer to the pixels, the bitmap is owned by the cleanup_callback. uint8* pixels = static_cast(bitmap->getPixels()); AsyncGetFramebufferPixelsCleanupCallback cleanup_callback = base::Bind( &GLRenderer::PassOnSkBitmap, base::Unretained(this), base::Passed(&bitmap), base::Passed(&lock)); scoped_ptr pending_read(new PendingAsyncReadPixels); pending_read->copy_request = request.Pass(); pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(), pending_read.Pass()); // This is an asyncronous call since the callback is not null. DoGetFramebufferPixels(pixels, rect, flipped_y, cleanup_callback); } void GLRenderer::DoGetFramebufferPixels( uint8* dest_pixels, gfx::Rect rect, bool flipped_y, const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback) { DCHECK(rect.right() <= ViewportWidth()); DCHECK(rect.bottom() <= ViewportHeight()); bool is_async = !cleanup_callback.is_null(); MakeContextCurrent(); bool do_workaround = NeedsIOSurfaceReadbackWorkaround(); unsigned temporary_texture = 0; unsigned temporary_fbo = 0; if (do_workaround) { // On Mac OS X, calling glReadPixels() against an FBO whose color attachment // is an IOSurface-backed texture causes corruption of future glReadPixels() // calls, even those on different OpenGL contexts. It is believed that this // is the root cause of top crasher // http://crbug.com/99393. temporary_texture = context_->createTexture(); GLC(context_, context_->bindTexture(GL_TEXTURE_2D, temporary_texture)); GLC(context_, context_->texParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); GLC(context_, context_->texParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); GLC(context_, context_->texParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)); GLC(context_, context_->texParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)); // Copy the contents of the current (IOSurface-backed) framebuffer into a // temporary texture. GLC(context_, context_->copyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 0, 0, current_framebuffer_size_.width(), current_framebuffer_size_.height(), 0)); temporary_fbo = context_->createFramebuffer(); // Attach this texture to an FBO, and perform the readback from that FBO. GLC(context_, context_->bindFramebuffer(GL_FRAMEBUFFER, temporary_fbo)); GLC(context_, context_->framebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, temporary_texture, 0)); DCHECK(context_->checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); } unsigned buffer = context_->createBuffer(); GLC(context_, context_->bindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer)); GLC(context_, context_->bufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 4 * rect.size().GetArea(), NULL, GL_STREAM_READ)); GLC(context_, context_->readPixels(rect.x(), current_framebuffer_size_.height() - rect.bottom(), rect.width(), rect.height(), GL_RGBA, GL_UNSIGNED_BYTE, NULL)); GLC(context_, context_->bindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0)); if (do_workaround) { // Clean up. GLC(context_, context_->bindFramebuffer(GL_FRAMEBUFFER, 0)); GLC(context_, context_->bindTexture(GL_TEXTURE_2D, 0)); GLC(context_, context_->deleteFramebuffer(temporary_fbo)); GLC(context_, context_->deleteTexture(temporary_texture)); } base::Closure finished_callback = base::Bind(&GLRenderer::FinishedReadback, base::Unretained(this), cleanup_callback, buffer, dest_pixels, rect.size(), flipped_y); // Save the finished_callback so it can be cancelled. pending_async_read_pixels_.front()->finished_read_pixels_callback.Reset( finished_callback); // Save the buffer to verify the callbacks happen in the expected order. pending_async_read_pixels_.front()->buffer = buffer; if (is_async) { unsigned sync_point = context_->insertSyncPoint(); SyncPointHelper::SignalSyncPoint( context_, sync_point, finished_callback); } else { resource_provider_->Finish(); finished_callback.Run(); } EnforceMemoryPolicy(); } void GLRenderer::FinishedReadback( const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback, unsigned source_buffer, uint8* dest_pixels, gfx::Size size, bool flipped_y) { DCHECK(!pending_async_read_pixels_.empty()); PendingAsyncReadPixels* current_read = pending_async_read_pixels_.back(); // Make sure we service the readbacks in order. DCHECK_EQ(source_buffer, current_read->buffer); uint8* src_pixels = NULL; if (source_buffer != 0) { GLC(context_, context_->bindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, source_buffer)); src_pixels = static_cast( context_->mapBufferCHROMIUM(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, GL_READ_ONLY)); if (src_pixels) { size_t row_bytes = size.width() * 4; int num_rows = size.height(); size_t total_bytes = num_rows * row_bytes; for (size_t dest_y = 0; dest_y < total_bytes; dest_y += row_bytes) { // Flip Y axis. size_t src_y = flipped_y ? total_bytes - dest_y - row_bytes : dest_y; // Swizzle OpenGL -> Skia byte order. for (size_t x = 0; x < row_bytes; x += 4) { dest_pixels[dest_y + x + SK_R32_SHIFT/8] = src_pixels[src_y + x + 0]; dest_pixels[dest_y + x + SK_G32_SHIFT/8] = src_pixels[src_y + x + 1]; dest_pixels[dest_y + x + SK_B32_SHIFT/8] = src_pixels[src_y + x + 2]; dest_pixels[dest_y + x + SK_A32_SHIFT/8] = src_pixels[src_y + x + 3]; } } GLC(context_, context_->unmapBufferCHROMIUM( GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM)); } GLC(context_, context_->bindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0)); GLC(context_, context_->deleteBuffer(source_buffer)); } // TODO(danakj): This can go away when synchronous readback is no more and its // contents can just move here. if (!cleanup_callback.is_null()) cleanup_callback.Run(current_read->copy_request.Pass(), src_pixels != NULL); pending_async_read_pixels_.pop_back(); } void GLRenderer::PassOnSkBitmap( scoped_ptr bitmap, scoped_ptr lock, scoped_ptr request, bool success) { DCHECK(request->HasBitmapRequest()); lock.reset(); if (success) request->SendBitmapResult(bitmap.Pass()); } bool GLRenderer::GetFramebufferTexture(ScopedResource* texture, gfx::Rect device_rect) { DCHECK(!texture->id() || (texture->size() == device_rect.size() && texture->format() == GL_RGB)); if (!texture->id() && !texture->Allocate(device_rect.size(), GL_RGB, ResourceProvider::TextureUsageAny)) return false; ResourceProvider::ScopedWriteLockGL lock(resource_provider_, texture->id()); GLC(context_, context_->bindTexture(GL_TEXTURE_2D, lock.texture_id())); GLC(context_, context_->copyTexImage2D(GL_TEXTURE_2D, 0, texture->format(), device_rect.x(), device_rect.y(), device_rect.width(), device_rect.height(), 0)); return true; } bool GLRenderer::UseScopedTexture(DrawingFrame* frame, const ScopedResource* texture, gfx::Rect viewport_rect) { DCHECK(texture->id()); frame->current_render_pass = NULL; frame->current_texture = texture; return BindFramebufferToTexture(frame, texture, viewport_rect); } void GLRenderer::BindFramebufferToOutputSurface(DrawingFrame* frame) { current_framebuffer_lock_.reset(); output_surface_->BindFramebuffer(); } bool GLRenderer::BindFramebufferToTexture(DrawingFrame* frame, const ScopedResource* texture, gfx::Rect framebuffer_rect) { DCHECK(texture->id()); current_framebuffer_lock_.reset(); GLC(context_, context_->bindFramebuffer(GL_FRAMEBUFFER, offscreen_framebuffer_id_)); current_framebuffer_lock_ = make_scoped_ptr(new ResourceProvider::ScopedWriteLockGL( resource_provider_, texture->id())); unsigned texture_id = current_framebuffer_lock_->texture_id(); GLC(context_, context_->framebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0)); DCHECK(context_->checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE || IsContextLost()); InitializeMatrices(frame, framebuffer_rect, false); SetDrawViewportSize(framebuffer_rect.size()); return true; } void GLRenderer::SetScissorTestRect(gfx::Rect scissor_rect) { EnsureScissorTestEnabled(); // Don't unnecessarily ask the context to change the scissor, because it // may cause undesired GPU pipeline flushes. if (scissor_rect == scissor_rect_) return; scissor_rect_ = scissor_rect; FlushTextureQuadCache(); GLC(context_, context_->scissor(scissor_rect.x(), scissor_rect.y(), scissor_rect.width(), scissor_rect.height())); } void GLRenderer::SetDrawViewportSize(gfx::Size viewport_size) { current_framebuffer_size_ = viewport_size; GLC(context_, context_->viewport(0, 0, viewport_size.width(), viewport_size.height())); } bool GLRenderer::MakeContextCurrent() { return context_->makeContextCurrent(); } bool GLRenderer::InitializeSharedObjects() { TRACE_EVENT0("cc", "GLRenderer::InitializeSharedObjects"); MakeContextCurrent(); // Create an FBO for doing offscreen rendering. GLC(context_, offscreen_framebuffer_id_ = context_->createFramebuffer()); // We will always need these programs to render, so create the programs // eagerly so that the shader compilation can start while we do other work. // Other programs are created lazily on first access. shared_geometry_ = make_scoped_ptr( new GeometryBinding(context_, QuadVertexRect())); render_pass_program_ = make_scoped_ptr( new RenderPassProgram(context_, TexCoordPrecisionMedium)); render_pass_program_highp_ = make_scoped_ptr( new RenderPassProgram(context_, TexCoordPrecisionHigh)); tile_program_ = make_scoped_ptr( new TileProgram(context_, TexCoordPrecisionMedium)); tile_program_opaque_ = make_scoped_ptr( new TileProgramOpaque(context_, TexCoordPrecisionMedium)); tile_program_highp_ = make_scoped_ptr( new TileProgram(context_, TexCoordPrecisionHigh)); tile_program_opaque_highp_ = make_scoped_ptr( new TileProgramOpaque(context_, TexCoordPrecisionHigh)); GLC(context_, context_->flush()); return true; } const GLRenderer::TileCheckerboardProgram* GLRenderer::GetTileCheckerboardProgram() { if (!tile_checkerboard_program_) tile_checkerboard_program_ = make_scoped_ptr( new TileCheckerboardProgram(context_, TexCoordPrecisionNA)); if (!tile_checkerboard_program_->initialized()) { TRACE_EVENT0("cc", "GLRenderer::checkerboardProgram::initalize"); tile_checkerboard_program_->Initialize(context_, is_using_bind_uniform_); } return tile_checkerboard_program_.get(); } const GLRenderer::DebugBorderProgram* GLRenderer::GetDebugBorderProgram() { if (!debug_border_program_) debug_border_program_ = make_scoped_ptr( new DebugBorderProgram(context_, TexCoordPrecisionNA)); if (!debug_border_program_->initialized()) { TRACE_EVENT0("cc", "GLRenderer::debugBorderProgram::initialize"); debug_border_program_->Initialize(context_, is_using_bind_uniform_); } return debug_border_program_.get(); } const GLRenderer::SolidColorProgram* GLRenderer::GetSolidColorProgram() { if (!solid_color_program_) solid_color_program_ = make_scoped_ptr( new SolidColorProgram(context_, TexCoordPrecisionNA)); if (!solid_color_program_->initialized()) { TRACE_EVENT0("cc", "GLRenderer::solidColorProgram::initialize"); solid_color_program_->Initialize(context_, is_using_bind_uniform_); } return solid_color_program_.get(); } const GLRenderer::SolidColorProgramAA* GLRenderer::GetSolidColorProgramAA() { if (!solid_color_program_aa_) { solid_color_program_aa_ = make_scoped_ptr(new SolidColorProgramAA(context_, TexCoordPrecisionNA)); } if (!solid_color_program_aa_->initialized()) { TRACE_EVENT0("cc", "GLRenderer::solidColorProgramAA::initialize"); solid_color_program_aa_->Initialize(context_, is_using_bind_uniform_); } return solid_color_program_aa_.get(); } const GLRenderer::RenderPassProgram* GLRenderer::GetRenderPassProgram( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? render_pass_program_highp_ : render_pass_program_; DCHECK(program); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::RenderPassProgramAA* GLRenderer::GetRenderPassProgramAA( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? render_pass_program_aa_highp_ : render_pass_program_aa_; if (!program) program = make_scoped_ptr(new RenderPassProgramAA(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassProgramAA::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::RenderPassMaskProgram* GLRenderer::GetRenderPassMaskProgram(TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? render_pass_mask_program_highp_ : render_pass_mask_program_; if (!program) program = make_scoped_ptr(new RenderPassMaskProgram(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::RenderPassMaskProgramAA* GLRenderer::GetRenderPassMaskProgramAA(TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? render_pass_mask_program_aa_highp_ : render_pass_mask_program_aa_; if (!program) program = make_scoped_ptr(new RenderPassMaskProgramAA(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgramAA::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::RenderPassColorMatrixProgram* GLRenderer::GetRenderPassColorMatrixProgram(TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? render_pass_color_matrix_program_highp_ : render_pass_color_matrix_program_; if (!program) program = make_scoped_ptr( new RenderPassColorMatrixProgram(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::RenderPassColorMatrixProgramAA* GLRenderer::GetRenderPassColorMatrixProgramAA(TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? render_pass_color_matrix_program_aa_highp_ : render_pass_color_matrix_program_aa_; if (!program) program = make_scoped_ptr( new RenderPassColorMatrixProgramAA(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgramAA::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::RenderPassMaskColorMatrixProgram* GLRenderer::GetRenderPassMaskColorMatrixProgram(TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? render_pass_mask_color_matrix_program_highp_ : render_pass_mask_color_matrix_program_; if (!program) program = make_scoped_ptr( new RenderPassMaskColorMatrixProgram(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskColorMatrixProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::RenderPassMaskColorMatrixProgramAA* GLRenderer::GetRenderPassMaskColorMatrixProgramAA(TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? render_pass_mask_color_matrix_program_aa_highp_ : render_pass_mask_color_matrix_program_aa_; if (!program) program = make_scoped_ptr( new RenderPassMaskColorMatrixProgramAA(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskColorMatrixProgramAA::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TileProgram* GLRenderer::GetTileProgram( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? tile_program_highp_ : tile_program_; DCHECK(program); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TileProgramOpaque* GLRenderer::GetTileProgramOpaque( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? tile_program_opaque_highp_ : tile_program_opaque_; DCHECK(program); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramOpaque::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TileProgramAA* GLRenderer::GetTileProgramAA( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? tile_program_aa_highp_ : tile_program_aa_; if (!program) program = make_scoped_ptr(new TileProgramAA(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramAA::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TileProgramSwizzle* GLRenderer::GetTileProgramSwizzle( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? tile_program_swizzle_highp_ : tile_program_swizzle_; if (!program) program = make_scoped_ptr(new TileProgramSwizzle(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzle::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TileProgramSwizzleOpaque* GLRenderer::GetTileProgramSwizzleOpaque(TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? tile_program_swizzle_opaque_highp_ : tile_program_swizzle_opaque_; if (!program) program = make_scoped_ptr( new TileProgramSwizzleOpaque(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleOpaque::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TileProgramSwizzleAA* GLRenderer::GetTileProgramSwizzleAA( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? tile_program_swizzle_aa_highp_ : tile_program_swizzle_aa_; if (!program) program = make_scoped_ptr(new TileProgramSwizzleAA(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleAA::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TextureProgram* GLRenderer::GetTextureProgram( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? texture_program_highp_ : texture_program_; if (!program) program = make_scoped_ptr(new TextureProgram(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TextureProgramFlip* GLRenderer::GetTextureProgramFlip( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? texture_program_flip_highp_ : texture_program_flip_; if (!program) program = make_scoped_ptr(new TextureProgramFlip(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureProgramFlip::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::TextureIOSurfaceProgram* GLRenderer::GetTextureIOSurfaceProgram(TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? texture_io_surface_program_highp_ : texture_io_surface_program_; if (!program) program = make_scoped_ptr(new TextureIOSurfaceProgram(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureIOSurfaceProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::VideoYUVProgram* GLRenderer::GetVideoYUVProgram( TexCoordPrecision precision) { scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? video_yuv_program_highp_ : video_yuv_program_; if (!program) program = make_scoped_ptr(new VideoYUVProgram(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::videoYUVProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } const GLRenderer::VideoStreamTextureProgram* GLRenderer::GetVideoStreamTextureProgram(TexCoordPrecision precision) { if (!Capabilities().using_egl_image) return NULL; scoped_ptr& program = (precision == TexCoordPrecisionHigh) ? video_stream_texture_program_highp_ : video_stream_texture_program_; if (!program) program = make_scoped_ptr(new VideoStreamTextureProgram(context_, precision)); if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::streamTextureProgram::initialize"); program->Initialize(context_, is_using_bind_uniform_); } return program.get(); } void GLRenderer::CleanupSharedObjects() { MakeContextCurrent(); shared_geometry_.reset(); if (tile_program_) tile_program_->Cleanup(context_); if (tile_program_opaque_) tile_program_opaque_->Cleanup(context_); if (tile_program_swizzle_) tile_program_swizzle_->Cleanup(context_); if (tile_program_swizzle_opaque_) tile_program_swizzle_opaque_->Cleanup(context_); if (tile_program_aa_) tile_program_aa_->Cleanup(context_); if (tile_program_swizzle_aa_) tile_program_swizzle_aa_->Cleanup(context_); if (tile_checkerboard_program_) tile_checkerboard_program_->Cleanup(context_); if (tile_program_highp_) tile_program_highp_->Cleanup(context_); if (tile_program_opaque_highp_) tile_program_opaque_highp_->Cleanup(context_); if (tile_program_swizzle_highp_) tile_program_swizzle_highp_->Cleanup(context_); if (tile_program_swizzle_opaque_highp_) tile_program_swizzle_opaque_highp_->Cleanup(context_); if (tile_program_aa_highp_) tile_program_aa_highp_->Cleanup(context_); if (tile_program_swizzle_aa_highp_) tile_program_swizzle_aa_highp_->Cleanup(context_); if (render_pass_mask_program_) render_pass_mask_program_->Cleanup(context_); if (render_pass_program_) render_pass_program_->Cleanup(context_); if (render_pass_mask_program_aa_) render_pass_mask_program_aa_->Cleanup(context_); if (render_pass_program_aa_) render_pass_program_aa_->Cleanup(context_); if (render_pass_color_matrix_program_) render_pass_color_matrix_program_->Cleanup(context_); if (render_pass_mask_color_matrix_program_aa_) render_pass_mask_color_matrix_program_aa_->Cleanup(context_); if (render_pass_color_matrix_program_aa_) render_pass_color_matrix_program_aa_->Cleanup(context_); if (render_pass_mask_color_matrix_program_) render_pass_mask_color_matrix_program_->Cleanup(context_); if (render_pass_mask_program_highp_) render_pass_mask_program_highp_->Cleanup(context_); if (render_pass_program_highp_) render_pass_program_highp_->Cleanup(context_); if (render_pass_mask_program_aa_highp_) render_pass_mask_program_aa_highp_->Cleanup(context_); if (render_pass_program_aa_highp_) render_pass_program_aa_highp_->Cleanup(context_); if (render_pass_color_matrix_program_highp_) render_pass_color_matrix_program_highp_->Cleanup(context_); if (render_pass_mask_color_matrix_program_aa_highp_) render_pass_mask_color_matrix_program_aa_highp_->Cleanup(context_); if (render_pass_color_matrix_program_aa_highp_) render_pass_color_matrix_program_aa_highp_->Cleanup(context_); if (render_pass_mask_color_matrix_program_highp_) render_pass_mask_color_matrix_program_highp_->Cleanup(context_); if (texture_program_) texture_program_->Cleanup(context_); if (texture_program_flip_) texture_program_flip_->Cleanup(context_); if (texture_io_surface_program_) texture_io_surface_program_->Cleanup(context_); if (texture_program_highp_) texture_program_highp_->Cleanup(context_); if (texture_program_flip_highp_) texture_program_flip_highp_->Cleanup(context_); if (texture_io_surface_program_highp_) texture_io_surface_program_highp_->Cleanup(context_); if (video_yuv_program_) video_yuv_program_->Cleanup(context_); if (video_stream_texture_program_) video_stream_texture_program_->Cleanup(context_); if (video_yuv_program_highp_) video_yuv_program_highp_->Cleanup(context_); if (video_stream_texture_program_highp_) video_stream_texture_program_highp_->Cleanup(context_); if (debug_border_program_) debug_border_program_->Cleanup(context_); if (solid_color_program_) solid_color_program_->Cleanup(context_); if (solid_color_program_aa_) solid_color_program_aa_->Cleanup(context_); if (offscreen_framebuffer_id_) GLC(context_, context_->deleteFramebuffer(offscreen_framebuffer_id_)); if (on_demand_tile_raster_resource_id_) resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_); ReleaseRenderPassTextures(); } void GLRenderer::ReinitializeGrCanvas() { if (!CanUseSkiaGPUBackend()) return; GrBackendRenderTargetDesc desc; desc.fWidth = ViewportWidth(); desc.fHeight = ViewportHeight(); desc.fConfig = kRGBA_8888_GrPixelConfig; desc.fOrigin = kTopLeft_GrSurfaceOrigin; desc.fSampleCnt = 1; desc.fStencilBits = 8; desc.fRenderTargetHandle = 0; skia::RefPtr surface( skia::AdoptRef(gr_context_->wrapBackendRenderTarget(desc))); skia::RefPtr device( skia::AdoptRef(SkGpuDevice::Create(surface.get()))); sk_canvas_ = skia::AdoptRef(new SkCanvas(device.get())); } void GLRenderer::ReinitializeGLState() { // Bind the common vertex attributes used for drawing all the layers. shared_geometry_->PrepareForDraw(); GLC(context_, context_->disable(GL_STENCIL_TEST)); GLC(context_, context_->disable(GL_DEPTH_TEST)); GLC(context_, context_->disable(GL_CULL_FACE)); GLC(context_, context_->colorMask(true, true, true, true)); GLC(context_, context_->enable(GL_BLEND)); blend_shadow_ = true; GLC(context_, context_->blendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA)); GLC(context_, context_->activeTexture(GL_TEXTURE0)); program_shadow_ = 0; // Make sure scissoring starts as disabled. is_scissor_enabled_ = false; GLC(context_, context_->disable(GL_SCISSOR_TEST)); } bool GLRenderer::CanUseSkiaGPUBackend() const { // The Skia GPU backend requires a stencil buffer. See ReinitializeGrCanvas // implementation. return gr_context_ && context_->getContextAttributes().stencil; } bool GLRenderer::IsContextLost() { return (context_->getGraphicsResetStatusARB() != GL_NO_ERROR); } } // namespace cc