// Copyright 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/output/gl_renderer.h" #include #include #include #include #include #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/strings/string_split.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "build/build_config.h" #include "base/trace_event/trace_event.h" #include "cc/base/math_util.h" #include "cc/output/compositor_frame.h" #include "cc/output/compositor_frame_metadata.h" #include "cc/output/context_provider.h" #include "cc/output/copy_output_request.h" #include "cc/output/dynamic_geometry_binding.h" #include "cc/output/gl_frame_data.h" #include "cc/output/layer_quad.h" #include "cc/output/output_surface.h" #include "cc/output/render_surface_filters.h" #include "cc/output/static_geometry_binding.h" #include "cc/output/texture_mailbox_deleter.h" #include "cc/quads/draw_polygon.h" #include "cc/quads/picture_draw_quad.h" #include "cc/quads/render_pass.h" #include "cc/quads/stream_video_draw_quad.h" #include "cc/quads/texture_draw_quad.h" #include "cc/raster/scoped_gpu_raster.h" #include "cc/resources/scoped_resource.h" #include "gpu/GLES2/gl2extchromium.h" #include "gpu/command_buffer/client/context_support.h" #include "gpu/command_buffer/client/gles2_interface.h" #include "gpu/command_buffer/common/gpu_memory_allocation.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkColor.h" #include "third_party/skia/include/core/SkColorFilter.h" #include "third_party/skia/include/core/SkImage.h" #include "third_party/skia/include/core/SkSurface.h" #include "third_party/skia/include/gpu/GrContext.h" #include "third_party/skia/include/gpu/GrTexture.h" #include "third_party/skia/include/gpu/GrTextureProvider.h" #include "third_party/skia/include/gpu/SkGrTexturePixelRef.h" #include "third_party/skia/include/gpu/gl/GrGLInterface.h" #include "ui/gfx/geometry/quad_f.h" #include "ui/gfx/geometry/rect_conversions.h" using gpu::gles2::GLES2Interface; namespace cc { namespace { bool NeedsIOSurfaceReadbackWorkaround() { #if defined(OS_MACOSX) // This isn't strictly required in DumpRenderTree-mode when Mesa is used, // but it doesn't seem to hurt. return true; #else return false; #endif } Float4 UVTransform(const TextureDrawQuad* quad) { gfx::PointF uv0 = quad->uv_top_left; gfx::PointF uv1 = quad->uv_bottom_right; Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}}; if (quad->y_flipped) { xform.data[1] = 1.0f - xform.data[1]; xform.data[3] = -xform.data[3]; } return xform; } Float4 PremultipliedColor(SkColor color) { const float factor = 1.0f / 255.0f; const float alpha = SkColorGetA(color) * factor; Float4 result = { {SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha, SkColorGetB(color) * factor * alpha, alpha}}; return result; } SamplerType SamplerTypeFromTextureTarget(GLenum target) { switch (target) { case GL_TEXTURE_2D: return SAMPLER_TYPE_2D; case GL_TEXTURE_RECTANGLE_ARB: return SAMPLER_TYPE_2D_RECT; case GL_TEXTURE_EXTERNAL_OES: return SAMPLER_TYPE_EXTERNAL_OES; default: NOTREACHED(); return SAMPLER_TYPE_2D; } } BlendMode BlendModeFromSkXfermode(SkXfermode::Mode mode) { switch (mode) { case SkXfermode::kSrcOver_Mode: return BLEND_MODE_NORMAL; case SkXfermode::kScreen_Mode: return BLEND_MODE_SCREEN; case SkXfermode::kOverlay_Mode: return BLEND_MODE_OVERLAY; case SkXfermode::kDarken_Mode: return BLEND_MODE_DARKEN; case SkXfermode::kLighten_Mode: return BLEND_MODE_LIGHTEN; case SkXfermode::kColorDodge_Mode: return BLEND_MODE_COLOR_DODGE; case SkXfermode::kColorBurn_Mode: return BLEND_MODE_COLOR_BURN; case SkXfermode::kHardLight_Mode: return BLEND_MODE_HARD_LIGHT; case SkXfermode::kSoftLight_Mode: return BLEND_MODE_SOFT_LIGHT; case SkXfermode::kDifference_Mode: return BLEND_MODE_DIFFERENCE; case SkXfermode::kExclusion_Mode: return BLEND_MODE_EXCLUSION; case SkXfermode::kMultiply_Mode: return BLEND_MODE_MULTIPLY; case SkXfermode::kHue_Mode: return BLEND_MODE_HUE; case SkXfermode::kSaturation_Mode: return BLEND_MODE_SATURATION; case SkXfermode::kColor_Mode: return BLEND_MODE_COLOR; case SkXfermode::kLuminosity_Mode: return BLEND_MODE_LUMINOSITY; default: NOTREACHED(); return BLEND_MODE_NONE; } } // Smallest unit that impact anti-aliasing output. We use this to // determine when anti-aliasing is unnecessary. const float kAntiAliasingEpsilon = 1.0f / 1024.0f; // Block or crash if the number of pending sync queries reach this high as // something is seriously wrong on the service side if this happens. const size_t kMaxPendingSyncQueries = 16; } // anonymous namespace static GLint GetActiveTextureUnit(GLES2Interface* gl) { GLint active_unit = 0; gl->GetIntegerv(GL_ACTIVE_TEXTURE, &active_unit); return active_unit; } class GLRenderer::ScopedUseGrContext { public: static scoped_ptr Create(GLRenderer* renderer, DrawingFrame* frame) { // GrContext for filters is created lazily, and may fail if the context // is lost. // TODO(vmiura,bsalomon): crbug.com/487850 Ensure that // ContextProvider::GrContext() does not return NULL. if (renderer->output_surface_->context_provider()->GrContext()) return make_scoped_ptr(new ScopedUseGrContext(renderer, frame)); return nullptr; } ~ScopedUseGrContext() { // Pass context control back to GLrenderer. scoped_gpu_raster_ = nullptr; renderer_->RestoreGLState(); renderer_->RestoreFramebuffer(frame_); } GrContext* context() const { return renderer_->output_surface_->context_provider()->GrContext(); } private: ScopedUseGrContext(GLRenderer* renderer, DrawingFrame* frame) : scoped_gpu_raster_( new ScopedGpuRaster(renderer->output_surface_->context_provider())), renderer_(renderer), frame_(frame) { // scoped_gpu_raster_ passes context control to Skia. } scoped_ptr scoped_gpu_raster_; GLRenderer* renderer_; DrawingFrame* frame_; DISALLOW_COPY_AND_ASSIGN(ScopedUseGrContext); }; struct GLRenderer::PendingAsyncReadPixels { PendingAsyncReadPixels() : buffer(0) {} scoped_ptr copy_request; base::CancelableClosure finished_read_pixels_callback; unsigned buffer; private: DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels); }; class GLRenderer::SyncQuery { public: explicit SyncQuery(gpu::gles2::GLES2Interface* gl) : gl_(gl), query_id_(0u), is_pending_(false), weak_ptr_factory_(this) { gl_->GenQueriesEXT(1, &query_id_); } virtual ~SyncQuery() { gl_->DeleteQueriesEXT(1, &query_id_); } scoped_refptr Begin() { DCHECK(!IsPending()); // Invalidate weak pointer held by old fence. weak_ptr_factory_.InvalidateWeakPtrs(); // Note: In case the set of drawing commands issued before End() do not // depend on the query, defer BeginQueryEXT call until Set() is called and // query is required. return make_scoped_refptr( new Fence(weak_ptr_factory_.GetWeakPtr())); } void Set() { if (is_pending_) return; // Note: BeginQueryEXT on GL_COMMANDS_COMPLETED_CHROMIUM is effectively a // noop relative to GL, so it doesn't matter where it happens but we still // make sure to issue this command when Set() is called (prior to issuing // any drawing commands that depend on query), in case some future extension // can take advantage of this. gl_->BeginQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM, query_id_); is_pending_ = true; } void End() { if (!is_pending_) return; gl_->EndQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM); } bool IsPending() { if (!is_pending_) return false; unsigned result_available = 1; gl_->GetQueryObjectuivEXT( query_id_, GL_QUERY_RESULT_AVAILABLE_EXT, &result_available); is_pending_ = !result_available; return is_pending_; } void Wait() { if (!is_pending_) return; unsigned result = 0; gl_->GetQueryObjectuivEXT(query_id_, GL_QUERY_RESULT_EXT, &result); is_pending_ = false; } private: class Fence : public ResourceProvider::Fence { public: explicit Fence(base::WeakPtr query) : query_(query) {} // Overridden from ResourceProvider::Fence: void Set() override { DCHECK(query_); query_->Set(); } bool HasPassed() override { return !query_ || !query_->IsPending(); } void Wait() override { if (query_) query_->Wait(); } private: ~Fence() override {} base::WeakPtr query_; DISALLOW_COPY_AND_ASSIGN(Fence); }; gpu::gles2::GLES2Interface* gl_; unsigned query_id_; bool is_pending_; base::WeakPtrFactory weak_ptr_factory_; DISALLOW_COPY_AND_ASSIGN(SyncQuery); }; scoped_ptr GLRenderer::Create( RendererClient* client, const RendererSettings* settings, OutputSurface* output_surface, ResourceProvider* resource_provider, TextureMailboxDeleter* texture_mailbox_deleter, int highp_threshold_min) { return make_scoped_ptr(new GLRenderer(client, settings, output_surface, resource_provider, texture_mailbox_deleter, highp_threshold_min)); } GLRenderer::GLRenderer(RendererClient* client, const RendererSettings* settings, OutputSurface* output_surface, ResourceProvider* resource_provider, TextureMailboxDeleter* texture_mailbox_deleter, int highp_threshold_min) : DirectRenderer(client, settings, output_surface, resource_provider), offscreen_framebuffer_id_(0), shared_geometry_quad_(QuadVertexRect()), gl_(output_surface->context_provider()->ContextGL()), context_support_(output_surface->context_provider()->ContextSupport()), texture_mailbox_deleter_(texture_mailbox_deleter), is_backbuffer_discarded_(false), is_scissor_enabled_(false), scissor_rect_needs_reset_(true), stencil_shadow_(false), blend_shadow_(false), highp_threshold_min_(highp_threshold_min), highp_threshold_cache_(0), use_sync_query_(false), on_demand_tile_raster_resource_id_(0), bound_geometry_(NO_BINDING) { DCHECK(gl_); DCHECK(context_support_); ContextProvider::Capabilities context_caps = output_surface_->context_provider()->ContextCapabilities(); capabilities_.using_partial_swap = settings_->partial_swap_enabled && context_caps.gpu.post_sub_buffer; DCHECK(!context_caps.gpu.iosurface || context_caps.gpu.texture_rectangle); capabilities_.using_egl_image = context_caps.gpu.egl_image_external; capabilities_.max_texture_size = resource_provider_->max_texture_size(); capabilities_.best_texture_format = resource_provider_->best_texture_format(); // The updater can access textures while the GLRenderer is using them. capabilities_.allow_partial_texture_updates = true; capabilities_.using_image = context_caps.gpu.image; capabilities_.using_discard_framebuffer = context_caps.gpu.discard_framebuffer; capabilities_.allow_rasterize_on_demand = true; capabilities_.max_msaa_samples = context_caps.gpu.max_samples; use_sync_query_ = context_caps.gpu.sync_query; use_blend_equation_advanced_ = context_caps.gpu.blend_equation_advanced; use_blend_equation_advanced_coherent_ = context_caps.gpu.blend_equation_advanced_coherent; InitializeSharedObjects(); } GLRenderer::~GLRenderer() { while (!pending_async_read_pixels_.empty()) { PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back(); pending_read->finished_read_pixels_callback.Cancel(); pending_async_read_pixels_.pop_back(); } previous_swap_overlay_resources_.clear(); in_use_overlay_resources_.clear(); CleanupSharedObjects(); } const RendererCapabilitiesImpl& GLRenderer::Capabilities() const { return capabilities_; } void GLRenderer::DidChangeVisibility() { EnforceMemoryPolicy(); context_support_->SetSurfaceVisible(visible()); // If we are not visible, we ask the context to aggressively free resources. context_support_->SetAggressivelyFreeResources(!visible()); } void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); } void GLRenderer::DiscardPixels() { if (!capabilities_.using_discard_framebuffer) return; bool using_default_framebuffer = !current_framebuffer_lock_ && output_surface_->capabilities().uses_default_gl_framebuffer; GLenum attachments[] = {static_cast( using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)}; gl_->DiscardFramebufferEXT( GL_FRAMEBUFFER, arraysize(attachments), attachments); } void GLRenderer::PrepareSurfaceForPass( DrawingFrame* frame, SurfaceInitializationMode initialization_mode, const gfx::Rect& render_pass_scissor) { SetViewport(); switch (initialization_mode) { case SURFACE_INITIALIZATION_MODE_PRESERVE: EnsureScissorTestDisabled(); return; case SURFACE_INITIALIZATION_MODE_FULL_SURFACE_CLEAR: EnsureScissorTestDisabled(); DiscardPixels(); ClearFramebuffer(frame); break; case SURFACE_INITIALIZATION_MODE_SCISSORED_CLEAR: SetScissorTestRect(render_pass_scissor); ClearFramebuffer(frame); break; } } void GLRenderer::ClearFramebuffer(DrawingFrame* frame) { // On DEBUG builds, opaque render passes are cleared to blue to easily see // regions that were not drawn on the screen. if (frame->current_render_pass->has_transparent_background) gl_->ClearColor(0, 0, 0, 0); else gl_->ClearColor(0, 0, 1, 1); bool always_clear = false; #ifndef NDEBUG always_clear = true; #endif if (always_clear || frame->current_render_pass->has_transparent_background) { GLbitfield clear_bits = GL_COLOR_BUFFER_BIT; if (always_clear) clear_bits |= GL_STENCIL_BUFFER_BIT; gl_->Clear(clear_bits); } } void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) { TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame"); scoped_refptr read_lock_fence; if (use_sync_query_) { // Block until oldest sync query has passed if the number of pending queries // ever reach kMaxPendingSyncQueries. if (pending_sync_queries_.size() >= kMaxPendingSyncQueries) { LOG(ERROR) << "Reached limit of pending sync queries."; pending_sync_queries_.front()->Wait(); DCHECK(!pending_sync_queries_.front()->IsPending()); } while (!pending_sync_queries_.empty()) { if (pending_sync_queries_.front()->IsPending()) break; available_sync_queries_.push_back(pending_sync_queries_.take_front()); } current_sync_query_ = available_sync_queries_.empty() ? make_scoped_ptr(new SyncQuery(gl_)) : available_sync_queries_.take_front(); read_lock_fence = current_sync_query_->Begin(); } else { read_lock_fence = make_scoped_refptr(new ResourceProvider::SynchronousFence(gl_)); } resource_provider_->SetReadLockFence(read_lock_fence.get()); // Insert WaitSyncPointCHROMIUM on quad resources prior to drawing the frame, // so that drawing can proceed