// Copyright 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/output/gl_renderer.h" #include #include #include #include #include #include "base/debug/trace_event.h" #include "base/logging.h" #include "base/strings/string_split.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "build/build_config.h" #include "cc/base/math_util.h" #include "cc/layers/video_layer_impl.h" #include "cc/output/compositor_frame.h" #include "cc/output/compositor_frame_metadata.h" #include "cc/output/context_provider.h" #include "cc/output/copy_output_request.h" #include "cc/output/geometry_binding.h" #include "cc/output/gl_frame_data.h" #include "cc/output/output_surface.h" #include "cc/output/render_surface_filters.h" #include "cc/quads/picture_draw_quad.h" #include "cc/quads/render_pass.h" #include "cc/quads/stream_video_draw_quad.h" #include "cc/quads/texture_draw_quad.h" #include "cc/resources/layer_quad.h" #include "cc/resources/scoped_resource.h" #include "cc/resources/texture_mailbox_deleter.h" #include "cc/trees/damage_tracker.h" #include "cc/trees/proxy.h" #include "cc/trees/single_thread_proxy.h" #include "gpu/GLES2/gl2extchromium.h" #include "gpu/command_buffer/client/context_support.h" #include "gpu/command_buffer/client/gles2_interface.h" #include "gpu/command_buffer/common/gpu_memory_allocation.h" #include "third_party/khronos/GLES2/gl2.h" #include "third_party/khronos/GLES2/gl2ext.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkColor.h" #include "third_party/skia/include/core/SkColorFilter.h" #include "third_party/skia/include/core/SkSurface.h" #include "third_party/skia/include/gpu/GrContext.h" #include "third_party/skia/include/gpu/GrTexture.h" #include "third_party/skia/include/gpu/SkGpuDevice.h" #include "third_party/skia/include/gpu/SkGrTexturePixelRef.h" #include "third_party/skia/include/gpu/gl/GrGLInterface.h" #include "ui/gfx/quad_f.h" #include "ui/gfx/rect_conversions.h" using gpu::gles2::GLES2Interface; namespace cc { namespace { // TODO(epenner): This should probably be moved to output surface. // // This implements a simple fence based on client side swaps. // This is to isolate the ResourceProvider from 'frames' which // it shouldn't need to care about, while still allowing us to // enforce good texture recycling behavior strictly throughout // the compositor (don't recycle a texture while it's in use). class SimpleSwapFence : public ResourceProvider::Fence { public: SimpleSwapFence() : has_passed_(false) {} virtual bool HasPassed() OVERRIDE { return has_passed_; } void SetHasPassed() { has_passed_ = true; } private: virtual ~SimpleSwapFence() {} bool has_passed_; }; bool NeedsIOSurfaceReadbackWorkaround() { #if defined(OS_MACOSX) // This isn't strictly required in DumpRenderTree-mode when Mesa is used, // but it doesn't seem to hurt. return true; #else return false; #endif } Float4 UVTransform(const TextureDrawQuad* quad) { gfx::PointF uv0 = quad->uv_top_left; gfx::PointF uv1 = quad->uv_bottom_right; Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}}; if (quad->flipped) { xform.data[1] = 1.0f - xform.data[1]; xform.data[3] = -xform.data[3]; } return xform; } Float4 PremultipliedColor(SkColor color) { const float factor = 1.0f / 255.0f; const float alpha = SkColorGetA(color) * factor; Float4 result = { {SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha, SkColorGetB(color) * factor * alpha, alpha}}; return result; } SamplerType SamplerTypeFromTextureTarget(GLenum target) { switch (target) { case GL_TEXTURE_2D: return SamplerType2D; case GL_TEXTURE_RECTANGLE_ARB: return SamplerType2DRect; case GL_TEXTURE_EXTERNAL_OES: return SamplerTypeExternalOES; default: NOTREACHED(); return SamplerType2D; } } // Smallest unit that impact anti-aliasing output. We use this to // determine when anti-aliasing is unnecessary. const float kAntiAliasingEpsilon = 1.0f / 1024.0f; } // anonymous namespace struct GLRenderer::PendingAsyncReadPixels { PendingAsyncReadPixels() : buffer(0) {} scoped_ptr copy_request; base::CancelableClosure finished_read_pixels_callback; unsigned buffer; private: DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels); }; scoped_ptr GLRenderer::Create( RendererClient* client, const LayerTreeSettings* settings, OutputSurface* output_surface, ResourceProvider* resource_provider, TextureMailboxDeleter* texture_mailbox_deleter, int highp_threshold_min) { return make_scoped_ptr(new GLRenderer(client, settings, output_surface, resource_provider, texture_mailbox_deleter, highp_threshold_min)); } GLRenderer::GLRenderer(RendererClient* client, const LayerTreeSettings* settings, OutputSurface* output_surface, ResourceProvider* resource_provider, TextureMailboxDeleter* texture_mailbox_deleter, int highp_threshold_min) : DirectRenderer(client, settings, output_surface, resource_provider), offscreen_framebuffer_id_(0), shared_geometry_quad_(gfx::RectF(-0.5f, -0.5f, 1.0f, 1.0f)), gl_(output_surface->context_provider()->ContextGL()), context_support_(output_surface->context_provider()->ContextSupport()), texture_mailbox_deleter_(texture_mailbox_deleter), is_backbuffer_discarded_(false), visible_(true), is_scissor_enabled_(false), scissor_rect_needs_reset_(true), stencil_shadow_(false), blend_shadow_(false), highp_threshold_min_(highp_threshold_min), highp_threshold_cache_(0), on_demand_tile_raster_resource_id_(0) { DCHECK(gl_); DCHECK(context_support_); ContextProvider::Capabilities context_caps = output_surface_->context_provider()->ContextCapabilities(); capabilities_.using_partial_swap = settings_->partial_swap_enabled && context_caps.gpu.post_sub_buffer; DCHECK(!context_caps.gpu.iosurface || context_caps.gpu.texture_rectangle); capabilities_.using_egl_image = context_caps.gpu.egl_image_external; capabilities_.max_texture_size = resource_provider_->max_texture_size(); capabilities_.best_texture_format = resource_provider_->best_texture_format(); // The updater can access textures while the GLRenderer is using them. capabilities_.allow_partial_texture_updates = true; // Check for texture fast paths. Currently we always use MO8 textures, // so we only need to avoid POT textures if we have an NPOT fast-path. capabilities_.avoid_pow2_textures = context_caps.gpu.fast_npot_mo8_textures; capabilities_.using_offscreen_context3d = true; capabilities_.using_map_image = settings_->use_map_image && context_caps.gpu.map_image; capabilities_.using_discard_framebuffer = context_caps.gpu.discard_framebuffer; InitializeSharedObjects(); } GLRenderer::~GLRenderer() { while (!pending_async_read_pixels_.empty()) { PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back(); pending_read->finished_read_pixels_callback.Cancel(); pending_async_read_pixels_.pop_back(); } CleanupSharedObjects(); } const RendererCapabilitiesImpl& GLRenderer::Capabilities() const { return capabilities_; } void GLRenderer::DebugGLCall(GLES2Interface* gl, const char* command, const char* file, int line) { GLuint error = gl->GetError(); if (error != GL_NO_ERROR) LOG(ERROR) << "GL command failed: File: " << file << "\n\tLine " << line << "\n\tcommand: " << command << ", error " << static_cast(error) << "\n"; } void GLRenderer::SetVisible(bool visible) { if (visible_ == visible) return; visible_ = visible; EnforceMemoryPolicy(); context_support_->SetSurfaceVisible(visible); } void GLRenderer::SendManagedMemoryStats(size_t bytes_visible, size_t bytes_visible_and_nearby, size_t bytes_allocated) { gpu::ManagedMemoryStats stats; stats.bytes_required = bytes_visible; stats.bytes_nice_to_have = bytes_visible_and_nearby; stats.bytes_allocated = bytes_allocated; stats.backbuffer_requested = !is_backbuffer_discarded_; context_support_->SendManagedMemoryStats(stats); } void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); } void GLRenderer::DiscardPixels(bool has_external_stencil_test, bool draw_rect_covers_full_surface) { if (has_external_stencil_test || !draw_rect_covers_full_surface || !capabilities_.using_discard_framebuffer) return; bool using_default_framebuffer = !current_framebuffer_lock_ && output_surface_->capabilities().uses_default_gl_framebuffer; GLenum attachments[] = {static_cast( using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)}; gl_->DiscardFramebufferEXT( GL_FRAMEBUFFER, arraysize(attachments), attachments); } void GLRenderer::ClearFramebuffer(DrawingFrame* frame, bool has_external_stencil_test) { // It's unsafe to clear when we have a stencil test because glClear ignores // stencil. if (has_external_stencil_test) { DCHECK(!frame->current_render_pass->has_transparent_background); return; } // On DEBUG builds, opaque render passes are cleared to blue to easily see // regions that were not drawn on the screen. if (frame->current_render_pass->has_transparent_background) GLC(gl_, gl_->ClearColor(0, 0, 0, 0)); else GLC(gl_, gl_->ClearColor(0, 0, 1, 1)); bool always_clear = false; #ifndef NDEBUG always_clear = true; #endif if (always_clear || frame->current_render_pass->has_transparent_background) { GLbitfield clear_bits = GL_COLOR_BUFFER_BIT; if (always_clear) clear_bits |= GL_STENCIL_BUFFER_BIT; gl_->Clear(clear_bits); } } void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) { if (frame->device_viewport_rect.IsEmpty()) return; TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame"); // TODO(enne): Do we need to reinitialize all of this state per frame? ReinitializeGLState(); } void GLRenderer::DoNoOp() { GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0)); GLC(gl_, gl_->Flush()); } void GLRenderer::DoDrawQuad(DrawingFrame* frame, const DrawQuad* quad) { DCHECK(quad->rect.Contains(quad->visible_rect)); if (quad->material != DrawQuad::TEXTURE_CONTENT) { FlushTextureQuadCache(); } switch (quad->material) { case DrawQuad::INVALID: NOTREACHED(); break; case DrawQuad::CHECKERBOARD: DrawCheckerboardQuad(frame, CheckerboardDrawQuad::MaterialCast(quad)); break; case DrawQuad::DEBUG_BORDER: DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad)); break; case DrawQuad::IO_SURFACE_CONTENT: DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad)); break; case DrawQuad::PICTURE_CONTENT: DrawPictureQuad(frame, PictureDrawQuad::MaterialCast(quad)); break; case DrawQuad::RENDER_PASS: DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad)); break; case DrawQuad::SOLID_COLOR: DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad)); break; case DrawQuad::STREAM_VIDEO_CONTENT: DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad)); break; case DrawQuad::SURFACE_CONTENT: // Surface content should be fully resolved to other quad types before // reaching a direct renderer. NOTREACHED(); break; case DrawQuad::TEXTURE_CONTENT: EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad)); break; case DrawQuad::TILED_CONTENT: DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad)); break; case DrawQuad::YUV_VIDEO_CONTENT: DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad)); break; } } void GLRenderer::DrawCheckerboardQuad(const DrawingFrame* frame, const CheckerboardDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); const TileCheckerboardProgram* program = GetTileCheckerboardProgram(); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); SkColor color = quad->color; GLC(gl_, gl_->Uniform4f(program->fragment_shader().color_location(), SkColorGetR(color) * (1.0f / 255.0f), SkColorGetG(color) * (1.0f / 255.0f), SkColorGetB(color) * (1.0f / 255.0f), 1)); const int checkerboard_width = 16; float frequency = 1.0f / checkerboard_width; gfx::Rect tile_rect = quad->rect; float tex_offset_x = tile_rect.x() % checkerboard_width; float tex_offset_y = tile_rect.y() % checkerboard_width; float