without GL context switching interruptions. ResourceProvider* resource_provider = resource_provider_; for (const auto& pass : *frame->render_passes_in_draw_order) { for (const auto& quad : pass->quad_list) { for (ResourceId resource_id : quad->resources) resource_provider->WaitSyncPointIfNeeded(resource_id); } } // TODO(enne): Do we need to reinitialize all of this state per frame? ReinitializeGLState(); } void GLRenderer::DoDrawQuad(DrawingFrame* frame, const DrawQuad* quad, const gfx::QuadF* clip_region) { DCHECK(quad->rect.Contains(quad->visible_rect)); if (quad->material != DrawQuad::TEXTURE_CONTENT) { FlushTextureQuadCache(SHARED_BINDING); } switch (quad->material) { case DrawQuad::INVALID: NOTREACHED(); break; case DrawQuad::DEBUG_BORDER: DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad)); break; case DrawQuad::IO_SURFACE_CONTENT: DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad), clip_region); break; case DrawQuad::PICTURE_CONTENT: // PictureDrawQuad should only be used for resourceless software draws. NOTREACHED(); break; case DrawQuad::RENDER_PASS: DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad), clip_region); break; case DrawQuad::SOLID_COLOR: DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad), clip_region); break; case DrawQuad::STREAM_VIDEO_CONTENT: DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad), clip_region); break; case DrawQuad::SURFACE_CONTENT: // Surface content should be fully resolved to other quad types before // reaching a direct renderer. NOTREACHED(); break; case DrawQuad::TEXTURE_CONTENT: EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad), clip_region); break; case DrawQuad::TILED_CONTENT: DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad), clip_region); break; case DrawQuad::YUV_VIDEO_CONTENT: DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad), clip_region); break; } } // This function does not handle 3D sorting right now, since the debug border // quads are just drawn as their original quads and not in split pieces. This // results in some debug border quads drawing over foreground quads. void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame, const DebugBorderDrawQuad* quad) { SetBlendEnabled(quad->ShouldDrawWithBlending()); static float gl_matrix[16]; const DebugBorderProgram* program = GetDebugBorderProgram(); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); // Use the full quad_rect for debug quads to not move the edges based on // partial swaps. gfx::Rect layer_rect = quad->rect; gfx::Transform render_matrix; QuadRectTransform(&render_matrix, quad->shared_quad_state->quad_to_target_transform, gfx::RectF(layer_rect)); GLRenderer::ToGLMatrix(&gl_matrix[0], frame->projection_matrix * render_matrix); gl_->UniformMatrix4fv(program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0]); SkColor color = quad->color; float alpha = SkColorGetA(color) * (1.0f / 255.0f); gl_->Uniform4f(program->fragment_shader().color_location(), (SkColorGetR(color) * (1.0f / 255.0f)) * alpha, (SkColorGetG(color) * (1.0f / 255.0f)) * alpha, (SkColorGetB(color) * (1.0f / 255.0f)) * alpha, alpha); gl_->LineWidth(quad->width); // The indices for the line are stored in the same array as the triangle // indices. gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0); } static skia::RefPtr ApplyImageFilter( scoped_ptr use_gr_context, ResourceProvider* resource_provider, const gfx::Rect& rect, const gfx::Vector2dF& scale, SkImageFilter* filter, ScopedResource* source_texture_resource) { if (!filter) return skia::RefPtr(); if (!use_gr_context) return skia::RefPtr(); ResourceProvider::ScopedReadLockGL lock(resource_provider, source_texture_resource->id()); // Wrap the source texture in a Ganesh platform texture. GrBackendTextureDesc backend_texture_description; backend_texture_description.fWidth = source_texture_resource->size().width(); backend_texture_description.fHeight = source_texture_resource->size().height(); backend_texture_description.fConfig = kSkia8888_GrPixelConfig; backend_texture_description.fTextureHandle = lock.texture_id(); backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin; skia::RefPtr texture = skia::AdoptRef( use_gr_context->context()->textureProvider()->wrapBackendTexture( backend_texture_description)); if (!texture) { TRACE_EVENT_INSTANT0("cc", "ApplyImageFilter wrap background texture failed", TRACE_EVENT_SCOPE_THREAD); return skia::RefPtr(); } SkImageInfo src_info = SkImageInfo::MakeN32Premul(source_texture_resource->size().width(), source_texture_resource->size().height()); // Place the platform texture inside an SkBitmap. SkBitmap source; source.setInfo(src_info); skia::RefPtr pixel_ref = skia::AdoptRef(new SkGrPixelRef(src_info, texture.get())); source.setPixelRef(pixel_ref.get()); // Create surface to draw into. SkImageInfo dst_info = SkImageInfo::MakeN32Premul(source.width(), source.height()); skia::RefPtr surface = skia::AdoptRef(SkSurface::NewRenderTarget( use_gr_context->context(), SkSurface::kYes_Budgeted, dst_info, 0)); if (!surface) { TRACE_EVENT_INSTANT0("cc", "ApplyImageFilter surface allocation failed", TRACE_EVENT_SCOPE_THREAD); return skia::RefPtr(); } skia::RefPtr canvas = skia::SharePtr(surface->getCanvas()); // Draw the source bitmap through the filter to the canvas. SkPaint paint; paint.setImageFilter(filter); canvas->clear(SK_ColorTRANSPARENT); // The origin of the filter is top-left and the origin of the source is // bottom-left, but the orientation is the same, so we must translate the // filter so that it renders at the bottom of the texture to avoid // misregistration. int y_translate = source.height() - rect.height() - rect.origin().y(); canvas->translate(-rect.origin().x(), y_translate); canvas->scale(scale.x(), scale.y()); canvas->drawSprite(source, 0, 0, &paint); skia::RefPtr image = skia::AdoptRef(surface->newImageSnapshot()); if (!image || !image->isTextureBacked()) { return skia::RefPtr(); } return image; } bool GLRenderer::CanApplyBlendModeUsingBlendFunc(SkXfermode::Mode blend_mode) { return use_blend_equation_advanced_ || blend_mode == SkXfermode::kScreen_Mode || blend_mode == SkXfermode::kSrcOver_Mode; } void GLRenderer::ApplyBlendModeUsingBlendFunc(SkXfermode::Mode blend_mode) { DCHECK(CanApplyBlendModeUsingBlendFunc(blend_mode)); // Any modes set here must be reset in RestoreBlendFuncToDefault if (use_blend_equation_advanced_) { GLenum equation = GL_FUNC_ADD; switch (blend_mode) { case SkXfermode::kScreen_Mode: equation = GL_SCREEN_KHR; break; case SkXfermode::kOverlay_Mode: equation = GL_OVERLAY_KHR; break; case SkXfermode::kDarken_Mode: equation = GL_DARKEN_KHR; break; case SkXfermode::kLighten_Mode: equation = GL_LIGHTEN_KHR; break; case SkXfermode::kColorDodge_Mode: equation = GL_COLORDODGE_KHR; break; case SkXfermode::kColorBurn_Mode: equation = GL_COLORBURN_KHR; break; case SkXfermode::kHardLight_Mode: equation = GL_HARDLIGHT_KHR; break; case SkXfermode::kSoftLight_Mode: equation = GL_SOFTLIGHT_KHR; break; case SkXfermode::kDifference_Mode: equation = GL_DIFFERENCE_KHR; break; case SkXfermode::kExclusion_Mode: equation = GL_EXCLUSION_KHR; break; case SkXfermode::kMultiply_Mode: equation = GL_MULTIPLY_KHR; break; case SkXfermode::kHue_Mode: equation = GL_HSL_HUE_KHR; break; case SkXfermode::kSaturation_Mode: equation = GL_HSL_SATURATION_KHR; break; case SkXfermode::kColor_Mode: equation = GL_HSL_COLOR_KHR; break; case SkXfermode::kLuminosity_Mode: equation = GL_HSL_LUMINOSITY_KHR; break; default: return; } gl_->BlendEquation(equation); } else { if (blend_mode == SkXfermode::kScreen_Mode) { gl_->BlendFunc(GL_ONE_MINUS_DST_COLOR, GL_ONE); } } } void GLRenderer::RestoreBlendFuncToDefault(SkXfermode::Mode blend_mode) { if (blend_mode == SkXfermode::kSrcOver_Mode) return; if (use_blend_equation_advanced_) { gl_->BlendEquation(GL_FUNC_ADD); } else { gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } } bool GLRenderer::ShouldApplyBackgroundFilters(const RenderPassDrawQuad* quad) { if (quad->background_filters.IsEmpty()) return false; // TODO(hendrikw): Look into allowing background filters to see pixels from // other render targets. See crbug.com/314867. return true; } // This takes a gfx::Rect and a clip region quad in the same space, // and returns a quad with the same proportions in the space -0.5->0.5. bool GetScaledRegion(const gfx::Rect& rect, const gfx::QuadF* clip, gfx::QuadF* scaled_region) { if (!clip) return false; gfx::PointF p1(((clip->p1().x() - rect.x()) / rect.width()) - 0.5f, ((clip->p1().y() - rect.y()) / rect.height()) - 0.5f); gfx::PointF p2(((clip->p2().x() - rect.x()) / rect.width()) - 0.5f, ((clip->p2().y() - rect.y()) / rect.height()) - 0.5f); gfx::PointF p3(((clip->p3().x() - rect.x()) / rect.width()) - 0.5f, ((clip->p3().y() - rect.y()) / rect.height()) - 0.5f); gfx::PointF p4(((clip->p4().x() - rect.x()) / rect.width()) - 0.5f, ((clip->p4().y() - rect.y()) / rect.height()) - 0.5f); *scaled_region = gfx::QuadF(p1, p2, p3, p4); return true; } // This takes a gfx::Rect and a clip region quad in the same space, // and returns the proportional uv's in the space 0->1. bool GetScaledUVs(const gfx::Rect& rect, const gfx::QuadF* clip, float uvs[8]) { if (!clip) return false; uvs[0] = ((clip->p1().x() - rect.x()) / rect.width()); uvs[1] = ((clip->p1().y() - rect.y()) / rect.height()); uvs[2] = ((clip->p2().x() - rect.x()) / rect.width()); uvs[3] = ((clip->p2().y() - rect.y()) / rect.height()); uvs[4] = ((clip->p3().x() - rect.x()) / rect.width()); uvs[5] = ((clip->p3().y() - rect.y()) / rect.height()); uvs[6] = ((clip->p4().x() - rect.x()) / rect.width()); uvs[7] = ((clip->p4().y() - rect.y()) / rect.height()); return true; } gfx::Rect GLRenderer::GetBackdropBoundingBoxForRenderPassQuad( DrawingFrame* frame, const RenderPassDrawQuad* quad, const gfx::Transform& contents_device_transform, const gfx::QuadF* clip_region, bool use_aa) { gfx::QuadF scaled_region; if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) { scaled_region = SharedGeometryQuad().BoundingBox(); } gfx::Rect backdrop_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect( contents_device_transform, scaled_region.BoundingBox())); if (ShouldApplyBackgroundFilters(quad)) { int top, right, bottom, left; quad->background_filters.GetOutsets(&top, &right, &bottom, &left); backdrop_rect.Inset(-left, -top, -right, -bottom); } if (!backdrop_rect.IsEmpty() && use_aa) { const int kOutsetForAntialiasing = 1; backdrop_rect.Inset(-kOutsetForAntialiasing, -kOutsetForAntialiasing); } backdrop_rect.Intersect(MoveFromDrawToWindowSpace( frame, frame->current_render_pass->output_rect)); return backdrop_rect; } scoped_ptr GLRenderer::GetBackdropTexture( const gfx::Rect& bounding_rect) { scoped_ptr device_background_texture = ScopedResource::Create(resource_provider_); // CopyTexImage2D fails when called on a texture having immutable storage. device_background_texture->Allocate( bounding_rect.size(), ResourceProvider::TEXTURE_HINT_DEFAULT, RGBA_8888); { ResourceProvider::ScopedWriteLockGL lock(resource_provider_, device_background_texture->id()); GetFramebufferTexture( lock.texture_id(), device_background_texture->format(), bounding_rect); } return device_background_texture.Pass(); } skia::RefPtr GLRenderer::ApplyBackgroundFilters( DrawingFrame* frame, const RenderPassDrawQuad* quad, ScopedResource* background_texture) { DCHECK(ShouldApplyBackgroundFilters(quad)); skia::RefPtr filter = RenderSurfaceFilters::BuildImageFilter( quad->background_filters, gfx::SizeF(background_texture->size())); skia::RefPtr background_with_filters = ApplyImageFilter( ScopedUseGrContext::Create(this, frame), resource_provider_, quad->rect, quad->filters_scale, filter.get(), background_texture); return background_with_filters; } void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame, const RenderPassDrawQuad* quad, const gfx::QuadF* clip_region) { ScopedResource* contents_texture = render_pass_textures_.get(quad->render_pass_id); DCHECK(contents_texture); DCHECK(contents_texture->id()); gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, quad->shared_quad_state->quad_to_target_transform, gfx::RectF(quad->rect)); gfx::Transform contents_device_transform = frame->window_matrix * frame->projection_matrix * quad_rect_matrix; contents_device_transform.FlattenTo2d(); // Can only draw surface if device matrix is invertible. if (!contents_device_transform.IsInvertible()) return; gfx::QuadF surface_quad = SharedGeometryQuad(); gfx::QuadF device_layer_quad; bool use_aa = false; if (settings_->allow_antialiasing) { bool clipped = false; device_layer_quad = MathUtil::MapQuad(contents_device_transform, surface_quad, &clipped); use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, settings_->force_antialiasing); } float edge[24]; const gfx::QuadF* aa_quad = use_aa ? &device_layer_quad : nullptr; SetupRenderPassQuadForClippingAndAntialiasing(contents_device_transform, quad, aa_quad, clip_region, &surface_quad, edge); SkXfermode::Mode blend_mode = quad->shared_quad_state->blend_mode; bool use_shaders_for_blending = !CanApplyBlendModeUsingBlendFunc(blend_mode) || ShouldApplyBackgroundFilters(quad) || settings_->force_blending_with_shaders; scoped_ptr background_texture; skia::RefPtr background_image; GLuint background_image_id = 0; gfx::Rect background_rect; if (use_shaders_for_blending) { // Compute a bounding box around the pixels that will be visible through // the quad. background_rect = GetBackdropBoundingBoxForRenderPassQuad( frame, quad, contents_device_transform, clip_region, use_aa); if (!background_rect.IsEmpty()) { // The pixels from the filtered background should completely replace the // current pixel values. if (blend_enabled()) SetBlendEnabled(false); // Read the pixels in the bounding box into a buffer R. // This function allocates a texture, which should contribute to the // amount of memory used by render surfaces: // LayerTreeHost::CalculateMemoryForRenderSurfaces. background_texture = GetBackdropTexture(background_rect); if (ShouldApplyBackgroundFilters(quad) && background_texture) { // Apply the background filters to R, so that it is applied in the // pixels' coordinate space. background_image = ApplyBackgroundFilters(frame, quad, background_texture.get()); if (background_image) background_image_id = background_image->getTextureHandle(true); DCHECK(background_image_id); } } if (!background_texture) { // Something went wrong with reading the backdrop. DCHECK(!background_image_id); use_shaders_for_blending = false; } else if (background_image_id) { // Reset original background texture if there is not any mask if (!quad->mask_resource_id()) background_texture.reset(); } else if (CanApplyBlendModeUsingBlendFunc(blend_mode) && ShouldApplyBackgroundFilters(quad)) { // Something went wrong with applying background filters to the backdrop. use_shaders_for_blending = false; background_texture.reset(); } } // Need original background texture for mask? bool mask_for_background = background_texture && // Have original background texture background_image_id && // Have filtered background texture quad->mask_resource_id(); // Have mask texture SetBlendEnabled( !use_shaders_for_blending && (quad->ShouldDrawWithBlending() || !IsDefaultBlendMode(blend_mode))); // TODO(senorblanco): Cache this value so that we don't have to do it for both // the surface and its replica. Apply filters to the contents texture. skia::RefPtr filter_image; GLuint filter_image_id = 0; SkScalar color_matrix[20]; bool use_color_matrix = false; if (!quad->filters.IsEmpty()) { skia::RefPtr filter = RenderSurfaceFilters::BuildImageFilter( quad->filters, gfx::SizeF(contents_texture->size())); if (filter) { skia::RefPtr cf; { SkColorFilter* colorfilter_rawptr = NULL; filter->asColorFilter(&colorfilter_rawptr); cf = skia::AdoptRef(colorfilter_rawptr); } if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) { // We have a single color matrix as a filter; apply it locally // in the compositor. use_color_matrix = true; } else { filter_image = ApplyImageFilter( ScopedUseGrContext::Create(this, frame), resource_provider_, quad->rect, quad->filters_scale, filter.get(), contents_texture); if (filter_image) { filter_image_id = filter_image->getTextureHandle(true); DCHECK(filter_image_id); } } } } scoped_ptr mask_resource_lock; unsigned mask_texture_id = 0; SamplerType mask_sampler = SAMPLER_TYPE_NA; if (quad->mask_resource_id()) { mask_resource_lock.reset(new ResourceProvider::ScopedSamplerGL( resource_provider_, quad->mask_resource_id(), GL_TEXTURE1, GL_LINEAR)); mask_texture_id = mask_resource_lock->texture_id(); mask_sampler = SamplerTypeFromTextureTarget(mask_resource_lock->target()); } scoped_ptr contents_resource_lock; if (filter_image_id) { DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_)); gl_->BindTexture(GL_TEXTURE_2D, filter_image_id); } else { contents_resource_lock = make_scoped_ptr(new ResourceProvider::ScopedSamplerGL( resource_provider_, contents_texture->id(), GL_LINEAR)); DCHECK_EQ(static_cast(GL_TEXTURE_2D), contents_resource_lock->target()); } if (!use_shaders_for_blending) { if (!use_blend_equation_advanced_coherent_ && use_blend_equation_advanced_) gl_->BlendBarrierKHR(); ApplyBlendModeUsingBlendFunc(blend_mode); } TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_quad_layer_rect.bottom_right()); ShaderLocations locations; DCHECK_EQ(background_texture || background_image_id, use_shaders_for_blending); BlendMode shader_blend_mode = use_shaders_for_blending ? BlendModeFromSkXfermode(blend_mode) : BLEND_MODE_NONE; if (use_aa && mask_texture_id && !use_color_matrix) { const RenderPassMaskProgramAA* program = GetRenderPassMaskProgramAA( tex_coord_precision, mask_sampler, shader_blend_mode, mask_for_background); SetUseProgram(program->program()); program->vertex_shader().FillLocations(&locations); program->fragment_shader().FillLocations(&locations); gl_->Uniform1i(locations.sampler, 0); } else if (!use_aa && mask_texture_id && !use_color_matrix) { const RenderPassMaskProgram* program = GetRenderPassMaskProgram( tex_coord_precision, mask_sampler, shader_blend_mode, mask_for_background); SetUseProgram(program->program()); program->vertex_shader().FillLocations(&locations); program->fragment_shader().FillLocations(&locations); gl_->Uniform1i(locations.sampler, 0); } else if (use_aa && !mask_texture_id && !use_color_matrix) { const RenderPassProgramAA* program = GetRenderPassProgramAA(tex_coord_precision, shader_blend_mode); SetUseProgram(program->program()); program->vertex_shader().FillLocations(&locations); program->fragment_shader().FillLocations(&locations); gl_->Uniform1i(locations.sampler, 0); } else if (use_aa && mask_texture_id && use_color_matrix) { const RenderPassMaskColorMatrixProgramAA* program = GetRenderPassMaskColorMatrixProgramAA( tex_coord_precision, mask_sampler, shader_blend_mode, mask_for_background); SetUseProgram(program->program()); program->vertex_shader().FillLocations(&locations); program->fragment_shader().FillLocations(&locations); gl_->Uniform1i(locations.sampler, 0); } else if (use_aa && !mask_texture_id && use_color_matrix) { const RenderPassColorMatrixProgramAA* program = GetRenderPassColorMatrixProgramAA(tex_coord_precision, shader_blend_mode); SetUseProgram(program->program()); program->vertex_shader().FillLocations(&locations); program->fragment_shader().FillLocations(&locations); gl_->Uniform1i(locations.sampler, 0); } else if (!use_aa && mask_texture_id && use_color_matrix) { const RenderPassMaskColorMatrixProgram* program = GetRenderPassMaskColorMatrixProgram( tex_coord_precision, mask_sampler, shader_blend_mode, mask_for_background); SetUseProgram(program->program()); program->vertex_shader().FillLocations(&locations); program->fragment_shader().FillLocations(&locations); gl_->Uniform1i(locations.sampler, 0); } else if (!use_aa && !mask_texture_id && use_color_matrix) { const RenderPassColorMatrixProgram* program = GetRenderPassColorMatrixProgram(tex_coord_precision, shader_blend_mode); SetUseProgram(program->program()); program->vertex_shader().FillLocations(&locations); program->fragment_shader().FillLocations(&locations); gl_->Uniform1i(locations.sampler, 0); } else { const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision, shader_blend_mode); SetUseProgram(program->program()); program->vertex_shader().FillLocations(&locations); program->fragment_shader().FillLocations(&locations); gl_->Uniform1i(locations.sampler, 0); } float tex_scale_x = quad->rect.width() / static_cast(contents_texture->size().width()); float tex_scale_y = quad->rect.height() / static_cast(contents_texture->size().height()); DCHECK_LE(tex_scale_x, 1.0f); DCHECK_LE(tex_scale_y, 1.0f); DCHECK(locations.tex_transform != -1 || IsContextLost()); // Flip the content vertically in the shader, as the RenderPass input // texture is already oriented the same way as the framebuffer, but the // projection transform does a flip. gl_->Uniform4f(locations.tex_transform, 0.0f, tex_scale_y, tex_scale_x, -tex_scale_y); GLint last_texture_unit = 0; if (locations.mask_sampler != -1) { DCHECK_NE(locations.mask_tex_coord_scale, 1); DCHECK_NE(locations.mask_tex_coord_offset, 1); gl_->Uniform1i(locations.mask_sampler, 1); gfx::RectF mask_uv_rect = quad->MaskUVRect(); if (mask_sampler != SAMPLER_TYPE_2D) { mask_uv_rect.Scale(quad->mask_texture_size.width(), quad->mask_texture_size.height()); } // Mask textures are oriented vertically flipped relative to the framebuffer // and the RenderPass contents texture, so we flip the tex coords from the // RenderPass texture to find the mask texture coords. gl_->Uniform2f(locations.mask_tex_coord_offset, mask_uv_rect.x(), mask_uv_rect.bottom()); gl_->Uniform2f(locations.mask_tex_coord_scale, mask_uv_rect.width() / tex_scale_x, -mask_uv_rect.height() / tex_scale_y); last_texture_unit = 1; } if (locations.edge != -1) gl_->Uniform3fv(locations.edge, 8, edge); if (locations.viewport != -1) { float viewport[4] = { static_cast(current_window_space_viewport_.x()), static_cast(current_window_space_viewport_.y()), static_cast(current_window_space_viewport_.width()), static_cast(current_window_space_viewport_.height()), }; gl_->Uniform4fv(locations.viewport, 1, viewport); } if (locations.color_matrix != -1) { float matrix[16]; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]); } gl_->UniformMatrix4fv(locations.color_matrix, 1, false, matrix); } static const float kScale = 1.0f / 255.0f; if (locations.color_offset != -1) { float offset[4]; for (int i = 0; i < 4; ++i) offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale; gl_->Uniform4fv(locations.color_offset, 1, offset); } scoped_ptr shader_background_sampler_lock; if (locations.backdrop != -1) { DCHECK(background_texture || background_image_id); DCHECK_NE(locations.backdrop, 0); DCHECK_NE(locations.backdrop_rect, 0); gl_->Uniform1i(locations.backdrop, ++last_texture_unit); gl_->Uniform4f(locations.backdrop_rect, background_rect.x(), background_rect.y(), background_rect.width(), background_rect.height()); if (background_image_id) { gl_->ActiveTexture(GL_TEXTURE0 + last_texture_unit); gl_->BindTexture(GL_TEXTURE_2D, background_image_id); gl_->ActiveTexture(GL_TEXTURE0); if (mask_for_background) gl_->Uniform1i(locations.original_backdrop, ++last_texture_unit); } if (background_texture) { shader_background_sampler_lock = make_scoped_ptr( new ResourceProvider::ScopedSamplerGL(resource_provider_, background_texture->id(), GL_TEXTURE0 + last_texture_unit, GL_LINEAR)); DCHECK_EQ(static_cast(GL_TEXTURE_2D), shader_background_sampler_lock->target()); } } SetShaderOpacity(quad->shared_quad_state->opacity, locations.alpha); SetShaderQuadF(surface_quad, locations.quad); DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform, gfx::RectF(quad->rect), locations.matrix); // Flush the compositor context before the filter bitmap goes out of // scope, so the draw gets processed before the filter texture gets deleted. if (filter_image_id) gl_->Flush(); if (!use_shaders_for_blending) RestoreBlendFuncToDefault(blend_mode); } struct SolidColorProgramUniforms { unsigned program; unsigned matrix_location; unsigned viewport_location; unsigned quad_location; unsigned edge_location; unsigned color_location; }; template static void SolidColorUniformLocation(T program, SolidColorProgramUniforms* uniforms) { uniforms->program = program->program(); uniforms->matrix_location = program->vertex_shader().matrix_location(); uniforms->viewport_location = program->vertex_shader().viewport_location(); uniforms->quad_location = program->vertex_shader().quad_location(); uniforms->edge_location = program->vertex_shader().edge_location(); uniforms->color_location = program->fragment_shader().color_location(); } namespace { // These functions determine if a quad, clipped by a clip_region contains // the entire {top|bottom|left|right} edge. bool is_top(const gfx::QuadF* clip_region, const DrawQuad* quad) { if (!quad->IsTopEdge()) return false; if (!clip_region) return true; return std::abs(clip_region->p1().y()) < kAntiAliasingEpsilon && std::abs(clip_region->p2().y()) < kAntiAliasingEpsilon; } bool is_bottom(const gfx::QuadF* clip_region, const DrawQuad* quad) { if (!quad->IsBottomEdge()) return false; if (!clip_region) return true; return std::abs(clip_region->p3().y() - quad->shared_quad_state->quad_layer_bounds.height()) < kAntiAliasingEpsilon && std::abs(clip_region->p4().y() - quad->shared_quad_state->quad_layer_bounds.height()) < kAntiAliasingEpsilon; } bool is_left(const gfx::QuadF* clip_region, const DrawQuad* quad) { if (!quad->IsLeftEdge()) return false; if (!clip_region) return true; return std::abs(clip_region->p1().x()) < kAntiAliasingEpsilon && std::abs(clip_region->p4().x()) < kAntiAliasingEpsilon; } bool is_right(const gfx::QuadF* clip_region, const DrawQuad* quad) { if (!quad->IsRightEdge()) return false; if (!clip_region) return true; return std::abs(clip_region->p2().x() - quad->shared_quad_state->quad_layer_bounds.width()) < kAntiAliasingEpsilon && std::abs(clip_region->p3().x() - quad->shared_quad_state->quad_layer_bounds.width()) < kAntiAliasingEpsilon; } } // anonymous namespace static gfx::QuadF GetDeviceQuadWithAntialiasingOnExteriorEdges( const LayerQuad& device_layer_edges, const gfx::Transform& device_transform, const gfx::QuadF& tile_quad, const gfx::QuadF* clip_region, const DrawQuad* quad) { auto tile_rect = gfx::RectF(quad->visible_rect); gfx::PointF bottom_right = tile_quad.p3(); gfx::PointF bottom_left = tile_quad.p4(); gfx::PointF top_left = tile_quad.p1(); gfx::PointF top_right = tile_quad.p2(); bool clipped = false; // Map points to device space. We ignore |clipped|, since the result of // |MapPoint()| still produces a valid point to draw the quad with. When // clipped, the point will be outside of the viewport. See crbug.com/416367. bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped); bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped); top_left = MathUtil::MapPoint(device_transform, top_left, &clipped); top_right = MathUtil::MapPoint(device_transform, top_right, &clipped); LayerQuad::Edge bottom_edge(bottom_right, bottom_left); LayerQuad::Edge left_edge(bottom_left, top_left); LayerQuad::Edge top_edge(top_left, top_right); LayerQuad::Edge right_edge(top_right, bottom_right); // Only apply anti-aliasing to edges not clipped by culling or scissoring. // If an edge is degenerate we do not want to replace it with a "proper" edge // as that will cause the quad to possibly expand is strange ways. if (!top_edge.degenerate() && is_top(clip_region, quad) && tile_rect.y() == quad->rect.y()) { top_edge = device_layer_edges.top(); } if (!left_edge.degenerate() && is_left(clip_region, quad) && tile_rect.x() == quad->rect.x()) { left_edge = device_layer_edges.left(); } if (!right_edge.degenerate() && is_right(clip_region, quad) && tile_rect.right() == quad->rect.right()) { right_edge = device_layer_edges.right(); } if (!bottom_edge.degenerate() && is_bottom(clip_region, quad) && tile_rect.bottom() == quad->rect.bottom()) { bottom_edge = device_layer_edges.bottom(); } float sign = tile_quad.IsCounterClockwise() ? -1 : 1; bottom_edge.scale(sign); left_edge.scale(sign); top_edge.scale(sign); right_edge.scale(sign); // Create device space quad. return LayerQuad(left_edge, top_edge, right_edge, bottom_edge).ToQuadF(); } float GetTotalQuadError(const gfx::QuadF* clipped_quad, const gfx::QuadF* ideal_rect) { return (clipped_quad->p1() - ideal_rect->p1()).LengthSquared() + (clipped_quad->p2() - ideal_rect->p2()).LengthSquared() + (clipped_quad->p3() - ideal_rect->p3()).LengthSquared() + (clipped_quad->p4() - ideal_rect->p4()).LengthSquared(); } // Attempt to rotate the clipped quad until it lines up the most // correctly. This is necessary because we check the edges of this // quad against the expected left/right/top/bottom for anti-aliasing. void AlignQuadToBoundingBox(gfx::QuadF* clipped_quad) { auto bounding_quad = gfx::QuadF(clipped_quad->BoundingBox()); gfx::QuadF best_rotation = *clipped_quad; float least_error_amount = GetTotalQuadError(clipped_quad, &bounding_quad); for (size_t i = 1; i < 4; ++i) { clipped_quad->Realign(1); float new_error = GetTotalQuadError(clipped_quad, &bounding_quad); if (new_error < least_error_amount) { least_error_amount = new_error; best_rotation = *clipped_quad; } } *clipped_quad = best_rotation; } // Map device space quad to local space. Device_transform has no 3d // component since it was flattened, so we don't need to project. We should // have already checked that the transform was uninvertible before this call. gfx::QuadF MapQuadToLocalSpace(const gfx::Transform& device_transform, const gfx::QuadF& device_quad) { gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization); DCHECK(device_transform.IsInvertible()); bool did_invert = device_transform.GetInverse(&inverse_device_transform); DCHECK(did_invert); bool clipped = false; gfx::QuadF local_quad = MathUtil::MapQuad(inverse_device_transform, device_quad, &clipped); // We should not DCHECK(!clipped) here, because anti-aliasing inflation may // cause device_quad to become clipped. To our knowledge this scenario does // not need to be handled differently than the unclipped case. return local_quad; } void InflateAntiAliasingDistances(const gfx::QuadF& quad, LayerQuad* device_layer_edges, float edge[24]) { DCHECK(!quad.BoundingBox().IsEmpty()); LayerQuad device_layer_bounds(gfx::QuadF(quad.BoundingBox())); device_layer_edges->InflateAntiAliasingDistance(); device_layer_edges->ToFloatArray(edge); device_layer_bounds.InflateAntiAliasingDistance(); device_layer_bounds.ToFloatArray(&edge[12]); } // static bool GLRenderer::ShouldAntialiasQuad(const gfx::QuadF& device_layer_quad, bool clipped, bool force_aa) { // AAing clipped quads is not supported by the code yet. if (clipped) return false; if (device_layer_quad.BoundingBox().IsEmpty()) return false; if (force_aa) return true; bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear(); bool is_nearest_rect_within_epsilon = is_axis_aligned_in_target && gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(), kAntiAliasingEpsilon); return !is_nearest_rect_within_epsilon; } // static void GLRenderer::SetupQuadForClippingAndAntialiasing( const gfx::Transform& device_transform, const DrawQuad* quad, const gfx::QuadF* aa_quad, const gfx::QuadF* clip_region, gfx::QuadF* local_quad, float edge[24]) { gfx::QuadF rotated_clip; const gfx::QuadF* local_clip_region = clip_region; if (local_clip_region) { rotated_clip = *clip_region; AlignQuadToBoundingBox(&rotated_clip); local_clip_region = &rotated_clip; } if (!aa_quad) { if (local_clip_region) *local_quad = *local_clip_region; return; } LayerQuad device_layer_edges(*aa_quad); InflateAntiAliasingDistances(*aa_quad, &device_layer_edges, edge); // If we have a clip region then we are split, and therefore // by necessity, at least one of our edges is not an external // one. bool is_full_rect = quad->visible_rect == quad->rect; bool region_contains_all_outside_edges = is_full_rect && (is_top(local_clip_region, quad) && is_left(local_clip_region, quad) && is_bottom(local_clip_region, quad) && is_right(local_clip_region, quad)); bool use_aa_on_all_four_edges = !local_clip_region && region_contains_all_outside_edges; gfx::QuadF device_quad; if (use_aa_on_all_four_edges) { device_quad = device_layer_edges.ToQuadF(); } else { gfx::QuadF tile_quad(local_clip_region ? *local_clip_region : gfx::QuadF(gfx::RectF(quad->visible_rect))); device_quad = GetDeviceQuadWithAntialiasingOnExteriorEdges( device_layer_edges, device_transform, tile_quad, local_clip_region, quad); } *local_quad = MapQuadToLocalSpace(device_transform, device_quad); } // static void GLRenderer::SetupRenderPassQuadForClippingAndAntialiasing( const gfx::Transform& device_transform, const RenderPassDrawQuad* quad, const gfx::QuadF* aa_quad, const gfx::QuadF* clip_region, gfx::QuadF* local_quad, float edge[24]) { gfx::QuadF rotated_clip; const gfx::QuadF* local_clip_region = clip_region; if (local_clip_region) { rotated_clip = *clip_region; AlignQuadToBoundingBox(&rotated_clip); local_clip_region = &rotated_clip; } if (!aa_quad) { GetScaledRegion(quad->rect, local_clip_region, local_quad); return; } LayerQuad device_layer_edges(*aa_quad); InflateAntiAliasingDistances(*aa_quad, &device_layer_edges, edge); gfx::QuadF device_quad; // Apply anti-aliasing only to the edges that are not being clipped if (local_clip_region) { gfx::QuadF tile_quad(gfx::RectF(quad->visible_rect)); GetScaledRegion(quad->rect, local_clip_region, &tile_quad); device_quad = GetDeviceQuadWithAntialiasingOnExteriorEdges( device_layer_edges, device_transform, tile_quad, local_clip_region, quad); } else { device_quad = device_layer_edges.ToQuadF(); } *local_quad = MapQuadToLocalSpace(device_transform, device_quad); } void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame, const SolidColorDrawQuad* quad, const gfx::QuadF* clip_region) { gfx::Rect tile_rect = quad->visible_rect; SkColor color = quad->color; float opacity = quad->shared_quad_state->opacity; float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity; // Early out if alpha is small enough that quad doesn't contribute to output. if (alpha < std::numeric_limits::epsilon() && quad->ShouldDrawWithBlending()) return; gfx::Transform device_transform = frame->window_matrix * frame->projection_matrix * quad->shared_quad_state->quad_to_target_transform; device_transform.FlattenTo2d(); if (!device_transform.IsInvertible()) return; auto local_quad = gfx::QuadF(gfx::RectF(tile_rect)); gfx::QuadF device_layer_quad; bool use_aa = false; bool allow_aa = settings_->allow_antialiasing && !quad->force_anti_aliasing_off && quad->IsEdge(); if (allow_aa) { bool clipped = false; bool force_aa = false; device_layer_quad = MathUtil::MapQuad( device_transform, gfx::QuadF( gfx::RectF(quad->shared_quad_state->visible_quad_layer_rect)), &clipped); use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, force_aa); } float edge[24]; const gfx::QuadF* aa_quad = use_aa ? &device_layer_quad : nullptr; SetupQuadForClippingAndAntialiasing(device_transform, quad, aa_quad, clip_region, &local_quad, edge); SolidColorProgramUniforms uniforms; if (use_aa) { SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms); } else { SolidColorUniformLocation(GetSolidColorProgram(), &uniforms); } SetUseProgram(uniforms.program); gl_->Uniform4f(uniforms.color_location, (SkColorGetR(color) * (1.0f / 255.0f)) * alpha, (SkColorGetG(color) * (1.0f / 255.0f)) * alpha, (SkColorGetB(color) * (1.0f / 255.0f)) * alpha, alpha); if (use_aa) { float viewport[4] = { static_cast(current_window_space_viewport_.x()), static_cast(current_window_space_viewport_.y()), static_cast(current_window_space_viewport_.width()), static_cast(current_window_space_viewport_.height()), }; gl_->Uniform4fv(uniforms.viewport_location, 1, viewport); gl_->Uniform3fv(uniforms.edge_location, 8, edge); } // Enable blending when the quad properties require it or if we decided // to use antialiasing. SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa); // Antialising requires a normalized quad, but this could lead to floating // point precision errors, so only normalize when antialising is on. if (use_aa) { // Normalize to tile_rect. local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); SetShaderQuadF(local_quad, uniforms.quad_location); // The transform and vertex data are used to figure out the extents that the // un-antialiased quad should have and which vertex this is and the float // quad passed in via uniform is the actual geometry that gets used to draw // it. This is why this centered rect is used and not the original // quad_rect. gfx::RectF centered_rect( gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()), gfx::SizeF(tile_rect.size())); DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform, centered_rect, uniforms.matrix_location); } else { PrepareGeometry(SHARED_BINDING); SetShaderQuadF(local_quad, uniforms.quad_location); static float gl_matrix[16]; ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad->shared_quad_state->quad_to_target_transform); gl_->UniformMatrix4fv(uniforms.matrix_location, 1, false, &gl_matrix[0]); gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0); } } struct TileProgramUniforms { unsigned program; unsigned matrix_location; unsigned viewport_location; unsigned quad_location; unsigned edge_location; unsigned vertex_tex_transform_location; unsigned sampler_location; unsigned fragment_tex_transform_location; unsigned alpha_location; }; template static void TileUniformLocation(T program, TileProgramUniforms* uniforms) { uniforms->program = program->program(); uniforms->matrix_location = program->vertex_shader().matrix_location(); uniforms->viewport_location = program->vertex_shader().viewport_location(); uniforms->quad_location = program->vertex_shader().quad_location(); uniforms->edge_location = program->vertex_shader().edge_location(); uniforms->vertex_tex_transform_location = program->vertex_shader().vertex_tex_transform_location(); uniforms->sampler_location = program->fragment_shader().sampler_location(); uniforms->alpha_location = program->fragment_shader().alpha_location(); uniforms->fragment_tex_transform_location = program->fragment_shader().fragment_tex_transform_location(); } void GLRenderer::DrawTileQuad(const DrawingFrame* frame, const TileDrawQuad* quad, const gfx::QuadF* clip_region) { DrawContentQuad(frame, quad, quad->resource_id(), clip_region); } void GLRenderer::DrawContentQuad(const DrawingFrame* frame, const ContentDrawQuadBase* quad, ResourceId resource_id, const gfx::QuadF* clip_region) { gfx::Transform device_transform = frame->window_matrix * frame->projection_matrix * quad->shared_quad_state->quad_to_target_transform; device_transform.FlattenTo2d(); gfx::QuadF device_layer_quad; bool use_aa = false; bool allow_aa = settings_->allow_antialiasing && quad->IsEdge(); if (allow_aa) { bool clipped = false; bool force_aa = false; device_layer_quad = MathUtil::MapQuad( device_transform, gfx::QuadF( gfx::RectF(quad->shared_quad_state->visible_quad_layer_rect)), &clipped); use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, force_aa); } // TODO(timav): simplify coordinate transformations in DrawContentQuadAA // similar to the way DrawContentQuadNoAA works and then consider // combining DrawContentQuadAA and DrawContentQuadNoAA into one method. if (use_aa) DrawContentQuadAA(frame, quad, resource_id, device_transform, device_layer_quad, clip_region); else DrawContentQuadNoAA(frame, quad, resource_id, clip_region); } void GLRenderer::DrawContentQuadAA(const DrawingFrame* frame, const ContentDrawQuadBase* quad, ResourceId resource_id, const gfx::Transform& device_transform, const gfx::QuadF& aa_quad, const gfx::QuadF* clip_region) { if (!device_transform.IsInvertible()) return; gfx::Rect tile_rect = quad->visible_rect; gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional( quad->tex_coord_rect, gfx::RectF(quad->rect), gfx::RectF(tile_rect)); float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width(); float tex_to_geom_scale_y = quad->rect.height() / quad->tex_coord_rect.height(); gfx::RectF clamp_geom_rect(tile_rect); gfx::RectF clamp_tex_rect(tex_coord_rect); // Clamp texture coordinates to avoid sampling outside the layer // by deflating the tile region half a texel or half a texel // minus epsilon for one pixel layers. The resulting clamp region // is mapped to the unit square by the vertex shader and mapped // back to normalized texture coordinates by the fragment shader // after being clamped to 0-1 range. float tex_clamp_x = std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon); float tex_clamp_y = std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon); float geom_clamp_x = std::min(tex_clamp_x * tex_to_geom_scale_x, 0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon); float geom_clamp_y = std::min(tex_clamp_y * tex_to_geom_scale_y, 0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon); clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y); clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y); // Map clamping rectangle to unit square. float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width(); float vertex_tex_translate_y = -clamp_geom_rect.y() / clamp_geom_rect.height(); float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width(); float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height(); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size); auto local_quad = gfx::QuadF(gfx::RectF(tile_rect)); float edge[24]; SetupQuadForClippingAndAntialiasing(device_transform, quad, &aa_quad, clip_region, &local_quad, edge); ResourceProvider::ScopedSamplerGL