tex_scale_x = tile_rect.width(); float tex_scale_y = tile_rect.height(); GLC(gl_, gl_->Uniform4f(program->fragment_shader().tex_transform_location(), tex_offset_x, tex_offset_y, tex_scale_x, tex_scale_y)); GLC(gl_, gl_->Uniform1f(program->fragment_shader().frequency_location(), frequency)); SetShaderOpacity(quad->opacity(), program->fragment_shader().alpha_location()); DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, program->vertex_shader().matrix_location()); } void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame, const DebugBorderDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); static float gl_matrix[16]; const DebugBorderProgram* program = GetDebugBorderProgram(); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); // Use the full quad_rect for debug quads to not move the edges based on // partial swaps. gfx::Rect layer_rect = quad->rect; gfx::Transform render_matrix = quad->quadTransform(); render_matrix.Translate(0.5f * layer_rect.width() + layer_rect.x(), 0.5f * layer_rect.height() + layer_rect.y()); render_matrix.Scale(layer_rect.width(), layer_rect.height()); GLRenderer::ToGLMatrix(&gl_matrix[0], frame->projection_matrix * render_matrix); GLC(gl_, gl_->UniformMatrix4fv( program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0])); SkColor color = quad->color; float alpha = SkColorGetA(color) * (1.0f / 255.0f); GLC(gl_, gl_->Uniform4f(program->fragment_shader().color_location(), (SkColorGetR(color) * (1.0f / 255.0f)) * alpha, (SkColorGetG(color) * (1.0f / 255.0f)) * alpha, (SkColorGetB(color) * (1.0f / 255.0f)) * alpha, alpha)); GLC(gl_, gl_->LineWidth(quad->width)); // The indices for the line are stored in the same array as the triangle // indices. GLC(gl_, gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0)); } static SkBitmap ApplyImageFilter(GLRenderer* renderer, ContextProvider* offscreen_contexts, gfx::Point origin, SkImageFilter* filter, ScopedResource* source_texture_resource) { if (!filter) return SkBitmap(); if (!offscreen_contexts || !offscreen_contexts->GrContext()) return SkBitmap(); ResourceProvider::ScopedWriteLockGL lock(renderer->resource_provider(), source_texture_resource->id()); // Flush the compositor context to ensure that textures there are available // in the shared context. Do this after locking/creating the compositor // texture. renderer->resource_provider()->Flush(); // Wrap the source texture in a Ganesh platform texture. GrBackendTextureDesc backend_texture_description; backend_texture_description.fWidth = source_texture_resource->size().width(); backend_texture_description.fHeight = source_texture_resource->size().height(); backend_texture_description.fConfig = kSkia8888_GrPixelConfig; backend_texture_description.fTextureHandle = lock.texture_id(); backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin; skia::RefPtr texture = skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture( backend_texture_description)); SkImageInfo info = { source_texture_resource->size().width(), source_texture_resource->size().height(), kPMColor_SkColorType, kPremul_SkAlphaType }; // Place the platform texture inside an SkBitmap. SkBitmap source; source.setConfig(info); skia::RefPtr pixel_ref = skia::AdoptRef(new SkGrPixelRef(info, texture.get())); source.setPixelRef(pixel_ref.get()); // Create a scratch texture for backing store. GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; desc.fSampleCnt = 0; desc.fWidth = source.width(); desc.fHeight = source.height(); desc.fConfig = kSkia8888_GrPixelConfig; desc.fOrigin = kBottomLeft_GrSurfaceOrigin; GrAutoScratchTexture scratch_texture( offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch); skia::RefPtr backing_store = skia::AdoptRef(scratch_texture.detach()); // Create a device and canvas using that backing store. SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get()); SkCanvas canvas(&device); // Draw the source bitmap through the filter to the canvas. SkPaint paint; paint.setImageFilter(filter); canvas.clear(SK_ColorTRANSPARENT); // TODO(senorblanco): in addition to the origin translation here, the canvas // should also be scaled to accomodate device pixel ratio and pinch zoom. See // crbug.com/281516 and crbug.com/281518. canvas.translate(SkIntToScalar(-origin.x()), SkIntToScalar(-origin.y())); canvas.drawSprite(source, 0, 0, &paint); // Flush skia context so that all the rendered stuff appears on the // texture. offscreen_contexts->GrContext()->flush(); // Flush the GL context so rendering results from this context are // visible in the compositor's context. offscreen_contexts->ContextGL()->Flush(); return device.accessBitmap(false); } static SkBitmap ApplyBlendModeWithBackdrop( GLRenderer* renderer, ContextProvider* offscreen_contexts, SkBitmap source_bitmap_with_filters, ScopedResource* source_texture_resource, ScopedResource* background_texture_resource, SkXfermode::Mode blend_mode) { if (!offscreen_contexts || !offscreen_contexts->GrContext()) return source_bitmap_with_filters; DCHECK(background_texture_resource); DCHECK(source_texture_resource); gfx::Size source_size = source_texture_resource->size(); gfx::Size background_size = background_texture_resource->size(); DCHECK_LE(background_size.width(), source_size.width()); DCHECK_LE(background_size.height(), source_size.height()); int source_texture_with_filters_id; scoped_ptr lock; if (source_bitmap_with_filters.getTexture()) { DCHECK_EQ(source_size.width(), source_bitmap_with_filters.width()); DCHECK_EQ(source_size.height(), source_bitmap_with_filters.height()); GrTexture* texture = reinterpret_cast(source_bitmap_with_filters.getTexture()); source_texture_with_filters_id = texture->getTextureHandle(); } else { lock.reset(new ResourceProvider::ScopedReadLockGL( renderer->resource_provider(), source_texture_resource->id())); source_texture_with_filters_id = lock->texture_id(); } ResourceProvider::ScopedReadLockGL lock_background( renderer->resource_provider(), background_texture_resource->id()); // Flush the compositor context to ensure that textures there are available // in the shared context. Do this after locking/creating the compositor // texture. renderer->resource_provider()->Flush(); // Wrap the source texture in a Ganesh platform texture. GrBackendTextureDesc backend_texture_description; backend_texture_description.fConfig = kSkia8888_GrPixelConfig; backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin; backend_texture_description.fWidth = source_size.width(); backend_texture_description.fHeight = source_size.height(); backend_texture_description.fTextureHandle = source_texture_with_filters_id; skia::RefPtr source_texture = skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture( backend_texture_description)); backend_texture_description.fWidth = background_size.width(); backend_texture_description.fHeight = background_size.height(); backend_texture_description.fTextureHandle = lock_background.texture_id(); skia::RefPtr background_texture = skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture( backend_texture_description)); SkImageInfo source_info = { source_size.width(), source_size.height(), kPMColor_SkColorType, kPremul_SkAlphaType }; // Place the platform texture inside an SkBitmap. SkBitmap source; source.setConfig(source_info); skia::RefPtr source_pixel_ref = skia::AdoptRef(new SkGrPixelRef(source_info, source_texture.get())); source.setPixelRef(source_pixel_ref.get()); SkImageInfo background_info = { background_size.width(), background_size.height(), kPMColor_SkColorType, kPremul_SkAlphaType }; SkBitmap background; background.setConfig(background_info); skia::RefPtr background_pixel_ref = skia::AdoptRef(new SkGrPixelRef( background_info, background_texture.get())); background.setPixelRef(background_pixel_ref.get()); // Create a scratch texture for backing store. GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; desc.fSampleCnt = 0; desc.fWidth = source.width(); desc.fHeight = source.height(); desc.fConfig = kSkia8888_GrPixelConfig; desc.fOrigin = kBottomLeft_GrSurfaceOrigin; GrAutoScratchTexture scratch_texture( offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch); skia::RefPtr backing_store = skia::AdoptRef(scratch_texture.detach()); // Create a device and canvas using that backing store. SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get()); SkCanvas canvas(&device); // Draw the source bitmap through the filter to the canvas. canvas.clear(SK_ColorTRANSPARENT); canvas.drawSprite(background, 0, 0); SkPaint paint; paint.setXfermodeMode(blend_mode); canvas.drawSprite(source, 0, 0, &paint); // Flush skia context so that all the rendered stuff appears on the // texture. offscreen_contexts->GrContext()->flush(); // Flush the GL context so rendering results from this context are // visible in the compositor's context. offscreen_contexts->ContextGL()->Flush(); return device.accessBitmap(false); } scoped_ptr GLRenderer::GetBackgroundWithFilters( DrawingFrame* frame, const RenderPassDrawQuad* quad, const gfx::Transform& contents_device_transform, const gfx::Transform& contents_device_transform_inverse, bool* background_changed) { // This method draws a background filter, which applies a filter to any pixels // behind the quad and seen through its background. The algorithm works as // follows: // 1. Compute a bounding box around the pixels that will be visible through // the quad. // 2. Read the pixels in the bounding box into a buffer R. // 3. Apply the background filter to R, so that it is applied in the pixels' // coordinate space. // 4. Apply the quad's inverse transform to map the pixels in R into the // quad's content space. This implicitly clips R by the content bounds of the // quad since the destination texture has bounds matching the quad's content. // 5. Draw the background texture for the contents using the same transform as // used to draw the contents itself. This is done without blending to replace // the current background pixels with the new filtered background. // 6. Draw the contents of the quad over drop of the new background with // blending, as per usual. The filtered background pixels will show through // any non-opaque pixels in this draws. // // Pixel copies in this algorithm occur at steps 2, 3, 4, and 5. // TODO(danakj): When this algorithm changes, update // LayerTreeHost::PrioritizeTextures() accordingly. // TODO(danakj): We only allow background filters on an opaque render surface // because other surfaces may contain translucent pixels, and the contents // behind those translucent pixels wouldn't have the filter applied. bool apply_background_filters = !frame->current_render_pass->has_transparent_background; DCHECK(!frame->current_texture); // TODO(ajuma): Add support for reference filters once // FilterOperations::GetOutsets supports reference filters. if (apply_background_filters && quad->background_filters.HasReferenceFilter()) apply_background_filters = false; // TODO(danakj): Do a single readback for both the surface and replica and // cache the filtered results (once filter textures are not reused). gfx::Rect window_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect( contents_device_transform, SharedGeometryQuad().BoundingBox())); int top, right, bottom, left; quad->background_filters.GetOutsets(&top, &right, &bottom, &left); window_rect.Inset(-left, -top, -right, -bottom); window_rect.Intersect( MoveFromDrawToWindowSpace(frame->current_render_pass->output_rect)); scoped_ptr device_background_texture = ScopedResource::Create(resource_provider_); // The TextureUsageFramebuffer hint makes ResourceProvider avoid immutable // storage allocation (texStorage2DEXT) for this texture. copyTexImage2D fails // when called on a texture having immutable storage. device_background_texture->Allocate( window_rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888); { ResourceProvider::ScopedWriteLockGL lock(resource_provider_, device_background_texture->id()); GetFramebufferTexture( lock.texture_id(), device_background_texture->format(), window_rect); } skia::RefPtr filter = RenderSurfaceFilters::BuildImageFilter( quad->background_filters, device_background_texture->size()); SkBitmap filtered_device_background; if (apply_background_filters) { filtered_device_background = ApplyImageFilter(this, frame->offscreen_context_provider, quad->rect.origin(), filter.get(), device_background_texture.get()); } *background_changed = (filtered_device_background.getTexture() != NULL); int filtered_device_background_texture_id = 0; scoped_ptr lock; if (filtered_device_background.getTexture()) { GrTexture* texture = reinterpret_cast(filtered_device_background.getTexture()); filtered_device_background_texture_id = texture->getTextureHandle(); } else { lock.reset(new ResourceProvider::ScopedReadLockGL( resource_provider_, device_background_texture->id())); filtered_device_background_texture_id = lock->texture_id(); } scoped_ptr background_texture = ScopedResource::Create(resource_provider_); background_texture->Allocate( quad->rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888); const RenderPass* target_render_pass = frame->current_render_pass; bool using_background_texture = UseScopedTexture(frame, background_texture.get(), quad->rect); if (using_background_texture) { // Copy the readback pixels from device to the background texture for the // surface. gfx::Transform device_to_framebuffer_transform; device_to_framebuffer_transform.Translate( quad->rect.width() * 0.5f + quad->rect.x(), quad->rect.height() * 0.5f + quad->rect.y()); device_to_framebuffer_transform.Scale(quad->rect.width(), quad->rect.height()); device_to_framebuffer_transform.PreconcatTransform( contents_device_transform_inverse); #ifndef NDEBUG GLC(gl_, gl_->ClearColor(0, 0, 1, 1)); gl_->Clear(GL_COLOR_BUFFER_BIT); #endif // The filtered_deveice_background_texture is oriented the same as the frame // buffer. The transform we are copying with has a vertical flip, as well as // the |device_to_framebuffer_transform|, which cancel each other out. So do // not flip the contents in the shader to maintain orientation. bool flip_vertically = false; CopyTextureToFramebuffer(frame, filtered_device_background_texture_id, window_rect, device_to_framebuffer_transform, flip_vertically); } UseRenderPass(frame, target_render_pass); if (!using_background_texture) return scoped_ptr(); return background_texture.Pass(); } void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame, const RenderPassDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); ScopedResource* contents_texture = render_pass_textures_.get(quad->render_pass_id); if (!contents_texture || !contents_texture->id()) return; gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect); gfx::Transform contents_device_transform = frame->window_matrix * frame->projection_matrix * quad_rect_matrix; contents_device_transform.FlattenTo2d(); // Can only draw surface if device matrix is invertible. gfx::Transform contents_device_transform_inverse( gfx::Transform::kSkipInitialization); if (!contents_device_transform.GetInverse(&contents_device_transform_inverse)) return; bool need_background_texture = quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode || !quad->background_filters.IsEmpty(); bool background_changed = false; scoped_ptr background_texture; if (need_background_texture) { // The pixels from the filtered background should completely replace the // current pixel values. bool disable_blending = blend_enabled(); if (disable_blending) SetBlendEnabled(false); background_texture = GetBackgroundWithFilters(frame, quad, contents_device_transform, contents_device_transform_inverse, &background_changed); if (disable_blending) SetBlendEnabled(true); } // TODO(senorblanco): Cache this value so that we don't have to do it for both // the surface and its replica. Apply filters to the contents texture. SkBitmap filter_bitmap; SkScalar color_matrix[20]; bool use_color_matrix = false; // TODO(ajuma): Always use RenderSurfaceFilters::BuildImageFilter, not just // when we have a reference filter. if (!quad->filters.IsEmpty()) { skia::RefPtr filter = RenderSurfaceFilters::BuildImageFilter( quad->filters, contents_texture->size()); if (filter) { skia::RefPtr cf; { SkColorFilter* colorfilter_rawptr = NULL; filter->asColorFilter(&colorfilter_rawptr); cf = skia::AdoptRef(colorfilter_rawptr); } if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) { // We have a single color matrix as a filter; apply it locally // in the compositor. use_color_matrix = true; } else { filter_bitmap = ApplyImageFilter(this, frame->offscreen_context_provider, quad->rect.origin(), filter.get(), contents_texture); } } } if (quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode && background_texture) { filter_bitmap = ApplyBlendModeWithBackdrop(this, frame->offscreen_context_provider, filter_bitmap, contents_texture, background_texture.get(), quad->shared_quad_state->blend_mode); } // Draw the background texture if it has some filters applied. if (background_texture && background_changed) { DCHECK(background_texture->size() == quad->rect.size()); ResourceProvider::ScopedReadLockGL lock(resource_provider_, background_texture->id()); // The background_texture is oriented the same as the frame buffer. The // transform we are copying with has a vertical flip, so flip the contents // in the shader to maintain orientation bool flip_vertically = true; CopyTextureToFramebuffer(frame, lock.texture_id(), quad->rect, quad->quadTransform(), flip_vertically); } bool clipped = false; gfx::QuadF device_quad = MathUtil::MapQuad( contents_device_transform, SharedGeometryQuad(), &clipped); LayerQuad device_layer_bounds(gfx::QuadF(device_quad.BoundingBox())); LayerQuad device_layer_edges(device_quad); // Use anti-aliasing programs only when necessary. bool use_aa = !clipped && (!device_quad.IsRectilinear() || !gfx::IsNearestRectWithinDistance(device_quad.BoundingBox(), kAntiAliasingEpsilon)); if (use_aa) { device_layer_bounds.InflateAntiAliasingDistance(); device_layer_edges.InflateAntiAliasingDistance(); } scoped_ptr mask_resource_lock; unsigned mask_texture_id = 0; if (quad->mask_resource_id) { mask_resource_lock.reset(new ResourceProvider::ScopedReadLockGL( resource_provider_, quad->mask_resource_id)); mask_texture_id = mask_resource_lock->texture_id(); } // TODO(danakj): use the background_texture and blend the background in with // this draw instead of having a separate copy of the background texture. scoped_ptr contents_resource_lock; if (filter_bitmap.getTexture()) { GrTexture* texture = reinterpret_cast(filter_bitmap.getTexture()); DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_)); gl_->BindTexture(GL_TEXTURE_2D, texture->getTextureHandle()); } else { contents_resource_lock = make_scoped_ptr(new ResourceProvider::ScopedSamplerGL( resource_provider_, contents_texture->id(), GL_LINEAR)); DCHECK_EQ(static_cast(GL_TEXTURE_2D), contents_resource_lock->target()); } TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); int shader_quad_location = -1; int shader_edge_location = -1; int shader_viewport_location = -1; int shader_mask_sampler_location = -1; int shader_mask_tex_coord_scale_location = -1; int shader_mask_tex_coord_offset_location = -1; int shader_matrix_location = -1; int shader_alpha_location = -1; int shader_color_matrix_location = -1; int shader_color_offset_location = -1; int shader_tex_transform_location = -1; if (use_aa && mask_texture_id && !use_color_matrix) { const RenderPassMaskProgramAA* program = GetRenderPassMaskProgramAA(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); shader_quad_location = program->vertex_shader().quad_location(); shader_edge_location = program->vertex_shader().edge_location(); shader_viewport_location = program->vertex_shader().viewport_location(); shader_mask_sampler_location = program->fragment_shader().mask_sampler_location(); shader_mask_tex_coord_scale_location = program->fragment_shader().mask_tex_coord_scale_location(); shader_mask_tex_coord_offset_location = program->fragment_shader().mask_tex_coord_offset_location(); shader_matrix_location = program->vertex_shader().matrix_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); } else if (!use_aa && mask_texture_id && !use_color_matrix) { const RenderPassMaskProgram* program = GetRenderPassMaskProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); shader_mask_sampler_location = program->fragment_shader().mask_sampler_location(); shader_mask_tex_coord_scale_location = program->fragment_shader().mask_tex_coord_scale_location(); shader_mask_tex_coord_offset_location = program->fragment_shader().mask_tex_coord_offset_location(); shader_matrix_location = program->vertex_shader().matrix_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); } else if (use_aa && !mask_texture_id && !use_color_matrix) { const RenderPassProgramAA* program = GetRenderPassProgramAA(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); shader_quad_location = program->vertex_shader().quad_location(); shader_edge_location = program->vertex_shader().edge_location(); shader_viewport_location = program->vertex_shader().viewport_location(); shader_matrix_location = program->vertex_shader().matrix_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); } else if (use_aa && mask_texture_id && use_color_matrix) { const RenderPassMaskColorMatrixProgramAA* program = GetRenderPassMaskColorMatrixProgramAA(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_quad_location = program->vertex_shader().quad_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); shader_edge_location = program->vertex_shader().edge_location(); shader_viewport_location = program->vertex_shader().viewport_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_mask_sampler_location = program->fragment_shader().mask_sampler_location(); shader_mask_tex_coord_scale_location = program->fragment_shader().mask_tex_coord_scale_location(); shader_mask_tex_coord_offset_location = program->fragment_shader().mask_tex_coord_offset_location(); shader_color_matrix_location = program->fragment_shader().color_matrix_location(); shader_color_offset_location = program->fragment_shader().color_offset_location(); } else if (use_aa && !mask_texture_id && use_color_matrix) { const RenderPassColorMatrixProgramAA* program = GetRenderPassColorMatrixProgramAA(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_quad_location = program->vertex_shader().quad_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); shader_edge_location = program->vertex_shader().edge_location(); shader_viewport_location = program->vertex_shader().viewport_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_color_matrix_location = program->fragment_shader().color_matrix_location(); shader_color_offset_location = program->fragment_shader().color_offset_location(); } else if (!use_aa && mask_texture_id && use_color_matrix) { const RenderPassMaskColorMatrixProgram* program = GetRenderPassMaskColorMatrixProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); shader_mask_sampler_location = program->fragment_shader().mask_sampler_location(); shader_mask_tex_coord_scale_location = program->fragment_shader().mask_tex_coord_scale_location(); shader_mask_tex_coord_offset_location = program->fragment_shader().mask_tex_coord_offset_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_color_matrix_location = program->fragment_shader().color_matrix_location(); shader_color_offset_location = program->fragment_shader().color_offset_location(); } else if (!use_aa && !mask_texture_id && use_color_matrix) { const RenderPassColorMatrixProgram* program = GetRenderPassColorMatrixProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_color_matrix_location = program->fragment_shader().color_matrix_location(); shader_color_offset_location = program->fragment_shader().color_offset_location(); } else { const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); shader_matrix_location = program->vertex_shader().matrix_location(); shader_alpha_location = program->fragment_shader().alpha_location(); shader_tex_transform_location = program->vertex_shader().tex_transform_location(); } float tex_scale_x = quad->rect.width() / static_cast(contents_texture->size().width()); float tex_scale_y = quad->rect.height() / static_cast(contents_texture->size().height()); DCHECK_LE(tex_scale_x, 1.0f); DCHECK_LE(tex_scale_y, 1.0f); DCHECK(shader_tex_transform_location != -1 || IsContextLost()); // Flip the content vertically in the shader, as the RenderPass input // texture is already oriented the same way as the framebuffer, but the // projection transform does a flip. GLC(gl_, gl_->Uniform4f(shader_tex_transform_location, 0.0f, tex_scale_y, tex_scale_x, -tex_scale_y)); scoped_ptr shader_mask_sampler_lock; if (shader_mask_sampler_location != -1) { DCHECK_NE(shader_mask_tex_coord_scale_location, 1); DCHECK_NE(shader_mask_tex_coord_offset_location, 1); GLC(gl_, gl_->Uniform1i(shader_mask_sampler_location, 1)); float mask_tex_scale_x = quad->mask_uv_rect.width() / tex_scale_x; float mask_tex_scale_y = quad->mask_uv_rect.height() / tex_scale_y; // Mask textures are oriented vertically flipped relative to the framebuffer // and the RenderPass contents texture, so we flip the tex coords from the // RenderPass texture to find the mask texture coords. GLC(gl_, gl_->Uniform2f(shader_mask_tex_coord_offset_location, quad->mask_uv_rect.x(), quad->mask_uv_rect.y() + quad->mask_uv_rect.height())); GLC(gl_, gl_->Uniform2f(shader_mask_tex_coord_scale_location, mask_tex_scale_x, -mask_tex_scale_y)); shader_mask_sampler_lock = make_scoped_ptr( new ResourceProvider::ScopedSamplerGL(resource_provider_, quad->mask_resource_id, GL_TEXTURE1, GL_LINEAR)); DCHECK_EQ(static_cast(GL_TEXTURE_2D), shader_mask_sampler_lock->target()); } if (shader_edge_location != -1) { float edge[24]; device_layer_edges.ToFloatArray(edge); device_layer_bounds.ToFloatArray(&edge[12]); GLC(gl_, gl_->Uniform3fv(shader_edge_location, 8, edge)); } if (shader_viewport_location != -1) { float viewport[4] = {static_cast(viewport_.x()), static_cast(viewport_.y()), static_cast(viewport_.width()), static_cast(viewport_.height()), }; GLC(gl_, gl_->Uniform4fv(shader_viewport_location, 1, viewport)); } if (shader_color_matrix_location != -1) { float matrix[16]; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]); } GLC(gl_, gl_->UniformMatrix4fv(shader_color_matrix_location, 1, false, matrix)); } static const float kScale = 1.0f / 255.0f; if (shader_color_offset_location != -1) { float offset[4]; for (int i = 0; i < 4; ++i) offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale; GLC(gl_, gl_->Uniform4fv(shader_color_offset_location, 1, offset)); } // Map device space quad to surface space. contents_device_transform has no 3d // component since it was flattened, so we don't need to project. gfx::QuadF surface_quad = MathUtil::MapQuad(contents_device_transform_inverse, device_layer_edges.ToQuadF(), &clipped); SetShaderOpacity(quad->opacity(), shader_alpha_location); SetShaderQuadF(surface_quad, shader_quad_location); DrawQuadGeometry( frame, quad->quadTransform(), quad->rect, shader_matrix_location); // Flush the compositor context before the filter bitmap goes out of // scope, so the draw gets processed before the filter texture gets deleted. if (filter_bitmap.getTexture()) GLC(gl_, gl_->Flush()); } struct SolidColorProgramUniforms { unsigned program; unsigned matrix_location; unsigned viewport_location; unsigned quad_location; unsigned edge_location; unsigned color_location; }; template static void SolidColorUniformLocation(T program, SolidColorProgramUniforms* uniforms) { uniforms->program = program->program(); uniforms->matrix_location = program->vertex_shader().matrix_location(); uniforms->viewport_location = program->vertex_shader().viewport_location(); uniforms->quad_location = program->vertex_shader().quad_location(); uniforms->edge_location = program->vertex_shader().edge_location(); uniforms->color_location = program->fragment_shader().color_location(); } // static bool GLRenderer::SetupQuadForAntialiasing( const gfx::Transform& device_transform, const DrawQuad* quad, gfx::QuadF* local_quad, float edge[24]) { gfx::Rect tile_rect = quad->visible_rect; bool clipped = false; gfx::QuadF device_layer_quad = MathUtil::MapQuad( device_transform, gfx::QuadF(quad->visibleContentRect()), &clipped); bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear(); bool is_nearest_rect_within_epsilon = is_axis_aligned_in_target && gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(), kAntiAliasingEpsilon); // AAing clipped quads is not supported by the code yet. bool use_aa = !clipped && !is_nearest_rect_within_epsilon && quad->IsEdge(); if (!use_aa) return false; LayerQuad device_layer_bounds(gfx::QuadF(device_layer_quad.BoundingBox())); device_layer_bounds.InflateAntiAliasingDistance(); LayerQuad device_layer_edges(device_layer_quad); device_layer_edges.InflateAntiAliasingDistance(); device_layer_edges.ToFloatArray(edge); device_layer_bounds.ToFloatArray(&edge[12]); gfx::PointF bottom_right = tile_rect.bottom_right(); gfx::PointF bottom_left = tile_rect.bottom_left(); gfx::PointF top_left = tile_rect.origin(); gfx::PointF top_right = tile_rect.top_right(); // Map points to device space. bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped); DCHECK(!clipped); bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped); DCHECK(!clipped); top_left = MathUtil::MapPoint(device_transform, top_left, &clipped); DCHECK(!clipped); top_right = MathUtil::MapPoint(device_transform, top_right, &clipped); DCHECK(!clipped); LayerQuad::Edge bottom_edge(bottom_right, bottom_left); LayerQuad::Edge left_edge(bottom_left, top_left); LayerQuad::Edge top_edge(top_left, top_right); LayerQuad::Edge right_edge(top_right, bottom_right); // Only apply anti-aliasing to edges not clipped by culling or scissoring. if (quad->IsTopEdge() && tile_rect.y() == quad->rect.y()) top_edge = device_layer_edges.top(); if (quad->IsLeftEdge() && tile_rect.x() == quad->rect.x()) left_edge = device_layer_edges.left(); if (quad->IsRightEdge() && tile_rect.right() == quad->rect.right()) right_edge = device_layer_edges.right(); if (quad->IsBottomEdge() && tile_rect.bottom() == quad->rect.bottom()) bottom_edge = device_layer_edges.bottom(); float sign = gfx::QuadF(tile_rect).IsCounterClockwise() ? -1 : 1; bottom_edge.scale(sign); left_edge.scale(sign); top_edge.scale(sign); right_edge.scale(sign); // Create device space quad. LayerQuad device_quad(left_edge, top_edge, right_edge, bottom_edge); // Map device space quad to local space. device_transform has no 3d // component since it was flattened, so we don't need to project. We should // have already checked that the transform was uninvertible above. gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization); bool did_invert = device_transform.GetInverse(&inverse_device_transform); DCHECK(did_invert); *local_quad = MathUtil::MapQuad( inverse_device_transform, device_quad.ToQuadF(), &clipped); // We should not DCHECK(!clipped) here, because anti-aliasing inflation may // cause device_quad to become clipped. To our knowledge this scenario does // not need to be handled differently than the unclipped case. return true; } void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame, const SolidColorDrawQuad* quad) { gfx::Rect tile_rect = quad->visible_rect; SkColor color = quad->color; float opacity = quad->opacity(); float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity; // Early out if alpha is small enough that quad doesn't contribute to output. if (alpha < std::numeric_limits::epsilon() && quad->ShouldDrawWithBlending()) return; gfx::Transform device_transform = frame->window_matrix * frame->projection_matrix * quad->quadTransform(); device_transform.FlattenTo2d(); if (!device_transform.IsInvertible()) return; gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect)); float edge[24]; bool use_aa = settings_->allow_antialiasing && !quad->force_anti_aliasing_off && SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge); SolidColorProgramUniforms uniforms; if (use_aa) SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms); else SolidColorUniformLocation(GetSolidColorProgram(), &uniforms); SetUseProgram(uniforms.program); GLC(gl_, gl_->Uniform4f(uniforms.color_location, (SkColorGetR(color) * (1.0f / 255.0f)) * alpha, (SkColorGetG(color) * (1.0f / 255.0f)) * alpha, (SkColorGetB(color) * (1.0f / 255.0f)) * alpha, alpha)); if (use_aa) { float viewport[4] = {static_cast(viewport_.x()), static_cast(viewport_.y()), static_cast(viewport_.width()), static_cast(viewport_.height()), }; GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport)); GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge)); } // Enable blending when the quad properties require it or if we decided // to use antialiasing. SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa); // Normalize to tile_rect. local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); SetShaderQuadF(local_quad, uniforms.quad_location); // The transform and vertex data are used to figure out the extents that the // un-antialiased quad should have and which vertex this is and the float // quad passed in via uniform is the actual geometry that gets used to draw // it. This is why this centered rect is used and not the original quad_rect. gfx::RectF centered_rect( gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()), tile_rect.size()); DrawQuadGeometry( frame, quad->quadTransform(), centered_rect, uniforms.matrix_location); } struct TileProgramUniforms { unsigned program; unsigned matrix_location; unsigned viewport_location; unsigned quad_location; unsigned edge_location; unsigned vertex_tex_transform_location; unsigned sampler_location; unsigned fragment_tex_transform_location; unsigned alpha_location; }; template static void TileUniformLocation(T program, TileProgramUniforms* uniforms) { uniforms->program = program->program(); uniforms->matrix_location = program->vertex_shader().matrix_location(); uniforms->viewport_location = program->vertex_shader().viewport_location(); uniforms->quad_location = program->vertex_shader().quad_location(); uniforms->edge_location = program->vertex_shader().edge_location(); uniforms->vertex_tex_transform_location = program->vertex_shader().vertex_tex_transform_location(); uniforms->sampler_location = program->fragment_shader().sampler_location(); uniforms->alpha_location = program->fragment_shader().alpha_location(); uniforms->fragment_tex_transform_location = program->fragment_shader().fragment_tex_transform_location(); } void GLRenderer::DrawTileQuad(const DrawingFrame* frame, const TileDrawQuad* quad) { DrawContentQuad(frame, quad, quad->resource_id); } void GLRenderer::DrawContentQuad(const DrawingFrame* frame, const