quad_resource_lock( resource_provider_, resource_id, quad->nearest_neighbor ? GL_NEAREST : GL_LINEAR); SamplerType sampler = SamplerTypeFromTextureTarget(quad_resource_lock.target()); float fragment_tex_translate_x = clamp_tex_rect.x(); float fragment_tex_translate_y = clamp_tex_rect.y(); float fragment_tex_scale_x = clamp_tex_rect.width(); float fragment_tex_scale_y = clamp_tex_rect.height(); // Map to normalized texture coordinates. if (sampler != SAMPLER_TYPE_2D_RECT) { gfx::Size texture_size = quad->texture_size; DCHECK(!texture_size.IsEmpty()); fragment_tex_translate_x /= texture_size.width(); fragment_tex_translate_y /= texture_size.height(); fragment_tex_scale_x /= texture_size.width(); fragment_tex_scale_y /= texture_size.height(); } TileProgramUniforms uniforms; if (quad->swizzle_contents) { TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler), &uniforms); } else { TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler), &uniforms); } SetUseProgram(uniforms.program); gl_->Uniform1i(uniforms.sampler_location, 0); float viewport[4] = { static_cast(current_window_space_viewport_.x()), static_cast(current_window_space_viewport_.y()), static_cast(current_window_space_viewport_.width()), static_cast(current_window_space_viewport_.height()), }; gl_->Uniform4fv(uniforms.viewport_location, 1, viewport); gl_->Uniform3fv(uniforms.edge_location, 8, edge); gl_->Uniform4f(uniforms.vertex_tex_transform_location, vertex_tex_translate_x, vertex_tex_translate_y, vertex_tex_scale_x, vertex_tex_scale_y); gl_->Uniform4f(uniforms.fragment_tex_transform_location, fragment_tex_translate_x, fragment_tex_translate_y, fragment_tex_scale_x, fragment_tex_scale_y); // Blending is required for antialiasing. SetBlendEnabled(true); // Normalize to tile_rect. local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); SetShaderOpacity(quad->shared_quad_state->opacity, uniforms.alpha_location); SetShaderQuadF(local_quad, uniforms.quad_location); // The transform and vertex data are used to figure out the extents that the // un-antialiased quad should have and which vertex this is and the float // quad passed in via uniform is the actual geometry that gets used to draw // it. This is why this centered rect is used and not the original quad_rect. gfx::RectF centered_rect( gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()), gfx::SizeF(tile_rect.size())); DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform, centered_rect, uniforms.matrix_location); } void GLRenderer::DrawContentQuadNoAA(const DrawingFrame* frame, const ContentDrawQuadBase* quad, ResourceId resource_id, const gfx::QuadF* clip_region) { gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional( quad->tex_coord_rect, gfx::RectF(quad->rect), gfx::RectF(quad->visible_rect)); float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width(); float tex_to_geom_scale_y = quad->rect.height() / quad->tex_coord_rect.height(); bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f); GLenum filter = (scaled || !quad->shared_quad_state->quad_to_target_transform .IsIdentityOrIntegerTranslation()) && !quad->nearest_neighbor ? GL_LINEAR : GL_NEAREST; ResourceProvider::ScopedSamplerGL quad_resource_lock( resource_provider_, resource_id, filter); SamplerType sampler = SamplerTypeFromTextureTarget(quad_resource_lock.target()); float vertex_tex_translate_x = tex_coord_rect.x(); float vertex_tex_translate_y = tex_coord_rect.y(); float vertex_tex_scale_x = tex_coord_rect.width(); float vertex_tex_scale_y = tex_coord_rect.height(); // Map to normalized texture coordinates. if (sampler != SAMPLER_TYPE_2D_RECT) { gfx::Size texture_size = quad->texture_size; DCHECK(!texture_size.IsEmpty()); vertex_tex_translate_x /= texture_size.width(); vertex_tex_translate_y /= texture_size.height(); vertex_tex_scale_x /= texture_size.width(); vertex_tex_scale_y /= texture_size.height(); } TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size); TileProgramUniforms uniforms; if (quad->ShouldDrawWithBlending()) { if (quad->swizzle_contents) { TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler), &uniforms); } else { TileUniformLocation(GetTileProgram(tex_coord_precision, sampler), &uniforms); } } else { if (quad->swizzle_contents) { TileUniformLocation( GetTileProgramSwizzleOpaque(tex_coord_precision, sampler), &uniforms); } else { TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler), &uniforms); } } SetUseProgram(uniforms.program); gl_->Uniform1i(uniforms.sampler_location, 0); gl_->Uniform4f(uniforms.vertex_tex_transform_location, vertex_tex_translate_x, vertex_tex_translate_y, vertex_tex_scale_x, vertex_tex_scale_y); SetBlendEnabled(quad->ShouldDrawWithBlending()); SetShaderOpacity(quad->shared_quad_state->opacity, uniforms.alpha_location); // Pass quad coordinates to the uniform in the same order as GeometryBinding // does, then vertices will match the texture mapping in the vertex buffer. // The method SetShaderQuadF() changes the order of vertices and so it's // not used here. auto tile_quad = gfx::QuadF(gfx::RectF(quad->visible_rect)); float width = quad->visible_rect.width(); float height = quad->visible_rect.height(); auto top_left = gfx::PointF(quad->visible_rect.origin()); if (clip_region) { tile_quad = *clip_region; float gl_uv[8] = { (tile_quad.p4().x() - top_left.x()) / width, (tile_quad.p4().y() - top_left.y()) / height, (tile_quad.p1().x() - top_left.x()) / width, (tile_quad.p1().y() - top_left.y()) / height, (tile_quad.p2().x() - top_left.x()) / width, (tile_quad.p2().y() - top_left.y()) / height, (tile_quad.p3().x() - top_left.x()) / width, (tile_quad.p3().y() - top_left.y()) / height, }; PrepareGeometry(CLIPPED_BINDING); clipped_geometry_->InitializeCustomQuadWithUVs( gfx::QuadF(gfx::RectF(quad->visible_rect)), gl_uv); } else { PrepareGeometry(SHARED_BINDING); } float gl_quad[8] = { tile_quad.p4().x(), tile_quad.p4().y(), tile_quad.p1().x(), tile_quad.p1().y(), tile_quad.p2().x(), tile_quad.p2().y(), tile_quad.p3().x(), tile_quad.p3().y(), }; gl_->Uniform2fv(uniforms.quad_location, 4, gl_quad); static float gl_matrix[16]; ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad->shared_quad_state->quad_to_target_transform); gl_->UniformMatrix4fv(uniforms.matrix_location, 1, false, &gl_matrix[0]); gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0); } void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame, const YUVVideoDrawQuad* quad, const gfx::QuadF* clip_region) { SetBlendEnabled(quad->ShouldDrawWithBlending()); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_quad_layer_rect.bottom_right()); bool use_alpha_plane = quad->a_plane_resource_id() != 0; ResourceProvider::ScopedSamplerGL y_plane_lock( resource_provider_, quad->y_plane_resource_id(), GL_TEXTURE1, GL_LINEAR); ResourceProvider::ScopedSamplerGL u_plane_lock( resource_provider_, quad->u_plane_resource_id(), GL_TEXTURE2, GL_LINEAR); DCHECK_EQ(y_plane_lock.target(), u_plane_lock.target()); ResourceProvider::ScopedSamplerGL v_plane_lock( resource_provider_, quad->v_plane_resource_id(), GL_TEXTURE3, GL_LINEAR); DCHECK_EQ(y_plane_lock.target(), v_plane_lock.target()); scoped_ptr a_plane_lock; if (use_alpha_plane) { a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL( resource_provider_, quad->a_plane_resource_id(), GL_TEXTURE4, GL_LINEAR)); DCHECK_EQ(y_plane_lock.target(), a_plane_lock->target()); } // All planes must have the same sampler type. SamplerType sampler = SamplerTypeFromTextureTarget(y_plane_lock.target()); int matrix_location = -1; int ya_tex_scale_location = -1; int ya_tex_offset_location = -1; int uv_tex_scale_location = -1; int uv_tex_offset_location = -1; int ya_clamp_rect_location = -1; int uv_clamp_rect_location = -1; int y_texture_location = -1; int u_texture_location = -1; int v_texture_location = -1; int a_texture_location = -1; int yuv_matrix_location = -1; int yuv_adj_location = -1; int alpha_location = -1; if (use_alpha_plane) { const VideoYUVAProgram* program = GetVideoYUVAProgram(tex_coord_precision, sampler); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); matrix_location = program->vertex_shader().matrix_location(); ya_tex_scale_location = program->vertex_shader().ya_tex_scale_location(); ya_tex_offset_location = program->vertex_shader().ya_tex_offset_location(); uv_tex_scale_location = program->vertex_shader().uv_tex_scale_location(); uv_tex_offset_location = program->vertex_shader().uv_tex_offset_location(); y_texture_location = program->fragment_shader().y_texture_location(); u_texture_location = program->fragment_shader().u_texture_location(); v_texture_location = program->fragment_shader().v_texture_location(); a_texture_location = program->fragment_shader().a_texture_location(); yuv_matrix_location = program->fragment_shader().yuv_matrix_location(); yuv_adj_location = program->fragment_shader().yuv_adj_location(); ya_clamp_rect_location = program->fragment_shader().ya_clamp_rect_location(); uv_clamp_rect_location = program->fragment_shader().uv_clamp_rect_location(); alpha_location = program->fragment_shader().alpha_location(); } else { const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision, sampler); DCHECK(program && (program->initialized() || IsContextLost())); SetUseProgram(program->program()); matrix_location = program->vertex_shader().matrix_location(); ya_tex_scale_location = program->vertex_shader().ya_tex_scale_location(); ya_tex_offset_location = program->vertex_shader().ya_tex_offset_location(); uv_tex_scale_location = program->vertex_shader().uv_tex_scale_location(); uv_tex_offset_location = program->vertex_shader().uv_tex_offset_location(); y_texture_location = program->fragment_shader().y_texture_location(); u_texture_location = program->fragment_shader().u_texture_location(); v_texture_location = program->fragment_shader().v_texture_location(); yuv_matrix_location = program->fragment_shader().yuv_matrix_location(); yuv_adj_location = program->fragment_shader().yuv_adj_location(); ya_clamp_rect_location = program->fragment_shader().ya_clamp_rect_location(); uv_clamp_rect_location = program->fragment_shader().uv_clamp_rect_location(); alpha_location = program->fragment_shader().alpha_location(); } gfx::SizeF ya_tex_scale(1.0f, 1.0f); gfx::SizeF uv_tex_scale(1.0f, 1.0f); if (sampler != SAMPLER_TYPE_2D_RECT) { DCHECK(!quad->ya_tex_size.IsEmpty()); DCHECK(!quad->uv_tex_size.IsEmpty()); ya_tex_scale = gfx::SizeF(1.0f / quad->ya_tex_size.width(), 1.0f / quad->ya_tex_size.height()); uv_tex_scale = gfx::SizeF(1.0f / quad->uv_tex_size.width(), 1.0f / quad->uv_tex_size.height()); } float ya_vertex_tex_translate_x = quad->ya_tex_coord_rect.x() * ya_tex_scale.width(); float ya_vertex_tex_translate_y = quad->ya_tex_coord_rect.y() * ya_tex_scale.height(); float ya_vertex_tex_scale_x = quad->ya_tex_coord_rect.width() * ya_tex_scale.width(); float ya_vertex_tex_scale_y = quad->ya_tex_coord_rect.height() * ya_tex_scale.height(); float uv_vertex_tex_translate_x = quad->uv_tex_coord_rect.x() * uv_tex_scale.width(); float uv_vertex_tex_translate_y = quad->uv_tex_coord_rect.y() * uv_tex_scale.height(); float uv_vertex_tex_scale_x = quad->uv_tex_coord_rect.width() * uv_tex_scale.width(); float uv_vertex_tex_scale_y = quad->uv_tex_coord_rect.height() * uv_tex_scale.height(); gl_->Uniform2f(ya_tex_scale_location, ya_vertex_tex_scale_x, ya_vertex_tex_scale_y); gl_->Uniform2f(ya_tex_offset_location, ya_vertex_tex_translate_x, ya_vertex_tex_translate_y); gl_->Uniform2f(uv_tex_scale_location, uv_vertex_tex_scale_x, uv_vertex_tex_scale_y); gl_->Uniform2f(uv_tex_offset_location, uv_vertex_tex_translate_x, uv_vertex_tex_translate_y); gfx::RectF ya_clamp_rect(ya_vertex_tex_translate_x, ya_vertex_tex_translate_y, ya_vertex_tex_scale_x, ya_vertex_tex_scale_y); ya_clamp_rect.Inset(0.5f * ya_tex_scale.width(), 0.5f * ya_tex_scale.height()); gfx::RectF uv_clamp_rect(uv_vertex_tex_translate_x, uv_vertex_tex_translate_y, uv_vertex_tex_scale_x, uv_vertex_tex_scale_y); uv_clamp_rect.Inset(0.5f * uv_tex_scale.width(), 0.5f * uv_tex_scale.height()); gl_->Uniform4f(ya_clamp_rect_location, ya_clamp_rect.x(), ya_clamp_rect.y(), ya_clamp_rect.right(), ya_clamp_rect.bottom()); gl_->Uniform4f(uv_clamp_rect_location, uv_clamp_rect.x(), uv_clamp_rect.y(), uv_clamp_rect.right(), uv_clamp_rect.bottom()); gl_->Uniform1i(y_texture_location, 1); gl_->Uniform1i(u_texture_location, 2); gl_->Uniform1i(v_texture_location, 3); if (use_alpha_plane) gl_->Uniform1i(a_texture_location, 4); // These values are magic numbers that are used in the transformation from YUV // to RGB color values. They are taken from the following webpage: // http://www.fourcc.org/fccyvrgb.php float yuv_to_rgb_rec601[9] = { 1.164f, 1.164f, 1.164f, 0.0f, -.391f, 2.018f, 1.596f, -.813f, 0.0f, }; float yuv_to_rgb_jpeg[9] = { 1.f, 1.f, 1.f, 0.0f, -.34414f, 1.772f, 1.402f, -.71414f, 0.0f, }; float yuv_to_rgb_rec709[9] = { 1.164f, 1.164f, 1.164f, 0.0f, -0.213f, 2.112f, 1.793f, -0.533f, 0.0f, }; // These values map to 16, 128, and 128 respectively, and are computed // as a fraction over 256 (e.g. 16 / 256 = 0.0625). // They are used in the YUV to RGBA conversion formula: // Y - 16 : Gives 16 values of head and footroom for overshooting // U - 128 : Turns unsigned U into signed U [-128,127] // V - 128 : Turns unsigned V into signed V [-128,127] float yuv_adjust_constrained[3] = { -0.0625f, -0.5f, -0.5f, }; // Same as above, but without the head and footroom. float yuv_adjust_full[3] = { 0.0f, -0.5f, -0.5f, }; float* yuv_to_rgb = NULL; float* yuv_adjust = NULL; switch (quad->color_space) { case YUVVideoDrawQuad::REC_601: yuv_to_rgb = yuv_to_rgb_rec601; yuv_adjust = yuv_adjust_constrained; break; case YUVVideoDrawQuad::REC_709: yuv_to_rgb = yuv_to_rgb_rec709; yuv_adjust = yuv_adjust_constrained; break; case YUVVideoDrawQuad::JPEG: yuv_to_rgb = yuv_to_rgb_jpeg; yuv_adjust = yuv_adjust_full; break; } // The transform and vertex data are used to figure out the extents that the // un-antialiased quad should have and which vertex this is and the float // quad passed in via uniform is the actual geometry that gets used to draw // it. This is why this centered rect is used and not the original quad_rect. auto tile_rect = gfx::RectF(quad->rect); gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb); gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust); SetShaderOpacity(quad->shared_quad_state->opacity, alpha_location); if (!clip_region) { DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform, tile_rect, matrix_location); } else { float uvs[8] = {0}; GetScaledUVs(quad->visible_rect, clip_region, uvs); gfx::QuadF region_quad = *clip_region; region_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); region_quad -= gfx::Vector2dF(0.5f, 0.5f); DrawQuadGeometryClippedByQuadF( frame, quad->shared_quad_state->quad_to_target_transform, tile_rect, region_quad, matrix_location, uvs); } } void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame, const StreamVideoDrawQuad* quad, const gfx::QuadF* clip_region) { SetBlendEnabled(quad->ShouldDrawWithBlending()); static float gl_matrix[16]; DCHECK(capabilities_.using_egl_image); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_quad_layer_rect.bottom_right()); const VideoStreamTextureProgram* program = GetVideoStreamTextureProgram(tex_coord_precision); SetUseProgram(program->program()); ToGLMatrix(&gl_matrix[0], quad->matrix); gl_->UniformMatrix4fv(program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix); ResourceProvider::ScopedReadLockGL lock(resource_provider_, quad->resource_id()); DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_)); gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id()); gl_->Uniform1i(program->fragment_shader().sampler_location(), 0); SetShaderOpacity(quad->shared_quad_state->opacity, program->fragment_shader().alpha_location()); if (!clip_region) { DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform, gfx::RectF(quad->rect), program->vertex_shader().matrix_location()); } else { gfx::QuadF region_quad(*clip_region); region_quad.Scale(1.0f / quad->rect.width(), 1.0f / quad->rect.height()); region_quad -= gfx::Vector2dF(0.5f, 0.5f); float uvs[8] = {0}; GetScaledUVs(quad->visible_rect, clip_region, uvs); DrawQuadGeometryClippedByQuadF( frame, quad->shared_quad_state->quad_to_target_transform, gfx::RectF(quad->rect), region_quad, program->vertex_shader().matrix_location(), uvs); } } struct TextureProgramBinding { template void Set(Program* program) { DCHECK(program); program_id = program->program(); sampler_location = program->fragment_shader().sampler_location(); matrix_location = program->vertex_shader().matrix_location(); background_color_location = program->fragment_shader().background_color_location(); } int program_id; int sampler_location; int matrix_location; int transform_location; int background_color_location; }; struct TexTransformTextureProgramBinding : TextureProgramBinding { template void Set(Program* program) { TextureProgramBinding::Set(program); tex_transform_location = program->vertex_shader().tex_transform_location(); vertex_opacity_location = program->vertex_shader().vertex_opacity_location(); } int tex_transform_location; int vertex_opacity_location; }; void GLRenderer::FlushTextureQuadCache(BoundGeometry flush_binding) { // Check to see if we have anything to draw. if (draw_cache_.program_id == -1) return; PrepareGeometry(flush_binding); // Set the correct blending mode. SetBlendEnabled(draw_cache_.needs_blending); // Bind the program to the GL state. SetUseProgram(draw_cache_.program_id); // Bind the correct texture sampler location. gl_->Uniform1i(draw_cache_.sampler_location, 0); // Assume the current active textures is 0. ResourceProvider::ScopedSamplerGL locked_quad( resource_provider_, draw_cache_.resource_id, draw_cache_.nearest_neighbor ? GL_NEAREST : GL_LINEAR); DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_)); gl_->BindTexture(locked_quad.target(), locked_quad.texture_id()); static_assert(sizeof(Float4) == 4 * sizeof(float), "Float4 struct should be densely packed"); static_assert(sizeof(Float16) == 16 * sizeof(float), "Float16 struct should be densely packed"); // Upload the tranforms for both points and uvs. gl_->UniformMatrix4fv( static_cast(draw_cache_.matrix_location), static_cast(draw_cache_.matrix_data.size()), false, reinterpret_cast(&draw_cache_.matrix_data.front())); gl_->Uniform4fv(static_cast(draw_cache_.uv_xform_location), static_cast(draw_cache_.uv_xform_data.size()), reinterpret_cast(&draw_cache_.uv_xform_data.front())); if (draw_cache_.background_color != SK_ColorTRANSPARENT) { Float4 background_color = PremultipliedColor(draw_cache_.background_color); gl_->Uniform4fv(draw_cache_.background_color_location, 1, background_color.data); } gl_->Uniform1fv( static_cast(draw_cache_.vertex_opacity_location), static_cast(draw_cache_.vertex_opacity_data.size()), static_cast(&draw_cache_.vertex_opacity_data.front())); DCHECK_LE(draw_cache_.matrix_data.size(), static_cast(std::numeric_limits::max()) / 6u); // Draw the quads! gl_->DrawElements(GL_TRIANGLES, 6 * static_cast(draw_cache_.matrix_data.size()), GL_UNSIGNED_SHORT, 0); // Clear the cache. draw_cache_.program_id = -1; draw_cache_.uv_xform_data.resize(0); draw_cache_.vertex_opacity_data.resize(0); draw_cache_.matrix_data.resize(0); // If we had a clipped binding, prepare the shared binding for the // next inserts. if (flush_binding == CLIPPED_BINDING) { PrepareGeometry(SHARED_BINDING); } } void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame, const TextureDrawQuad* quad, const gfx::QuadF* clip_region) { // If we have a clip_region then we have to render the next quad // with dynamic geometry, therefore we must flush all pending // texture quads. if (clip_region) { // We send in false here because we want to flush what's currently in the // queue using the shared_geometry and not clipped_geometry FlushTextureQuadCache(SHARED_BINDING); } TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_quad_layer_rect.bottom_right()); ResourceProvider::ScopedReadLockGL lock(resource_provider_, quad->resource_id()); const SamplerType sampler = SamplerTypeFromTextureTarget(lock.target()); // Choose the correct texture program binding TexTransformTextureProgramBinding binding; if (quad->premultiplied_alpha) { if (quad->background_color == SK_ColorTRANSPARENT) { binding.Set(GetTextureProgram(tex_coord_precision, sampler)); } else { binding.Set(GetTextureBackgroundProgram(tex_coord_precision, sampler)); } } else { if (quad->background_color == SK_ColorTRANSPARENT) { binding.Set( GetNonPremultipliedTextureProgram(tex_coord_precision, sampler)); } else { binding.Set(GetNonPremultipliedTextureBackgroundProgram( tex_coord_precision, sampler)); } } int resource_id = quad->resource_id(); size_t max_quads = StaticGeometryBinding::NUM_QUADS; if (draw_cache_.program_id != binding.program_id || draw_cache_.resource_id != resource_id || draw_cache_.needs_blending != quad->ShouldDrawWithBlending() || draw_cache_.nearest_neighbor != quad->nearest_neighbor || draw_cache_.background_color != quad->background_color || draw_cache_.matrix_data.size() >= max_quads) { FlushTextureQuadCache(SHARED_BINDING); draw_cache_.program_id = binding.program_id; draw_cache_.resource_id = resource_id; draw_cache_.needs_blending = quad->ShouldDrawWithBlending(); draw_cache_.nearest_neighbor = quad->nearest_neighbor; draw_cache_.background_color = quad->background_color; draw_cache_.uv_xform_location = binding.tex_transform_location; draw_cache_.background_color_location = binding.background_color_location; draw_cache_.vertex_opacity_location = binding.vertex_opacity_location; draw_cache_.matrix_location = binding.matrix_location; draw_cache_.sampler_location = binding.sampler_location; } // Generate the uv-transform Float4 uv_transform = {{0.0f, 0.0f, 1.0f, 1.0f}}; if (!clip_region) uv_transform = UVTransform(quad); if (sampler == SAMPLER_TYPE_2D_RECT) { // Un-normalize the texture coordiantes for rectangle targets. gfx::Size texture_size = lock.texture_size(); uv_transform.data[0] *= texture_size.width(); uv_transform.data[2] *= texture_size.width(); uv_transform.data[1] *= texture_size.height(); uv_transform.data[3] *= texture_size.height(); } draw_cache_.uv_xform_data.push_back(uv_transform); // Generate the vertex opacity const float opacity = quad->shared_quad_state->opacity; draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity); draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity); // Generate the transform matrix gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, quad->shared_quad_state->quad_to_target_transform, gfx::RectF(quad->rect)); quad_rect_matrix = frame->projection_matrix * quad_rect_matrix; Float16 m; quad_rect_matrix.matrix().asColMajorf(m.data); draw_cache_.matrix_data.push_back(m); if (clip_region) { gfx::QuadF scaled_region; if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) { scaled_region = SharedGeometryQuad().BoundingBox(); } // Both the scaled region and the SharedGeomtryQuad are in the space // -0.5->0.5. We need to move that to the space 0->1. float uv[8]; uv[0] = scaled_region.p1().x() + 0.5f; uv[1] = scaled_region.p1().y() + 0.5f; uv[2] = scaled_region.p2().x() + 0.5f; uv[3] = scaled_region.p2().y() + 0.5f; uv[4] = scaled_region.p3().x() + 0.5f; uv[5] = scaled_region.p3().y() + 0.5f; uv[6] = scaled_region.p4().x() + 0.5f; uv[7] = scaled_region.p4().y() + 0.5f; PrepareGeometry(CLIPPED_BINDING); clipped_geometry_->InitializeCustomQuadWithUVs(scaled_region, uv); FlushTextureQuadCache(CLIPPED_BINDING); } } void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame, const IOSurfaceDrawQuad* quad, const gfx::QuadF* clip_region) { SetBlendEnabled(quad->ShouldDrawWithBlending()); TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( gl_, &highp_threshold_cache_, highp_threshold_min_, quad->shared_quad_state->visible_quad_layer_rect.bottom_right()); TexTransformTextureProgramBinding binding; binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision)); SetUseProgram(binding.program_id); gl_->Uniform1i(binding.sampler_location, 0); if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) { gl_->Uniform4f( binding.tex_transform_location, 0, quad->io_surface_size.height(), quad->io_surface_size.width(), quad->io_surface_size.height() * -1.0f); } else { gl_->Uniform4f(binding.tex_transform_location, 0, 0, quad->io_surface_size.width(), quad->io_surface_size.height()); } const float vertex_opacity[] = {quad->shared_quad_state->opacity, quad->shared_quad_state->opacity, quad->shared_quad_state->opacity, quad->shared_quad_state->opacity}; gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity); ResourceProvider::ScopedReadLockGL lock(resource_provider_, quad->io_surface_resource_id()); DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_)); gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id()); if (!clip_region) { DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform, gfx::RectF(quad->rect), binding.matrix_location); } else { float uvs[8] = {0}; GetScaledUVs(quad->visible_rect, clip_region, uvs); DrawQuadGeometryClippedByQuadF( frame, quad->shared_quad_state->quad_to_target_transform, gfx::RectF(quad->rect), *clip_region, binding.matrix_location, uvs); } gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0); } void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) { if (use_sync_query_) { DCHECK(current_sync_query_); current_sync_query_->End(); pending_sync_queries_.push_back(current_sync_query_.Pass()); } current_framebuffer_lock_ = nullptr; swap_buffer_rect_.Union(frame->root_damage_rect); gl_->Disable(GL_BLEND); blend_shadow_ = false; ScheduleOverlays(frame); } void GLRenderer::FinishDrawingQuadList() { FlushTextureQuadCache(SHARED_BINDING); } bool GLRenderer::FlippedFramebuffer(const DrawingFrame* frame) const { if (frame->current_render_pass != frame->root_render_pass) return true; return FlippedRootFramebuffer(); } bool GLRenderer::FlippedRootFramebuffer() const { // GL is normally flipped, so a flipped output results in an unflipping. return !output_surface_->capabilities().flipped_output_surface; } void GLRenderer::EnsureScissorTestEnabled() { if (is_scissor_enabled_) return; FlushTextureQuadCache(SHARED_BINDING); gl_->Enable(GL_SCISSOR_TEST); is_scissor_enabled_ = true; } void GLRenderer::EnsureScissorTestDisabled() { if (!is_scissor_enabled_) return; FlushTextureQuadCache(SHARED_BINDING); gl_->Disable(GL_SCISSOR_TEST); is_scissor_enabled_ = false; } void GLRenderer::CopyCurrentRenderPassToBitmap( DrawingFrame* frame, scoped_ptr request) { TRACE_EVENT0("cc", "GLRenderer::CopyCurrentRenderPassToBitmap"); gfx::Rect copy_rect = frame->current_render_pass->output_rect; if (request->has_area()) copy_rect.Intersect(request->area()); GetFramebufferPixelsAsync(frame, copy_rect, request.Pass()); } void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) { transform.matrix().asColMajorf(gl_matrix); } void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) { if (quad_location == -1) return; float gl_quad[8]; gl_quad[0] = quad.p1().x(); gl_quad[1] = quad.p1().y(); gl_quad[2] = quad.p2().x(); gl_quad[3] = quad.p2().y(); gl_quad[4] = quad.p3().x(); gl_quad[5] = quad.p3().y(); gl_quad[6] = quad.p4().x(); gl_quad[7] = quad.p4().y(); gl_->Uniform2fv(quad_location, 4, gl_quad); } void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) { if (alpha_location != -1) gl_->Uniform1f(alpha_location, opacity); } void GLRenderer::SetStencilEnabled(bool enabled) { if (enabled == stencil_shadow_) return; if (enabled) gl_->Enable(GL_STENCIL_TEST); else gl_->Disable(GL_STENCIL_TEST); stencil_shadow_ = enabled; } void GLRenderer::SetBlendEnabled(bool enabled) { if (enabled == blend_shadow_) return; if (enabled) gl_->Enable(GL_BLEND); else gl_->Disable(GL_BLEND); blend_shadow_ = enabled; } void