ContentDrawQuadBase* quad, ResourceProvider::ResourceId resource_id) { gfx::Rect tile_rect = quad->visible_rect; gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional( quad->tex_coord_rect, quad->rect, tile_rect); float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width(); float tex_to_geom_scale_y = quad->rect.height() / quad->tex_coord_rect.height(); gfx::RectF clamp_geom_rect(tile_rect); gfx::RectF clamp_tex_rect(tex_coord_rect); // Clamp texture coordinates to avoid sampling outside the layer // by deflating the tile region half a texel or half a texel // minus epsilon for one pixel layers. The resulting clamp region // is mapped to the unit square by the vertex shader and mapped // back to normalized texture coordinates by the fragment shader // after being clamped to 0-1 range. float tex_clamp_x = std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon); float tex_clamp_y = std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon); float geom_clamp_x = std::min(tex_clamp_x * tex_to_geom_scale_x, 0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon); float geom_clamp_y = std::min(tex_clamp_y * tex_to_geom_scale_y, 0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon); clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y); clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y); // Map clamping rectangle to unit square. float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width(); float vertex_tex_translate_y = -clamp_geom_rect.y() / clamp_geom_rect.height(); float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width(); float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height(); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size); gfx::Transform device_transform = frame->window_matrix * frame->projection_matrix * quad->quadTransform(); device_transform.FlattenTo2d(); if (!device_transform.IsInvertible()) return; gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect)); float edge[24]; bool use_aa = settings_->allow_antialiasing && SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge); bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f); GLenum filter = (use_aa || scaled || !quad->quadTransform().IsIdentityOrIntegerTranslation()) ? GL_LINEAR : GL_NEAREST; ResourceProvider::ScopedSamplerGL quad_resource_lock( resource_provider_, resource_id, filter); SamplerType sampler = SamplerTypeFromTextureTarget(quad_resource_lock.target()); float fragment_tex_translate_x = clamp_tex_rect.x(); float fragment_tex_translate_y = clamp_tex_rect.y(); float fragment_tex_scale_x = clamp_tex_rect.width(); float fragment_tex_scale_y = clamp_tex_rect.height(); // Map to normalized texture coordinates. if (sampler != SamplerType2DRect) { gfx::Size texture_size = quad->texture_size; DCHECK(!texture_size.IsEmpty()); fragment_tex_translate_x /= texture_size.width(); fragment_tex_translate_y /= texture_size.height(); fragment_tex_scale_x /= texture_size.width(); fragment_tex_scale_y /= texture_size.height(); } TileProgramUniforms uniforms; if (use_aa) { if (quad->swizzle_contents) { TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler), &uniforms); } else { TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler), &uniforms); } } else { if (quad->ShouldDrawWithBlending()) { if (quad->swizzle_contents) { TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler), &uniforms); } else { TileUniformLocation(GetTileProgram(tex_coord_precision, sampler), &uniforms); } } else { if (quad->swizzle_contents) { TileUniformLocation( GetTileProgramSwizzleOpaque(tex_coord_precision, sampler), &uniforms); } else { TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler), &uniforms); } } } SetUseProgram(uniforms.program); GLC(gl_, gl_->Uniform1i(uniforms.sampler_location, 0)); if (use_aa) { float viewport[4] = {static_cast(viewport_.x()), static_cast(viewport_.y()), static_cast(viewport_.width()), static_cast(viewport_.height()), }; GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport)); GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge)); GLC(gl_, gl_->Uniform4f(uniforms.vertex_tex_transform_location, vertex_tex_translate_x, vertex_tex_translate_y, vertex_tex_scale_x, vertex_tex_scale_y)); GLC(gl_, gl_->Uniform4f(uniforms.fragment_tex_transform_location, fragment_tex_translate_x, fragment_tex_translate_y, fragment_tex_scale_x, fragment_tex_scale_y)); } else { // Move fragment shader transform to vertex shader. We can do this while // still producing correct results as fragment_tex_transform_location // should always be non-negative when tiles are transformed in a way // that could result in sampling outside the layer. vertex_tex_scale_x *= fragment_tex_scale_x; vertex_tex_scale_y *= fragment_tex_scale_y; vertex_tex_translate_x *= fragment_tex_scale_x; vertex_tex_translate_y *= fragment_tex_scale_y; vertex_tex_translate_x += fragment_tex_translate_x; vertex_tex_translate_y += fragment_tex_translate_y; GLC(gl_, gl_->Uniform4f(uniforms.vertex_tex_transform_location, vertex_tex_translate_x, vertex_tex_translate_y, vertex_tex_scale_x, vertex_tex_scale_y)); } // Enable blending when the quad properties require it or if we decided // to use antialiasing. SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa); // Normalize to tile_rect. local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); SetShaderOpacity(quad->opacity(), uniforms.alpha_location); SetShaderQuadF(local_quad, uniforms.quad_location); // The transform and vertex data are used to figure out the extents that the // un-antialiased quad should have and which vertex this is and the float // quad passed in via uniform is the actual geometry that gets used to draw // it. This is why this centered rect is used and not the original quad_rect. gfx::RectF centered_rect( gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()), tile_rect.size()); DrawQuadGeometry( frame, quad->quadTransform(), centered_rect, uniforms.matrix_location); } void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame, const YUVVideoDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); bool use_alpha_plane = quad->a_plane_resource_id != 0; ResourceProvider::ScopedSamplerGL y_plane_lock( resource_provider_, quad->y_plane_resource_id, GL_TEXTURE1, GL_LINEAR); DCHECK_EQ(static_cast(GL_TEXTURE_2D), y_plane_lock.target()); ResourceProvider::ScopedSamplerGL u_plane_lock( resource_provider_, quad->u_plane_resource_id, GL_TEXTURE2, GL_LINEAR); DCHECK_EQ(static_cast(GL_TEXTURE_2D), u_plane_lock.target()); ResourceProvider::ScopedSamplerGL v_plane_lock( resource_provider_, quad->v_plane_resource_id, GL_TEXTURE3, GL_LINEAR); DCHECK_EQ(static_cast(GL_TEXTURE_2D), v_plane_lock.target()); scoped_ptr a_plane_lock; if (use_alpha_plane) { a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL( resource_provider_, quad->a_plane_resource_id, GL_TEXTURE4, GL_LINEAR)); DCHECK_EQ(static_cast(GL_TEXTURE_2D), a_plane_lock->target()); } int tex_scale_location = -1; int matrix_location = -1; int y_texture_location = -1; int u_texture_location = -1; int v_texture_location = -1; int a_texture_location = -1; int yuv_matrix_location = -1; int yuv_adj_location = -1; int alpha_location = -1; if (use_alpha_plane) { const VideoYUVAProgram* program = GetVideoYUVAProgram(tex_coord_precision); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); tex_scale_location = program->vertex_shader().tex_scale_location(); matrix_location = program->vertex_shader().matrix_location(); y_texture_location = program->fragment_shader().y_texture_location(); u_texture_location = program->fragment_shader().u_texture_location(); v_texture_location = program->fragment_shader().v_texture_location(); a_texture_location = program->fragment_shader().a_texture_location(); yuv_matrix_location = program->fragment_shader().yuv_matrix_location(); yuv_adj_location = program->fragment_shader().yuv_adj_location(); alpha_location = program->fragment_shader().alpha_location(); } else { const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); tex_scale_location = program->vertex_shader().tex_scale_location(); matrix_location = program->vertex_shader().matrix_location(); y_texture_location = program->fragment_shader().y_texture_location(); u_texture_location = program->fragment_shader().u_texture_location(); v_texture_location = program->fragment_shader().v_texture_location(); yuv_matrix_location = program->fragment_shader().yuv_matrix_location(); yuv_adj_location = program->fragment_shader().yuv_adj_location(); alpha_location = program->fragment_shader().alpha_location(); } GLC(gl_, gl_->Uniform2f(tex_scale_location, quad->tex_scale.width(), quad->tex_scale.height())); GLC(gl_, gl_->Uniform1i(y_texture_location, 1)); GLC(gl_, gl_->Uniform1i(u_texture_location, 2)); GLC(gl_, gl_->Uniform1i(v_texture_location, 3)); if (use_alpha_plane) GLC(gl_, gl_->Uniform1i(a_texture_location, 4)); // These values are magic numbers that are used in the transformation from YUV // to RGB color values. They are taken from the following webpage: // http://www.fourcc.org/fccyvrgb.php float yuv_to_rgb[9] = {1.164f, 1.164f, 1.164f, 0.0f, -.391f, 2.018f, 1.596f, -.813f, 0.0f, }; GLC(gl_, gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb)); // These values map to 16, 128, and 128 respectively, and are computed // as a fraction over 256 (e.g. 16 / 256 = 0.0625). // They are used in the YUV to RGBA conversion formula: // Y - 16 : Gives 16 values of head and footroom for overshooting // U - 128 : Turns unsigned U into signed U [-128,127] // V - 128 : Turns unsigned V into signed V [-128,127] float yuv_adjust[3] = {-0.0625f, -0.5f, -0.5f, }; GLC(gl_, gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust)); SetShaderOpacity(quad->opacity(), alpha_location); DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, matrix_location); } void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame, const StreamVideoDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); static float gl_matrix[16]; DCHECK(capabilities_.using_egl_image); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); const VideoStreamTextureProgram* program = GetVideoStreamTextureProgram(tex_coord_precision); SetUseProgram(program->program()); ToGLMatrix(&gl_matrix[0], quad->matrix); GLC(gl_, gl_->UniformMatrix4fv( program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix)); ResourceProvider::ScopedReadLockGL lock(resource_provider_, quad->resource_id); DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_)); GLC(gl_, gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id())); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); SetShaderOpacity(quad->opacity(), program->fragment_shader().alpha_location()); DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, program->vertex_shader().matrix_location()); } void GLRenderer::DrawPictureQuad(const DrawingFrame* frame, const PictureDrawQuad* quad) { if (on_demand_tile_raster_bitmap_.width() != quad->texture_size.width() || on_demand_tile_raster_bitmap_.height() != quad->texture_size.height()) { on_demand_tile_raster_bitmap_.setConfig(SkBitmap::kARGB_8888_Config, quad->texture_size.width(), quad->texture_size.height()); on_demand_tile_raster_bitmap_.allocPixels(); if (on_demand_tile_raster_resource_id_) resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_); on_demand_tile_raster_resource_id_ = resource_provider_->CreateGLTexture(quad->texture_size, GL_TEXTURE_2D, GL_TEXTURE_POOL_UNMANAGED_CHROMIUM, GL_CLAMP_TO_EDGE, ResourceProvider::TextureUsageAny, quad->texture_format); } SkBitmapDevice device(on_demand_tile_raster_bitmap_); SkCanvas