GLRenderer::SetUseProgram(unsigned program) { if (program == program_shadow_) return; gl_->UseProgram(program); program_shadow_ = program; } void GLRenderer::DrawQuadGeometryClippedByQuadF( const DrawingFrame* frame, const gfx::Transform& draw_transform, const gfx::RectF& quad_rect, const gfx::QuadF& clipping_region_quad, int matrix_location, const float* uvs) { PrepareGeometry(CLIPPED_BINDING); if (uvs) { clipped_geometry_->InitializeCustomQuadWithUVs(clipping_region_quad, uvs); } else { clipped_geometry_->InitializeCustomQuad(clipping_region_quad); } gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect); static float gl_matrix[16]; ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix); gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0]); gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, reinterpret_cast(0)); } void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame, const gfx::Transform& draw_transform, const gfx::RectF& quad_rect, int matrix_location) { PrepareGeometry(SHARED_BINDING); gfx::Transform quad_rect_matrix; QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect); static float gl_matrix[16]; ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix); gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0]); gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0); } void GLRenderer::Finish() { TRACE_EVENT0("cc", "GLRenderer::Finish"); gl_->Finish(); } void GLRenderer::SwapBuffers(const CompositorFrameMetadata& metadata) { DCHECK(!is_backbuffer_discarded_); TRACE_EVENT0("cc,benchmark", "GLRenderer::SwapBuffers"); // We're done! Time to swapbuffers! gfx::Size surface_size = output_surface_->SurfaceSize(); CompositorFrame compositor_frame; compositor_frame.metadata = metadata; compositor_frame.gl_frame_data = make_scoped_ptr(new GLFrameData); compositor_frame.gl_frame_data->size = surface_size; if (capabilities_.using_partial_swap) { // If supported, we can save significant bandwidth by only swapping the // damaged/scissored region (clamped to the viewport). swap_buffer_rect_.Intersect(gfx::Rect(surface_size)); int flipped_y_pos_of_rect_bottom = surface_size.height() - swap_buffer_rect_.y() - swap_buffer_rect_.height(); compositor_frame.gl_frame_data->sub_buffer_rect = gfx::Rect(swap_buffer_rect_.x(), FlippedRootFramebuffer() ? flipped_y_pos_of_rect_bottom : swap_buffer_rect_.y(), swap_buffer_rect_.width(), swap_buffer_rect_.height()); } else { compositor_frame.gl_frame_data->sub_buffer_rect = gfx::Rect(output_surface_->SurfaceSize()); } output_surface_->SwapBuffers(&compositor_frame); // We always hold onto resources for an extra frame, to make sure we don't // update the buffer while it's being scanned out. previous_swap_overlay_resources_.clear(); previous_swap_overlay_resources_.swap(in_use_overlay_resources_); in_use_overlay_resources_.swap(pending_overlay_resources_); swap_buffer_rect_ = gfx::Rect(); } void GLRenderer::EnforceMemoryPolicy() { if (!visible()) { TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources"); ReleaseRenderPassTextures(); DiscardBackbuffer(); output_surface_->context_provider()->DeleteCachedResources(); gl_->Flush(); } PrepareGeometry(NO_BINDING); } void GLRenderer::DiscardBackbuffer() { if (is_backbuffer_discarded_) return; output_surface_->DiscardBackbuffer(); is_backbuffer_discarded_ = true; // Damage tracker needs a full reset every time framebuffer is discarded. client_->SetFullRootLayerDamage(); } void GLRenderer::EnsureBackbuffer() { if (!is_backbuffer_discarded_) return; output_surface_->EnsureBackbuffer(); is_backbuffer_discarded_ = false; } void GLRenderer::GetFramebufferPixelsAsync( const DrawingFrame* frame, const gfx::Rect& rect, scoped_ptr request) { DCHECK(!request->IsEmpty()); if (request->IsEmpty()) return; if (rect.IsEmpty()) return; gfx::Rect window_rect = MoveFromDrawToWindowSpace(frame, rect); DCHECK_GE(window_rect.x(), 0); DCHECK_GE(window_rect.y(), 0); DCHECK_LE(window_rect.right(), current_surface_size_.width()); DCHECK_LE(window_rect.bottom(), current_surface_size_.height()); if (!request->force_bitmap_result()) { bool own_mailbox = !request->has_texture_mailbox(); GLuint texture_id = 0; gpu::Mailbox mailbox; if (own_mailbox) { gl_->GenMailboxCHROMIUM(mailbox.name); gl_->GenTextures(1, &texture_id); gl_->BindTexture(GL_TEXTURE_2D, texture_id); gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name); } else { mailbox = request->texture_mailbox().mailbox(); DCHECK_EQ(static_cast(GL_TEXTURE_2D), request->texture_mailbox().target()); DCHECK(!mailbox.IsZero()); unsigned incoming_sync_point = request->texture_mailbox().sync_point(); if (incoming_sync_point) gl_->WaitSyncPointCHROMIUM(incoming_sync_point); texture_id = gl_->CreateAndConsumeTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name); } GetFramebufferTexture(texture_id, RGBA_8888, window_rect); unsigned sync_point = gl_->InsertSyncPointCHROMIUM(); TextureMailbox texture_mailbox(mailbox, GL_TEXTURE_2D, sync_point); scoped_ptr release_callback; if (own_mailbox) { gl_->BindTexture(GL_TEXTURE_2D, 0); release_callback = texture_mailbox_deleter_->GetReleaseCallback( output_surface_->context_provider(), texture_id); } else { gl_->DeleteTextures(1, &texture_id); } request->SendTextureResult( window_rect.size(), texture_mailbox, release_callback.Pass()); return; } DCHECK(request->force_bitmap_result()); scoped_ptr pending_read(new PendingAsyncReadPixels); pending_read->copy_request = request.Pass(); pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(), pending_read.Pass()); bool do_workaround = NeedsIOSurfaceReadbackWorkaround(); unsigned temporary_texture = 0; unsigned temporary_fbo = 0; if (do_workaround) { // On Mac OS X, calling glReadPixels() against an FBO whose color attachment // is an IOSurface-backed texture causes corruption of future glReadPixels() // calls, even those on different OpenGL contexts. It is believed that this // is the root cause of top crasher // http://crbug.com/99393. gl_->GenTextures(1, &temporary_texture); gl_->BindTexture(GL_TEXTURE_2D, temporary_texture); gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Copy the contents of the current (IOSurface-backed) framebuffer into a // temporary texture. GetFramebufferTexture( temporary_texture, RGBA_8888, gfx::Rect(current_surface_size_)); gl_->GenFramebuffers(1, &temporary_fbo); // Attach this texture to an FBO, and perform the readback from that FBO. gl_->BindFramebuffer(GL_FRAMEBUFFER, temporary_fbo); gl_->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, temporary_texture, 0); DCHECK_EQ(static_cast(GL_FRAMEBUFFER_COMPLETE), gl_->CheckFramebufferStatus(GL_FRAMEBUFFER)); } GLuint buffer = 0; gl_->GenBuffers(1, &buffer); gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer); gl_->BufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 4 * window_rect.size().GetArea(), NULL, GL_STREAM_READ); GLuint query = 0; gl_->GenQueriesEXT(1, &query); gl_->BeginQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM, query); gl_->ReadPixels(window_rect.x(), window_rect.y(), window_rect.width(), window_rect.height(), GL_RGBA, GL_UNSIGNED_BYTE, NULL); gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0); if (do_workaround) { // Clean up. gl_->BindFramebuffer(GL_FRAMEBUFFER, 0); gl_->BindTexture(GL_TEXTURE_2D, 0); gl_->DeleteFramebuffers(1, &temporary_fbo); gl_->DeleteTextures(1, &temporary_texture); } base::Closure finished_callback = base::Bind(&GLRenderer::FinishedReadback, base::Unretained(this), buffer, query, window_rect.size()); // Save the finished_callback so it can be cancelled. pending_async_read_pixels_.front()->finished_read_pixels_callback.Reset( finished_callback); base::Closure cancelable_callback = pending_async_read_pixels_.front()-> finished_read_pixels_callback.callback(); // Save the buffer to verify the callbacks happen in the expected order. pending_async_read_pixels_.front()->buffer = buffer; gl_->EndQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM); context_support_->SignalQuery(query, cancelable_callback); EnforceMemoryPolicy(); } void GLRenderer::FinishedReadback(unsigned source_buffer, unsigned query, const gfx::Size& size) { DCHECK(!pending_async_read_pixels_.empty()); if (query != 0) { gl_->DeleteQueriesEXT(1, &query); } // Make sure we are servicing the right readback. There is no guarantee that // callbacks to this function are in the same order as we post the copy // requests. // Nevertheless, it is very likely that the order is preserved, and thus // start searching from back to the front. auto iter = pending_async_read_pixels_.rbegin(); const auto& reverse_end = pending_async_read_pixels_.rend(); while (iter != reverse_end && (*iter)->buffer != source_buffer) ++iter; DCHECK(iter != reverse_end); PendingAsyncReadPixels* current_read = *iter; uint8* src_pixels = NULL; scoped_ptr bitmap; if (source_buffer != 0) { gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, source_buffer); src_pixels = static_cast(gl_->MapBufferCHROMIUM( GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, GL_READ_ONLY)); if (src_pixels) { bitmap.reset(new SkBitmap); bitmap->allocN32Pixels(size.width(), size.height()); scoped_ptr lock(new SkAutoLockPixels(*bitmap)); uint8* dest_pixels = static_cast(bitmap->getPixels()); size_t row_bytes = size.width() * 4; int num_rows = size.height(); size_t total_bytes = num_rows * row_bytes; for (size_t dest_y = 0; dest_y < total_bytes; dest_y += row_bytes) { // Flip Y axis. size_t src_y = total_bytes - dest_y - row_bytes; // Swizzle OpenGL -> Skia byte order. for (size_t x = 0; x < row_bytes; x += 4) { dest_pixels[dest_y + x + SK_R32_SHIFT / 8] = src_pixels[src_y + x + 0]; dest_pixels[dest_y + x + SK_G32_SHIFT / 8] = src_pixels[src_y + x + 1]; dest_pixels[dest_y + x + SK_B32_SHIFT / 8] = src_pixels[src_y + x + 2]; dest_pixels[dest_y + x + SK_A32_SHIFT / 8] = src_pixels[src_y + x + 3]; } } gl_->UnmapBufferCHROMIUM(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM); } gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0); gl_->DeleteBuffers(1, &source_buffer); } if (bitmap) current_read->copy_request->SendBitmapResult(bitmap.Pass()); // Conversion from reverse iterator to iterator: // Iterator |iter.base() - 1| points to the same element with reverse iterator // |iter|. The difference |-1| is due to the fact of correspondence of end() // with rbegin(). pending_async_read_pixels_.erase(iter.base() - 1); } void GLRenderer::GetFramebufferTexture(unsigned texture_id, ResourceFormat texture_format, const gfx::Rect& window_rect) { DCHECK(texture_id); DCHECK_GE(window_rect.x(), 0); DCHECK_GE(window_rect.y(), 0); DCHECK_LE(window_rect.right(), current_surface_size_.width()); DCHECK_LE(window_rect.bottom(), current_surface_size_.height()); gl_->BindTexture(GL_TEXTURE_2D, texture_id); gl_->CopyTexImage2D(GL_TEXTURE_2D, 0, GLDataFormat(texture_format), window_rect.x(), window_rect.y(), window_rect.width(), window_rect.height(), 0); gl_->BindTexture(GL_TEXTURE_2D, 0); } bool GLRenderer::UseScopedTexture(DrawingFrame* frame, const ScopedResource* texture, const gfx::Rect& viewport_rect) { DCHECK(texture->id()); frame->current_render_pass = NULL; frame->current_texture = texture; return BindFramebufferToTexture(frame, texture, viewport_rect); } void GLRenderer::BindFramebufferToOutputSurface(DrawingFrame* frame) { current_framebuffer_lock_ = nullptr; output_surface_->BindFramebuffer(); if (output_surface_->HasExternalStencilTest()) { SetStencilEnabled(true); gl_->StencilFunc(GL_EQUAL, 1, 1); } else { SetStencilEnabled(false); } } bool GLRenderer::BindFramebufferToTexture(DrawingFrame* frame, const ScopedResource* texture, const gfx::Rect& target_rect) { DCHECK(texture->id()); // Explicitly release lock, otherwise we can crash when try to lock // same texture again. current_framebuffer_lock_ = nullptr; SetStencilEnabled(false); gl_->BindFramebuffer(GL_FRAMEBUFFER, offscreen_framebuffer_id_); current_framebuffer_lock_ = make_scoped_ptr(new ResourceProvider::ScopedWriteLockGL( resource_provider_, texture->id())); unsigned texture_id = current_framebuffer_lock_->texture_id(); gl_->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0); DCHECK(gl_->CheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE || IsContextLost()); return true; } void GLRenderer::SetScissorTestRect(const gfx::Rect& scissor_rect) { EnsureScissorTestEnabled(); // Don't unnecessarily ask the context to change the scissor, because it // may cause undesired GPU pipeline flushes. if (scissor_rect == scissor_rect_ && !scissor_rect_needs_reset_) return; scissor_rect_ = scissor_rect; FlushTextureQuadCache(SHARED_BINDING); gl_->Scissor(scissor_rect.x(), scissor_rect.y(), scissor_rect.width(), scissor_rect.height()); scissor_rect_needs_reset_ = false; } void GLRenderer::SetViewport() { gl_->Viewport(current_window_space_viewport_.x(), current_window_space_viewport_.y(), current_window_space_viewport_.width(), current_window_space_viewport_.height()); } void GLRenderer::InitializeSharedObjects() { TRACE_EVENT0("cc", "GLRenderer::InitializeSharedObjects"); // Create an FBO for doing offscreen rendering. gl_->GenFramebuffers(1, &offscreen_framebuffer_id_); shared_geometry_ = make_scoped_ptr(new StaticGeometryBinding(gl_, QuadVertexRect())); clipped_geometry_ = make_scoped_ptr(new DynamicGeometryBinding(gl_)); } void GLRenderer::PrepareGeometry(BoundGeometry binding) { if (binding == bound_geometry_) { return; } switch (binding) { case SHARED_BINDING: shared_geometry_->PrepareForDraw(); break; case CLIPPED_BINDING: clipped_geometry_->PrepareForDraw(); break; case NO_BINDING: break; } bound_geometry_ = binding; } const GLRenderer::DebugBorderProgram* GLRenderer::GetDebugBorderProgram() { if (!debug_border_program_.initialized()) { TRACE_EVENT0("cc", "GLRenderer::debugBorderProgram::initialize"); debug_border_program_.Initialize(output_surface_->context_provider(), TEX_COORD_PRECISION_NA, SAMPLER_TYPE_NA); } return &debug_border_program_; } const GLRenderer::SolidColorProgram* GLRenderer::GetSolidColorProgram() { if (!solid_color_program_.initialized()) { TRACE_EVENT0("cc", "GLRenderer::solidColorProgram::initialize"); solid_color_program_.Initialize(output_surface_->context_provider(), TEX_COORD_PRECISION_NA, SAMPLER_TYPE_NA); } return &solid_color_program_; } const GLRenderer::SolidColorProgramAA* GLRenderer::GetSolidColorProgramAA() { if (!solid_color_program_aa_.initialized()) { TRACE_EVENT0("cc", "GLRenderer::solidColorProgramAA::initialize"); solid_color_program_aa_.Initialize(output_surface_->context_provider(), TEX_COORD_PRECISION_NA, SAMPLER_TYPE_NA); } return &solid_color_program_aa_; } const GLRenderer::RenderPassProgram* GLRenderer::GetRenderPassProgram( TexCoordPrecision precision, BlendMode blend_mode) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(blend_mode, 0); DCHECK_LE(blend_mode, LAST_BLEND_MODE); RenderPassProgram* program = &render_pass_program_[precision][blend_mode]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassProgram::initialize"); program->Initialize(output_surface_->context_provider(), precision, SAMPLER_TYPE_2D, blend_mode); } return program; } const GLRenderer::RenderPassProgramAA* GLRenderer::GetRenderPassProgramAA( TexCoordPrecision precision, BlendMode blend_mode) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(blend_mode, 0); DCHECK_LE(blend_mode, LAST_BLEND_MODE); RenderPassProgramAA* program = &render_pass_program_aa_[precision][blend_mode]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassProgramAA::initialize"); program->Initialize(output_surface_->context_provider(), precision, SAMPLER_TYPE_2D, blend_mode); } return program; } const GLRenderer::RenderPassMaskProgram* GLRenderer::GetRenderPassMaskProgram( TexCoordPrecision precision, SamplerType sampler, BlendMode blend_mode, bool mask_for_background) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); DCHECK_GE(blend_mode, 0); DCHECK_LE(blend_mode, LAST_BLEND_MODE); RenderPassMaskProgram* program = &render_pass_mask_program_[precision][sampler][blend_mode] [mask_for_background ? HAS_MASK : NO_MASK]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler, blend_mode, mask_for_background); } return program; } const GLRenderer::RenderPassMaskProgramAA* GLRenderer::GetRenderPassMaskProgramAA(TexCoordPrecision precision, SamplerType sampler, BlendMode blend_mode, bool mask_for_background) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); DCHECK_GE(blend_mode, 0); DCHECK_LE(blend_mode, LAST_BLEND_MODE); RenderPassMaskProgramAA* program = &render_pass_mask_program_aa_[precision][sampler][blend_mode] [mask_for_background ? HAS_MASK : NO_MASK]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgramAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler, blend_mode, mask_for_background); } return program; } const GLRenderer::RenderPassColorMatrixProgram* GLRenderer::GetRenderPassColorMatrixProgram(TexCoordPrecision precision, BlendMode blend_mode) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(blend_mode, 0); DCHECK_LE(blend_mode, LAST_BLEND_MODE); RenderPassColorMatrixProgram* program = &render_pass_color_matrix_program_[precision][blend_mode]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgram::initialize"); program->Initialize(output_surface_->context_provider(), precision, SAMPLER_TYPE_2D, blend_mode); } return program; } const GLRenderer::RenderPassColorMatrixProgramAA* GLRenderer::GetRenderPassColorMatrixProgramAA(TexCoordPrecision precision, BlendMode blend_mode) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(blend_mode, 0); DCHECK_LE(blend_mode, LAST_BLEND_MODE); RenderPassColorMatrixProgramAA* program = &render_pass_color_matrix_program_aa_[precision][blend_mode]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgramAA::initialize"); program->Initialize(output_surface_->context_provider(), precision, SAMPLER_TYPE_2D, blend_mode); } return program; } const GLRenderer::RenderPassMaskColorMatrixProgram* GLRenderer::GetRenderPassMaskColorMatrixProgram( TexCoordPrecision precision, SamplerType sampler, BlendMode blend_mode, bool mask_for_background) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); DCHECK_GE(blend_mode, 0); DCHECK_LE(blend_mode, LAST_BLEND_MODE); RenderPassMaskColorMatrixProgram* program = &render_pass_mask_color_matrix_program_[precision][sampler][blend_mode] [mask_for_background ? HAS_MASK : NO_MASK]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskColorMatrixProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler, blend_mode, mask_for_background); } return program; } const GLRenderer::RenderPassMaskColorMatrixProgramAA* GLRenderer::GetRenderPassMaskColorMatrixProgramAA( TexCoordPrecision precision, SamplerType sampler, BlendMode blend_mode, bool mask_for_background) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); DCHECK_GE(blend_mode, 0); DCHECK_LE(blend_mode, LAST_BLEND_MODE); RenderPassMaskColorMatrixProgramAA* program = &render_pass_mask_color_matrix_program_aa_[precision][sampler][blend_mode] [mask_for_background ? HAS_MASK : NO_MASK]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::renderPassMaskColorMatrixProgramAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler, blend_mode, mask_for_background); } return program; } const GLRenderer::TileProgram* GLRenderer::GetTileProgram( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); TileProgram* program = &tile_program_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgram::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramOpaque* GLRenderer::GetTileProgramOpaque( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); TileProgramOpaque* program = &tile_program_opaque_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramOpaque::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramAA* GLRenderer::GetTileProgramAA( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); TileProgramAA* program = &tile_program_aa_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramSwizzle* GLRenderer::GetTileProgramSwizzle( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); TileProgramSwizzle* program = &tile_program_swizzle_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzle::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramSwizzleOpaque* GLRenderer::GetTileProgramSwizzleOpaque(TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); TileProgramSwizzleOpaque* program = &tile_program_swizzle_opaque_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleOpaque::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TileProgramSwizzleAA* GLRenderer::GetTileProgramSwizzleAA( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); TileProgramSwizzleAA* program = &tile_program_swizzle_aa_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleAA::initialize"); program->Initialize( output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TextureProgram* GLRenderer::GetTextureProgram( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); TextureProgram* program = &texture_program_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize"); program->Initialize(output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::NonPremultipliedTextureProgram* GLRenderer::GetNonPremultipliedTextureProgram(TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); NonPremultipliedTextureProgram* program = &nonpremultiplied_texture_program_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::NonPremultipliedTextureProgram::Initialize"); program->Initialize(output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TextureBackgroundProgram* GLRenderer::GetTextureBackgroundProgram(TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); TextureBackgroundProgram* program = &texture_background_program_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize"); program->Initialize(output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::NonPremultipliedTextureBackgroundProgram* GLRenderer::GetNonPremultipliedTextureBackgroundProgram( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); NonPremultipliedTextureBackgroundProgram* program = &nonpremultiplied_texture_background_program_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::NonPremultipliedTextureProgram::Initialize"); program->Initialize(output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::TextureProgram* GLRenderer::GetTextureIOSurfaceProgram( TexCoordPrecision precision) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); TextureProgram* program = &texture_io_surface_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::textureIOSurfaceProgram::initialize"); program->Initialize(output_surface_->context_provider(), precision, SAMPLER_TYPE_2D_RECT); } return program; } const GLRenderer::VideoYUVProgram* GLRenderer::GetVideoYUVProgram( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); VideoYUVProgram* program = &video_yuv_program_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::videoYUVProgram::initialize"); program->Initialize(output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::VideoYUVAProgram* GLRenderer::GetVideoYUVAProgram( TexCoordPrecision precision, SamplerType sampler) { DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); DCHECK_GE(sampler, 0); DCHECK_LE(sampler, LAST_SAMPLER_TYPE); VideoYUVAProgram* program = &video_yuva_program_[precision][sampler]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::videoYUVAProgram::initialize"); program->Initialize(output_surface_->context_provider(), precision, sampler); } return program; } const GLRenderer::VideoStreamTextureProgram* GLRenderer::GetVideoStreamTextureProgram(TexCoordPrecision precision) { if (!Capabilities().using_egl_image) return NULL; DCHECK_GE(precision, 0); DCHECK_LE(precision, LAST_TEX_COORD_PRECISION); VideoStreamTextureProgram* program = &video_stream_texture_program_[precision]; if (!program->initialized()) { TRACE_EVENT0("cc", "GLRenderer::streamTextureProgram::initialize"); program->Initialize(output_surface_->context_provider(), precision, SAMPLER_TYPE_EXTERNAL_OES); } return program; } void GLRenderer::CleanupSharedObjects() { shared_geometry_ = nullptr; for (int i = 0; i <= LAST_TEX_COORD_PRECISION; ++i) { for (int j = 0; j <= LAST_SAMPLER_TYPE; ++j) { tile_program_[i][j].Cleanup(gl_); tile_program_opaque_[i][j].Cleanup(gl_); tile_program_swizzle_[i][j].Cleanup(gl_); tile_program_swizzle_opaque_[i][j].Cleanup(gl_); tile_program_aa_[i][j].Cleanup(gl_); tile_program_swizzle_aa_[i][j].Cleanup(gl_); for (int k = 0; k <= LAST_BLEND_MODE; k++) { for (int l = 0; l <= LAST_MASK_VALUE; ++l) { render_pass_mask_program_[i][j][k][l].Cleanup(gl_); render_pass_mask_program_aa_[i][j][k][l].Cleanup(gl_); render_pass_mask_color_matrix_program_aa_[i][j][k][l].Cleanup(gl_); render_pass_mask_color_matrix_program_[i][j][k][l].Cleanup(gl_); } } video_yuv_program_[i][j].Cleanup(gl_); video_yuva_program_[i][j].Cleanup(gl_); } for (int j = 0; j <= LAST_BLEND_MODE; j++) { render_pass_program_[i][j].Cleanup(gl_); render_pass_program_aa_[i][j].Cleanup(gl_); render_pass_color_matrix_program_[i][j].Cleanup(gl_); render_pass_color_matrix_program_aa_[i][j].Cleanup(gl_); } for (int j = 0; j <= LAST_SAMPLER_TYPE; ++j) { texture_program_[i][j].Cleanup(gl_); nonpremultiplied_texture_program_[i][j].Cleanup(gl_); texture_background_program_[i][j].Cleanup(gl_); nonpremultiplied_texture_background_program_[i][j].Cleanup(gl_); } texture_io_surface_program_[i].Cleanup(gl_); video_stream_texture_program_[i].Cleanup(gl_); } debug_border_program_.Cleanup(gl_); solid_color_program_.Cleanup(gl_); solid_color_program_aa_.Cleanup(gl_); if (offscreen_framebuffer_id_) gl_->DeleteFramebuffers(1, &offscreen_framebuffer_id_); if (on_demand_tile_raster_resource_id_) resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_); ReleaseRenderPassTextures(); } void GLRenderer::ReinitializeGLState() { is_scissor_enabled_ = false; scissor_rect_needs_reset_ = true; stencil_shadow_ = false; blend_shadow_ = true; program_shadow_ = 0; RestoreGLState(); } void GLRenderer::RestoreGLState() { // This restores the current GLRenderer state to the GL context. bound_geometry_ = NO_BINDING; PrepareGeometry(SHARED_BINDING); gl_->Disable(GL_DEPTH_TEST); gl_->Disable(GL_CULL_FACE); gl_->ColorMask(true, true, true, true); gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); gl_->ActiveTexture(GL_TEXTURE0); if (program_shadow_) gl_->UseProgram(program_shadow_); if (stencil_shadow_) gl_->Enable(GL_STENCIL_TEST); else gl_->Disable(GL_STENCIL_TEST); if (blend_shadow_) gl_->Enable(GL_BLEND); else gl_->Disable(GL_BLEND); if (is_scissor_enabled_) { gl_->Enable(GL_SCISSOR_TEST); gl_->Scissor(scissor_rect_.x(), scissor_rect_.y(), scissor_rect_.width(), scissor_rect_.height()); } else { gl_->Disable(GL_SCISSOR_TEST); } } void GLRenderer::RestoreFramebuffer(DrawingFrame* frame) { UseRenderPass(frame, frame->current_render_pass); // Call SetViewport directly, rather than through PrepareSurfaceForPass. // PrepareSurfaceForPass also clears the surface, which is not desired when // restoring. SetViewport(); } bool GLRenderer::IsContextLost() { return gl_->GetGraphicsResetStatusKHR() != GL_NO_ERROR; } void GLRenderer::ScheduleOverlays(DrawingFrame* frame) { if (!frame->overlay_list.size()) return; OverlayCandidateList& overlays = frame->overlay_list; for (const OverlayCandidate& overlay : overlays) { unsigned texture_id = 0; if (overlay.use_output_surface_for_resource) { texture_id = output_surface_->GetOverlayTextureId(); DCHECK_IMPLIES(!texture_id, IsContextLost()); } else { pending_overlay_resources_.push_back( make_scoped_ptr(new ResourceProvider::ScopedReadLockGL( resource_provider_, overlay.resource_id))); texture_id = pending_overlay_resources_.back()->texture_id(); } context_support_->ScheduleOverlayPlane( overlay.plane_z_order, overlay.transform, texture_id, ToNearestRect(overlay.display_rect), overlay.uv_rect); } } } // namespace cc