canvas(&device); quad->picture_pile->RasterToBitmap( &canvas, quad->content_rect, quad->contents_scale, NULL); uint8_t* bitmap_pixels = NULL; SkBitmap on_demand_tile_raster_bitmap_dest; SkBitmap::Config config = SkBitmapConfig(quad->texture_format); if (on_demand_tile_raster_bitmap_.getConfig() != config) { on_demand_tile_raster_bitmap_.copyTo(&on_demand_tile_raster_bitmap_dest, config); // TODO(kaanb): The GL pipeline assumes a 4-byte alignment for the // bitmap data. This check will be removed once crbug.com/293728 is fixed. CHECK_EQ(0u, on_demand_tile_raster_bitmap_dest.rowBytes() % 4); bitmap_pixels = reinterpret_cast( on_demand_tile_raster_bitmap_dest.getPixels()); } else { bitmap_pixels = reinterpret_cast(on_demand_tile_raster_bitmap_.getPixels()); } resource_provider_->SetPixels(on_demand_tile_raster_resource_id_, bitmap_pixels, gfx::Rect(quad->texture_size), gfx::Rect(quad->texture_size), gfx::Vector2d()); DrawContentQuad(frame, quad, on_demand_tile_raster_resource_id_); } struct TextureProgramBinding { template void Set(Program* program) { DCHECK(program); program_id = program->program(); sampler_location = program->fragment_shader().sampler_location(); matrix_location = program->vertex_shader().matrix_location(); background_color_location = program->fragment_shader().background_color_location(); } int program_id; int sampler_location; int matrix_location; int background_color_location; }; struct TexTransformTextureProgramBinding : TextureProgramBinding { template void Set(Program* program) { TextureProgramBinding::Set(program); tex_transform_location = program->vertex_shader().tex_transform_location(); vertex_opacity_location = program->vertex_shader().vertex_opacity_location(); } int tex_transform_location; int vertex_opacity_location; }; void GLRenderer::FlushTextureQuadCache() { // Check to see if we have anything to draw. if (draw_cache_.program_id == 0) return; // Set the correct blending mode. SetBlendEnabled(draw_cache_.needs_blending); // Bind the program to the GL state. SetUseProgram(draw_cache_.program_id); // Bind the correct texture sampler location. GLC(gl_, gl_->Uniform1i(draw_cache_.sampler_location, 0)); // Assume the current active textures is 0. ResourceProvider::ScopedReadLockGL locked_quad(resource_provider_, draw_cache_.resource_id); DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_)); GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, locked_quad.texture_id())); COMPILE_ASSERT(sizeof(Float4) == 4 * sizeof(float), // NOLINT(runtime/sizeof) struct_is_densely_packed); COMPILE_ASSERT( sizeof(Float16) == 16 * sizeof(float), // NOLINT(runtime/sizeof) struct_is_densely_packed); // Upload the tranforms for both points and uvs. GLC(gl_, gl_->UniformMatrix4fv( static_cast(draw_cache_.matrix_location), static_cast(draw_cache_.matrix_data.size()), false, reinterpret_cast(&draw_cache_.matrix_data.front()))); GLC(gl_, gl_->Uniform4fv( static_cast(draw_cache_.uv_xform_location), static_cast(draw_cache_.uv_xform_data.size()), reinterpret_cast(&draw_cache_.uv_xform_data.front()))); if (draw_cache_.background_color != SK_ColorTRANSPARENT) { Float4 background_color = PremultipliedColor(draw_cache_.background_color); GLC(gl_, gl_->Uniform4fv( draw_cache_.background_color_location, 1, background_color.data)); } GLC(gl_, gl_->Uniform1fv( static_cast(draw_cache_.vertex_opacity_location), static_cast(draw_cache_.vertex_opacity_data.size()), static_cast(&draw_cache_.vertex_opacity_data.front()))); // Draw the quads! GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6 * draw_cache_.matrix_data.size(), GL_UNSIGNED_SHORT, 0)); // Clear the cache. draw_cache_.program_id = 0; draw_cache_.uv_xform_data.resize(0); draw_cache_.vertex_opacity_data.resize(0); draw_cache_.matrix_data.resize(0); } void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame, const TextureDrawQuad* quad) { TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); // Choose the correct texture program binding TexTransformTextureProgramBinding binding; if (quad->premultiplied_alpha) { if (quad->background_color == SK_ColorTRANSPARENT) { binding.Set(GetTextureProgram(tex_coord_precision)); } else { binding.Set(GetTextureBackgroundProgram(tex_coord_precision)); } } else { if (quad->background_color == SK_ColorTRANSPARENT) { binding.Set(GetNonPremultipliedTextureProgram(tex_coord_precision)); } else { binding.Set( GetNonPremultipliedTextureBackgroundProgram(tex_coord_precision)); } } int resource_id = quad->resource_id; if (draw_cache_.program_id != binding.program_id || draw_cache_.resource_id != resource_id || draw_cache_.needs_blending != quad->ShouldDrawWithBlending() || draw_cache_.background_color != quad->background_color || draw_cache_.matrix_data.size() >= 8) { FlushTextureQuadCache(); draw_cache_.program_id = binding.program_id; draw_cache_.resource_id = resource_id; draw_cache_.needs_blending = quad->ShouldDrawWithBlending(); draw_cache_.background_color = quad->background_color; draw_cache_.uv_xform_location = binding.tex_transform_location; draw_cache_.background_color_location = binding.background_color_location; draw_cache_.vertex_opacity_location = binding.vertex_opacity_location; draw_cache_.matrix_location = binding.matrix_location; draw_cache_.sampler_location = binding.sampler_location; } // Generate the uv-transform draw_cache_.uv_xform_data.push_back(UVTransform(quad)); // Generate the vertex opacity const float opacity = quad->opacity(); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity); // Generate the transform matrix gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect); quad_rect_matrix = frame->projection_matrix * quad_rect_matrix; Float16 m; quad_rect_matrix.matrix().asColMajorf(m.data); draw_cache_.matrix_data.push_back(m); } void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame, const IOSurfaceDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_content_rect.bottom_right()); TexTransformTextureProgramBinding binding; binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision)); SetUseProgram(binding.program_id); GLC(gl_, gl_->Uniform1i(binding.sampler_location, 0)); if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) { GLC(gl_, gl_->Uniform4f(binding.tex_transform_location, 0, quad->io_surface_size.height(), quad->io_surface_size.width(), quad->io_surface_size.height() * -1.0f)); } else { GLC(gl_, gl_->Uniform4f(binding.tex_transform_location, 0, 0, quad->io_surface_size.width(), quad->io_surface_size.height())); } const float vertex_opacity[] = {quad->opacity(), quad->opacity(), quad->opacity(), quad->opacity()}; GLC(gl_, gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity)); ResourceProvider::ScopedReadLockGL lock(resource_provider_, quad->io_surface_resource_id); DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_)); GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id())); DrawQuadGeometry( frame, quad->quadTransform(), quad->rect, binding.matrix_location); GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0)); } void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) { current_framebuffer_lock_.reset(); swap_buffer_rect_.Union(gfx::ToEnclosingRect(frame->root_damage_rect)); GLC(gl_, gl_->Disable(GL_BLEND)); blend_shadow_ = false; } void GLRenderer::FinishDrawingQuadList() { FlushTextureQuadCache(); } bool GLRenderer::FlippedFramebuffer() const { return true; } void GLRenderer::EnsureScissorTestEnabled() { if (is_scissor_enabled_) return; FlushTextureQuadCache(); GLC(gl_, gl_->Enable(GL_SCISSOR_TEST)); is_scissor_enabled_ = true; } void GLRenderer::EnsureScissorTestDisabled() { if (!is_scissor_enabled_) return; FlushTextureQuadCache(); GLC(gl_, gl_->Disable(GL_SCISSOR_TEST)); is_scissor_enabled_ = false; } void GLRenderer::CopyCurrentRenderPassToBitmap( DrawingFrame* frame, scoped_ptr request) { gfx::Rect copy_rect = frame->current_render_pass->output_rect; if (request->has_area()) copy_rect.Intersect(request->area()); GetFramebufferPixelsAsync(copy_rect, request.Pass()); } void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) { transform.matrix().asColMajorf(gl_matrix); } void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) { if (quad_location == -1) return; float gl_quad[8]; gl_quad[0] = quad.p1().x(); gl_quad[1] = quad.p1().y(); gl_quad[2] = quad.p2().x(); gl_quad[3] = quad.p2().y(); gl_quad[4] = quad.p3().x(); gl_quad[5] = quad.p3().y(); gl_quad[6] = quad.p4().x(); gl_quad[7] = quad.p4().y(); GLC(gl_, gl_->Uniform2fv(quad_location, 4, gl_quad)); } void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) { if (alpha_location != -1) GLC(gl_, gl_->Uniform1f(alpha_location, opacity)); } void GLRenderer::SetStencilEnabled(bool enabled) { if (enabled == stencil_shadow_) return; if (enabled) GLC(gl_, gl_->Enable(GL_STENCIL_TEST)); else GLC(gl_, gl_->Disable(GL_STENCIL_TEST)); stencil_shadow_ = enabled; } void GLRenderer::SetBlendEnabled(bool enabled) { if (enabled == blend_shadow_) return; if (enabled) GLC(gl_, gl_->Enable(GL_BLEND)); else GLC(gl_, gl_->Disable(GL_BLEND)); blend_shadow_ = enabled; } void GLRenderer::SetUseProgram(unsigned program) { if (program == program_shadow_) return; gl_->UseProgram(program); program_shadow_ = program; } void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame, const gfx::Transform& draw_transform, const gfx::RectF& quad_rect, int matrix_location) { gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect); static float gl_matrix[16]; ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix); GLC(gl_, gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0])); GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0)); } void GLRenderer::CopyTextureToFramebuffer(const DrawingFrame* frame, int texture_id, const gfx::Rect& rect, const gfx::Transform& draw_matrix, bool flip_vertically) { TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, rect.bottom_right()); const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision); SetUseProgram(program->program()); GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); if (flip_vertically) { GLC(gl_, gl_->Uniform4f(program->vertex_shader().tex_transform_location(), 0.f, 1.f, 1.f, -1.f)); } else { GLC(gl_, gl_->Uniform4f(program->vertex_shader().tex_transform_location(), 0.f, 0.f, 1.f, 1.f)); } SetShaderOpacity(1.f, program->fragment_shader().alpha_location()); DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_)); GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id)); DrawQuadGeometry( frame, draw_matrix, rect, program->vertex_shader().matrix_location()); } void GLRenderer::Finish() { TRACE_EVENT0("cc", "GLRenderer::Finish"); GLC(gl_, gl_->Finish()); } void GLRenderer::SwapBuffers(const CompositorFrameMetadata& metadata) { DCHECK(!is_backbuffer_discarded_); TRACE_EVENT0("cc", "GLRenderer::SwapBuffers"); // We're done! Time to swapbuffers! gfx::Size surface_size = output_surface_->SurfaceSize(); CompositorFrame compositor_frame; compositor_frame.metadata = metadata; compositor_frame.gl_frame_data = make_scoped_ptr(new GLFrameData); compositor_frame.gl_frame_data->size = surface_size; if (capabilities_.using_partial_swap) { // If supported, we can save significant bandwidth by only swapping the // damaged/scissored region (clamped to the viewport). swap_buffer_rect_.Intersect(gfx::Rect(surface_size)); int flipped_y_pos_of_rect_bottom = surface_size.height() - swap_buffer_rect_.y() - swap_buffer_rect_.height(); compositor_frame.gl_frame_data->sub_buffer_rect = gfx::Rect(swap_buffer_rect_.x(), flipped_y_pos_of_rect_bottom, swap_buffer_rect_.width(), swap_buffer_rect_.height()); } else { compositor_frame.gl_frame_data->sub_buffer_rect = gfx::Rect(output_surface_->SurfaceSize()); } output_surface_->SwapBuffers(&compositor_frame); swap_buffer_rect_ = gfx::Rect(); // We don't have real fences, so we mark read fences as passed // assuming a double-buffered GPU pipeline. A texture can be // written to after one full frame has past since it was last read. if (last_swap_fence_.get()) static_cast(last_swap_fence_.get())->SetHasPassed(); last_swap_fence_ = resource_provider_->GetReadLockFence(); resource_provider_->SetReadLockFence(new SimpleSwapFence()); } void GLRenderer::EnforceMemoryPolicy() { if (!visible_) { TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources"); ReleaseRenderPassTextures(); DiscardBackbuffer(); resource_provider_->ReleaseCachedData(); GLC(gl_, gl_->Flush()); } } void GLRenderer::DiscardBackbuffer() { if (is_backbuffer_discarded_) return; output_surface_->DiscardBackbuffer(); is_backbuffer_discarded_ = true; // Damage tracker needs a full reset every time framebuffer is discarded. client_->SetFullRootLayerDamage(); } void GLRenderer::EnsureBackbuffer() { if (!is_backbuffer_discarded_) return; output_surface_->EnsureBackbuffer(); is_backbuffer_discarded_ = false; } void GLRenderer::GetFramebufferPixels(void* pixels, const gfx::Rect& rect) { if (!pixels || rect.IsEmpty()) return; // This function assumes that it is reading the root frame buffer. DCHECK(!current_framebuffer_lock_); scoped_ptr pending_read(new PendingAsyncReadPixels); pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(), pending_read.Pass()); // This is a syncronous call since the callback is null. gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect); DoGetFramebufferPixels(static_cast(pixels), window_rect, AsyncGetFramebufferPixelsCleanupCallback()); } void GLRenderer::GetFramebufferPixelsAsync( const gfx::Rect& rect, scoped_ptr request) { DCHECK(!request->IsEmpty()); if (request->IsEmpty()) return; if (rect.IsEmpty()) return; gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect); if (!request->force_bitmap_result()) { bool own_mailbox = !request->has_texture_mailbox(); GLuint texture_id = 0; gl_->GenTextures(1, &texture_id); gpu::Mailbox mailbox; if (own_mailbox) { GLC(gl_, gl_->GenMailboxCHROMIUM(mailbox.name)); if (mailbox.IsZero()) { gl_->DeleteTextures(1, &texture_id); request->SendEmptyResult(); return; } } else { mailbox = request->texture_mailbox().name(); DCHECK_EQ(static_cast(GL_TEXTURE_2D), request->texture_mailbox().target()); DCHECK(!mailbox.IsZero()); unsigned incoming_sync_point = request->texture_mailbox().sync_point(); if (incoming_sync_point) GLC(gl_, gl_->WaitSyncPointCHROMIUM(incoming_sync_point)); } GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id)); if (own_mailbox) { GLC(gl_, gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); GLC(gl_, gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); GLC(gl_, gl_->TexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)); GLC(gl_, gl_->TexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)); GLC(gl_, gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name)); } else { GLC(gl_, gl_->ConsumeTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name)); } GetFramebufferTexture(texture_id, RGBA_8888, window_rect); GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0)); unsigned sync_point = gl_->InsertSyncPointCHROMIUM(); TextureMailbox texture_mailbox(mailbox, GL_TEXTURE_2D, sync_point); scoped_ptr release_callback; if (own_mailbox) { release_callback = texture_mailbox_deleter_->GetReleaseCallback( output_surface_->context_provider(), texture_id); } else { gl_->DeleteTextures(1, &texture_id); } request->SendTextureResult( window_rect.size(), texture_mailbox, release_callback.Pass()); return; } DCHECK(request->force_bitmap_result()); scoped_ptr bitmap(new SkBitmap); bitmap->setConfig( SkBitmap::kARGB_8888_Config, window_rect.width(), window_rect.height()); bitmap->allocPixels(); scoped_ptr lock(new SkAutoLockPixels(*bitmap)); // Save a pointer to the pixels, the bitmap is owned by the cleanup_callback. uint8* pixels = static_cast(bitmap->getPixels()); AsyncGetFramebufferPixelsCleanupCallback cleanup_callback = base::Bind(&GLRenderer::PassOnSkBitmap, base::Unretained(this), base::Passed(&bitmap), base::Passed(&lock)); scoped_ptr pending_read(new PendingAsyncReadPixels); pending_read->copy_request = request.Pass(); pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(), pending_read.Pass()); // This is an asyncronous call since the callback is not null. DoGetFramebufferPixels(pixels, window_rect, cleanup_callback); } void GLRenderer::DoGetFramebufferPixels( uint8* dest_pixels, const gfx::Rect& window_rect, const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback) { DCHECK_GE(window_rect.x(), 0); DCHECK_GE(window_rect.y(), 0); DCHECK_LE(window_rect.right(), current_surface_size_.width()); DCHECK_LE(window_rect.bottom(), current_surface_size_.height()); bool is_async = !cleanup_callback.is_null(); bool do_workaround = NeedsIOSurfaceReadbackWorkaround(); unsigned temporary_texture = 0; unsigned temporary_fbo = 0; if (do_workaround) { // On Mac OS X, calling glReadPixels() against an FBO whose color attachment // is an IOSurface-backed texture causes corruption of future glReadPixels() // calls, even those on different OpenGL contexts. It is believed that this // is the root cause of top crasher // http://crbug.com/99393. gl_->GenTextures(1, &temporary_texture); GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, temporary_texture)); GLC(gl_, gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); GLC(gl_, gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); GLC(gl_, gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)); GLC(gl_, gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)); // Copy the contents of the current (IOSurface-backed) framebuffer into a // temporary texture. GetFramebufferTexture( temporary_texture, RGBA_8888, gfx::Rect(current_surface_size_)); gl_->GenFramebuffers(1, &temporary_fbo); // Attach this texture to an FBO, and perform the readback from that FBO. GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, temporary_fbo)); GLC(gl_, gl_->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, temporary_texture, 0)); DCHECK_EQ(static_cast(GL_FRAMEBUFFER_COMPLETE), gl_->CheckFramebufferStatus(GL_FRAMEBUFFER)); } GLuint buffer = 0; gl_->GenBuffers(1, &buffer); GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer)); GLC(gl_, gl_->BufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 4 * window_rect.size().GetArea(), NULL, GL_STREAM_READ)); GLuint query = 0; if (is_async) { gl_->GenQueriesEXT(1, &query); GLC(gl_, gl_->BeginQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM, query)); } GLC(gl_, gl_->ReadPixels(window_rect.x(), window_rect.y(), window_rect.width(), window_rect.height(), GL_RGBA, GL_UNSIGNED_BYTE, NULL)); GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0)); if (do_workaround) { // Clean up. GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0)); GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0)); GLC(gl_, gl_->DeleteFramebuffers(1, &temporary_fbo)); GLC(gl_, gl_->DeleteTextures(1, &temporary_texture)); } base::Closure finished_callback = base::Bind(&GLRenderer::FinishedReadback, base::Unretained(this), cleanup_callback, buffer, query, dest_pixels, window_rect.size()); // Save the finished_callback so it can be cancelled. pending_async_read_pixels_.front()->finished_read_pixels_callback.Reset( finished_callback); base::Closure cancelable_callback = pending_async_read_pixels_.front()-> finished_read_pixels_callback.callback(); // Save the buffer to verify the callbacks happen in the expected order. pending_async_read_pixels_.front()->buffer = buffer; if (is_async) { GLC(gl_, gl_->EndQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM)); context_support_->SignalQuery(query, cancelable_callback); } else { resource_provider_->Finish(); finished_callback.Run(); } EnforceMemoryPolicy(); } void GLRenderer::FinishedReadback( const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback, unsigned source_buffer, unsigned query, uint8* dest_pixels, const gfx::Size& size) { DCHECK(!pending_async_read_pixels_.empty()); if (query != 0) { GLC(gl_, gl_->DeleteQueriesEXT(1, &query)); } PendingAsyncReadPixels* current_read = pending_async_read_pixels_.back(); // Make sure we service the readbacks in order. DCHECK_EQ(source_buffer, current_read->buffer); uint8* src_pixels = NULL; if (source_buffer != 0) { GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, source_buffer)); src_pixels = static_cast(gl_->MapBufferCHROMIUM( GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, GL_READ_ONLY)); if (src_pixels) { size_t row_bytes = size.width() * 4; int num_rows = size.height(); size_t total_bytes = num_rows * row_bytes; for (size_t dest_y = 0; dest_y < total_bytes; dest_y += row_bytes) { // Flip Y axis. size_t src_y = total_bytes - dest_y - row_bytes; // Swizzle OpenGL -> Skia byte order. for (size_t x = 0; x < row_bytes; x += 4) { dest_pixels[dest_y + x + SK_R32_SHIFT / 8] = src_pixels[src_y + x + 0]; dest_pixels[dest_y + x + SK_G32_SHIFT / 8] = src_pixels[src_y + x + 1]; dest_pixels[dest_y + x + SK_B32_SHIFT / 8] = src_pixels[src_y + x + 2]; dest_pixels[dest_y + x + SK_A32_SHIFT / 8] = src_pixels[src_y + x + 3]; } } GLC(gl_, gl_->UnmapBufferCHROMIUM(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM)); } GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0)); GLC(gl_, gl_->DeleteBuffers(1, &source_buffer)); } // TODO(danakj): This can go away when synchronous readback is no more and its // contents can just move here. if (!cleanup_callback.is_null()) cleanup_callback.Run(current_read->copy_request.Pass(), src_pixels != NULL); pending_async_read_pixels_.pop_back(); } void GLRenderer::PassOnSkBitmap(scoped_ptr bitmap, scoped_ptr lock, scoped_ptr request, bool success) { DCHECK(request->force_bitmap_result()); lock.reset(); if (success) request->SendBitmapResult(bitmap.Pass()); } void GLRenderer::GetFramebufferTexture(unsigned texture_id, ResourceFormat texture_format, const gfx::Rect& window_rect) { DCHECK(texture_id); DCHECK_GE(window_rect.x(), 0); DCHECK_GE(window_rect.y(), 0); DCHECK_LE(window_rect.right(), current_surface_size_.width()); DCHECK_LE(window_rect.bottom(), current_surface_size_.height()); GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id)); GLC(gl_, gl_->CopyTexImage2D(GL_TEXTURE_2D, 0, GLDataFormat(texture_format), window_rect.x(), window_rect.y(), window_rect.width(), window_rect.height(), 0)); GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0)); } bool GLRenderer::UseScopedTexture(DrawingFrame* frame, const ScopedResource* texture, const gfx::Rect& viewport_rect) { DCHECK(texture->id()); frame->current_render_pass = NULL; frame->current_texture = texture; return BindFramebufferToTexture(frame, texture, viewport_rect); } void GLRenderer::BindFramebufferToOutputSurface(DrawingFrame* frame) { current_framebuffer_lock_.reset(); output_surface_->BindFramebuffer(); if (output_surface_->HasExternalStencilTest()) { SetStencilEnabled(true); GLC(gl_, gl_->StencilFunc(GL_EQUAL, 1, 1)); } else { SetStencilEnabled(false); } } bool GLRenderer::BindFramebufferToTexture(DrawingFrame* frame, const ScopedResource* texture, const gfx::Rect& target_rect) { DCHECK(texture->id()); current_framebuffer_lock_.reset(); SetStencilEnabled(false); GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, offscreen_framebuffer_id_)); current_framebuffer_lock_ = make_scoped_ptr(new ResourceProvider::ScopedWriteLockGL( resource_provider_, texture->id())); unsigned texture_id = current_framebuffer_lock_->texture_id(); GLC(gl_, gl_->FramebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0)); DCHECK(gl_->CheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE || IsContextLost()); InitializeViewport( frame, target_rect, gfx::Rect(target_rect.size()), target_rect.size()); return true; } void GLRenderer::SetScissorTestRect(const gfx::Rect& scissor_rect) { EnsureScissorTestEnabled(); // Don't unnecessarily ask the context to change the scissor, because it // may cause undesired GPU pipeline flushes. if (scissor_rect == scissor_rect_ && !scissor_rect_needs_reset_) return; scissor_rect_ = scissor_rect; FlushTextureQuadCache(); GLC(gl_, gl_->Scissor(scissor_rect.x(), scissor_rect.y(), scissor_rect.width(), scissor_rect.height())); scissor_rect_needs_reset_ = false; } void GLRenderer::SetDrawViewport(const gfx::Rect& window_space_viewport) { viewport_ = window_space_viewport; GLC(gl_, gl_->Viewport(window_space_viewport.x(), window_space_viewport.y(), window_space_viewport.width(), window_space_viewport.height())); } void GLRenderer::InitializeSharedObjects() { TRACE_EVENT0("cc", "GLRenderer::InitializeSharedObjects"); // Create an FBO for doing offscreen rendering. GLC(gl_, gl_->GenFramebuffers(1, &offscreen_framebuffer_id_)); shared_geometry_ = make_scoped_ptr( new GeometryBinding(gl_, QuadVertexRect())); } const GLRenderer::TileCheckerboardProgram* GLRenderer::GetTileCheckerboardProgram() { if (!tile_checkerboard_program_.initialized()) { TRACE_EVENT0("cc", "GLRenderer::checkerboardProgram::initalize"); tile_checkerboard_program_.Initialize(output_surface_->context_provider(), TexCoordPrecisionNA, SamplerTypeNA); } return &tile_checkerboard_program_; } const GLRenderer::DebugBorderProgram* GLRenderer::GetDebugBorderProgram() { if (!debug_border_program_.initialized()) { TRACE_EVENT0("cc", "GLRenderer::debugBorderProgram::initialize"); debug_border_program_.Initialize(output_surface_->context_provider(), TexCoordPrecisionNA, SamplerTypeNA); } return &debug_border_program_; } const GLRenderer::SolidColorProgram* GLRenderer::GetSolidColorProgram() { if (!solid_color_program_.initialized()) { TRACE_EVENT0("cc", "GLRenderer::solidColorProgram::initialize"); solid_color_program_.Initialize(output_surface_->context_provider(), TexCoordPrecisionNA, SamplerTypeNA); } return &solid_color_program_; } const GLRenderer::SolidColorProgramAA* GLRenderer::GetSolidColorProgramAA() { if (!solid_color_program_aa_.initialized()) { TRACE_EVENT0("cc", "GLRenderer::solidColorProgramAA::initialize"); solid_color_program_aa_.Initialize(output_surface_->context_provider(), TexCoordPrecisionNA, SamplerTypeNA); } return &solid_color_program_aa_; } const GLRenderer::RenderPassProgram* GLRenderer::GetRenderPassProgram( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); RenderPassProgram* program = &render_pass_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::RenderPassProgramAA* GLRenderer::GetRenderPassProgramAA( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); RenderPassProgramAA* program = &render_pass_program_aa_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassProgramAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::RenderPassMaskProgram* GLRenderer::GetRenderPassMaskProgram( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); RenderPassMaskProgram* program = &render_pass_mask_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::RenderPassMaskProgramAA* GLRenderer::GetRenderPassMaskProgramAA(TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); RenderPassMaskProgramAA* program = &render_pass_mask_program_aa_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgramAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::RenderPassColorMatrixProgram* GLRenderer::GetRenderPassColorMatrixProgram(TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); RenderPassColorMatrixProgram* program = &render_pass_color_matrix_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::RenderPassColorMatrixProgramAA* GLRenderer::GetRenderPassColorMatrixProgramAA(TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); RenderPassColorMatrixProgramAA* program = &render_pass_color_matrix_program_aa_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgramAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::RenderPassMaskColorMatrixProgram* GLRenderer::GetRenderPassMaskColorMatrixProgram(TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); RenderPassMaskColorMatrixProgram* program = &render_pass_mask_color_matrix_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskColorMatrixProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::RenderPassMaskColorMatrixProgramAA* GLRenderer::GetRenderPassMaskColorMatrixProgramAA(TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); RenderPassMaskColorMatrixProgramAA* program = &render_pass_mask_color_matrix_program_aa_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskColorMatrixProgramAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::TileProgram* GLRenderer::GetTileProgram( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); DCHECK_GE(sampler, 0); DCHECK_LT(sampler, NumSamplerTypes); TileProgram* program = &tile_program_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramOpaque* GLRenderer::GetTileProgramOpaque( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); DCHECK_GE(sampler, 0); DCHECK_LT(sampler, NumSamplerTypes); TileProgramOpaque* program = &tile_program_opaque_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramOpaque::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramAA* GLRenderer::GetTileProgramAA( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); DCHECK_GE(sampler, 0); DCHECK_LT(sampler, NumSamplerTypes); TileProgramAA* program = &tile_program_aa_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramSwizzle* GLRenderer::GetTileProgramSwizzle( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); DCHECK_GE(sampler, 0); DCHECK_LT(sampler, NumSamplerTypes); TileProgramSwizzle* program = &tile_program_swizzle_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzle::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramSwizzleOpaque* GLRenderer::GetTileProgramSwizzleOpaque(TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); DCHECK_GE(sampler, 0); DCHECK_LT(sampler, NumSamplerTypes); TileProgramSwizzleOpaque* program = &tile_program_swizzle_opaque_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleOpaque::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramSwizzleAA* GLRenderer::GetTileProgramSwizzleAA( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); DCHECK_GE(sampler, 0); DCHECK_LT(sampler, NumSamplerTypes); TileProgramSwizzleAA* program = &tile_program_swizzle_aa_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TextureProgram* GLRenderer::GetTextureProgram( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); TextureProgram* program = &texture_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::NonPremultipliedTextureProgram* GLRenderer::GetNonPremultipliedTextureProgram(TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); NonPremultipliedTextureProgram* program = &nonpremultiplied_texture_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::NonPremultipliedTextureProgram::Initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::TextureBackgroundProgram* GLRenderer::GetTextureBackgroundProgram(TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); TextureBackgroundProgram* program = &texture_background_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::NonPremultipliedTextureBackgroundProgram* GLRenderer::GetNonPremultipliedTextureBackgroundProgram( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); NonPremultipliedTextureBackgroundProgram* program = &nonpremultiplied_texture_background_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::NonPremultipliedTextureProgram::Initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::TextureProgram* GLRenderer::GetTextureIOSurfaceProgram( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); TextureProgram* program = &texture_io_surface_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureIOSurfaceProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2DRect); } return program; } const GLRenderer::VideoYUVProgram* GLRenderer::GetVideoYUVProgram( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); VideoYUVProgram* program = &video_yuv_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::videoYUVProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::VideoYUVAProgram* GLRenderer::GetVideoYUVAProgram( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); VideoYUVAProgram* program = &video_yuva_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::videoYUVAProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerType2D); } return program; } const GLRenderer::VideoStreamTextureProgram* GLRenderer::GetVideoStreamTextureProgram(TexCoordPrecision precision) { if (!Capabilities().using_egl_image) return NULL; DCHECK_GE(precision, 0); DCHECK_LT(precision, NumTexCoordPrecisions); VideoStreamTextureProgram* program = &video_stream_texture_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::streamTextureProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, SamplerTypeExternalOES); } return program; } void GLRenderer::CleanupSharedObjects() { shared_geometry_.reset(); for (int i = 0; i < NumTexCoordPrecisions; ++i) { for (int j = 0; j < NumSamplerTypes; ++j) { tile_program_[i][j].Cleanup(gl_); tile_program_opaque_[i][j].Cleanup(gl_); tile_program_swizzle_[i][j].Cleanup(gl_); tile_program_swizzle_opaque_[i][j].Cleanup(gl_); tile_program_aa_[i][j].Cleanup(gl_); tile_program_swizzle_aa_[i][j].Cleanup(gl_); } render_pass_mask_program_[i].Cleanup(gl_); render_pass_program_[i].Cleanup(gl_); render_pass_mask_program_aa_[i].Cleanup(gl_); render_pass_program_aa_[i].Cleanup(gl_); render_pass_color_matrix_program_[i].Cleanup(gl_); render_pass_mask_color_matrix_program_aa_[i].Cleanup(gl_); render_pass_color_matrix_program_aa_[i].Cleanup(gl_); render_pass_mask_color_matrix_program_[i].Cleanup(gl_); texture_program_[i].Cleanup(gl_); nonpremultiplied_texture_program_[i].Cleanup(gl_); texture_background_program_[i].Cleanup(gl_); nonpremultiplied_texture_background_program_[i].Cleanup(gl_); texture_io_surface_program_[i].Cleanup(gl_); video_yuv_program_[i].Cleanup(gl_); video_yuva_program_[i].Cleanup(gl_); video_stream_texture_program_[i].Cleanup(gl_); } tile_checkerboard_program_.Cleanup(gl_); debug_border_program_.Cleanup(gl_); solid_color_program_.Cleanup(gl_); solid_color_program_aa_.Cleanup(gl_); if (offscreen_framebuffer_id_) GLC(gl_, gl_->DeleteFramebuffers(1, &offscreen_framebuffer_id_)); if (on_demand_tile_raster_resource_id_) resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_); ReleaseRenderPassTextures(); } void GLRenderer::ReinitializeGLState() { // Bind the common vertex attributes used for drawing all the layers. shared_geometry_->PrepareForDraw(); GLC(gl_, gl_->Disable(GL_DEPTH_TEST)); GLC(gl_, gl_->Disable(GL_CULL_FACE)); GLC(gl_, gl_->ColorMask(true, true, true, true)); GLC(gl_, gl_->Disable(GL_STENCIL_TEST)); stencil_shadow_ = false; GLC(gl_, gl_->Enable(GL_BLEND)); blend_shadow_ = true; GLC(gl_, gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA)); GLC(gl_, gl_->ActiveTexture(GL_TEXTURE0)); program_shadow_ = 0; // Make sure scissoring starts as disabled. is_scissor_enabled_ = false; GLC(gl_, gl_->Disable(GL_SCISSOR_TEST)); scissor_rect_needs_reset_ = true; } bool GLRenderer::IsContextLost() { return output_surface_->context_provider()->IsContextLost(); } } // namespace cc