// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/picture_layer_tiling.h" #include #include "base/debug/trace_event.h" #include "cc/math_util.h" #include "ui/gfx/point_conversions.h" #include "ui/gfx/rect_conversions.h" #include "ui/gfx/safe_integer_conversions.h" #include "ui/gfx/size_conversions.h" namespace cc { scoped_ptr PictureLayerTiling::Create( float contents_scale) { return make_scoped_ptr(new PictureLayerTiling(contents_scale)); } scoped_ptr PictureLayerTiling::Clone() const { return make_scoped_ptr(new PictureLayerTiling(*this)); } PictureLayerTiling::PictureLayerTiling(float contents_scale) : client_(NULL), contents_scale_(contents_scale), tiling_data_(gfx::Size(), gfx::Size(), true), resolution_(NON_IDEAL_RESOLUTION), last_source_frame_number_(0), last_impl_frame_time_(0) { } PictureLayerTiling::~PictureLayerTiling() { } void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) { client_ = client; } gfx::Rect PictureLayerTiling::ContentRect() const { return gfx::Rect(tiling_data_.total_size()); } gfx::SizeF PictureLayerTiling::ContentSizeF() const { return gfx::ScaleSize(layer_bounds_, contents_scale_); } Tile* PictureLayerTiling::TileAt(int i, int j) const { TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j)); if (iter == tiles_.end()) return NULL; return iter->second.get(); } void PictureLayerTiling::CreateTile(int i, int j) { gfx::Rect tile_rect = tiling_data_.TileBoundsWithBorder(i, j); tile_rect.set_size(tiling_data_.max_texture_size()); TileMapKey key(i, j); DCHECK(tiles_.find(key) == tiles_.end()); scoped_refptr tile = client_->CreateTile(this, tile_rect); if (tile) tiles_[key] = tile; } Region PictureLayerTiling::OpaqueRegionInContentRect( const gfx::Rect& content_rect) const { Region opaque_region; // TODO(enne): implement me return opaque_region; } void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) { if (layer_bounds_ == layer_bounds) return; gfx::Size old_layer_bounds = layer_bounds_; layer_bounds_ = layer_bounds; gfx::Size old_content_bounds = tiling_data_.total_size(); gfx::Size content_bounds = gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_)); tiling_data_.SetTotalSize(content_bounds); if (layer_bounds_.IsEmpty()) { tiles_.clear(); return; } gfx::Size tile_size = client_->CalculateTileSize( tiling_data_.max_texture_size(), content_bounds); if (tile_size != tiling_data_.max_texture_size()) { tiling_data_.SetMaxTextureSize(tile_size); tiles_.clear(); CreateTilesFromLayerRect(gfx::Rect(layer_bounds_)); return; } // Any tiles outside our new bounds are invalid and should be dropped. if (old_content_bounds.width() > content_bounds.width() || old_content_bounds.height() > content_bounds.height()) { int right = tiling_data_.TileXIndexFromSrcCoord(content_bounds.width() - 1); int bottom = tiling_data_.TileYIndexFromSrcCoord(content_bounds.height() - 1); std::vector invalid_tile_keys; for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { if (it->first.first > right || it->first.second > bottom) invalid_tile_keys.push_back(it->first); } for (size_t i = 0; i < invalid_tile_keys.size(); ++i) tiles_.erase(invalid_tile_keys[i]); } // Create tiles for newly exposed areas. Region layer_region((gfx::Rect(layer_bounds_))); layer_region.Subtract(gfx::Rect(old_layer_bounds)); for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) { Invalidate(iter.rect()); CreateTilesFromLayerRect(iter.rect()); } } void PictureLayerTiling::Invalidate(const Region& layer_invalidation) { std::vector new_tiles; for (Region::Iterator region_iter(layer_invalidation); region_iter.has_rect(); region_iter.next()) { gfx::Rect layer_invalidation = region_iter.rect(); layer_invalidation.Intersect(gfx::Rect(layer_bounds_)); gfx::Rect rect = gfx::ToEnclosingRect(ScaleRect(layer_invalidation, contents_scale_)); for (PictureLayerTiling::Iterator tile_iter(this, contents_scale_, rect, PictureLayerTiling::LayerDeviceAlignmentUnknown); tile_iter; ++tile_iter) { TileMapKey key(tile_iter.tile_i_, tile_iter.tile_j_); TileMap::iterator found = tiles_.find(key); if (found == tiles_.end()) continue; tiles_.erase(found); new_tiles.push_back(key); } } for (size_t i = 0; i < new_tiles.size(); ++i) CreateTile(new_tiles[i].first, new_tiles[i].second); } void PictureLayerTiling::CreateTilesFromLayerRect(gfx::Rect layer_rect) { gfx::Rect content_rect = gfx::ToEnclosingRect(ScaleRect(layer_rect, contents_scale_)); CreateTilesFromContentRect(content_rect); } void PictureLayerTiling::CreateTilesFromContentRect(gfx::Rect content_rect) { for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) { TileMap::iterator found = tiles_.find(TileMapKey(iter.index_x(), iter.index_y())); // Ignore any tiles that already exist. if (found != tiles_.end()) continue; CreateTile(iter.index_x(), iter.index_y()); } } PictureLayerTiling::Iterator::Iterator() : tiling_(NULL), current_tile_(NULL), tile_i_(0), tile_j_(0), left_(0), top_(0), right_(-1), bottom_(-1) { } PictureLayerTiling::Iterator::Iterator(const PictureLayerTiling* tiling, float dest_scale, gfx::Rect dest_rect, LayerDeviceAlignment layerDeviceAlignment) : tiling_(tiling), dest_rect_(dest_rect), current_tile_(NULL), dest_to_content_scale_(0), tile_i_(0), tile_j_(0), left_(0), top_(0), right_(-1), bottom_(-1) { DCHECK(tiling_); if (dest_rect_.IsEmpty()) return; dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale; // This is the maximum size that the dest rect can be, given the content size. gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize( tiling_->ContentRect().size(), 1 / dest_to_content_scale_, 1 / dest_to_content_scale_)); gfx::Rect content_rect = gfx::ToEnclosingRect(gfx::ScaleRect(dest_rect_, dest_to_content_scale_, dest_to_content_scale_)); // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to // check for non-intersection first. content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size())); if (content_rect.IsEmpty()) return; left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x()); top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y()); right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord( content_rect.right() - 1); bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord( content_rect.bottom() - 1); tile_i_ = left_ - 1; tile_j_ = top_; ++(*this); } PictureLayerTiling::Iterator::~Iterator() { } PictureLayerTiling::Iterator& PictureLayerTiling::Iterator::operator++() { if (tile_j_ > bottom_) return *this; bool first_time = tile_i_ < left_; bool new_row = false; tile_i_++; if (tile_i_ > right_) { tile_i_ = left_; tile_j_++; new_row = true; if (tile_j_ > bottom_) { current_tile_ = NULL; return *this; } } current_tile_ = tiling_->TileAt(tile_i_, tile_j_); // Calculate the current geometry rect. Due to floating point rounding // and ToEnclosingRect, tiles might overlap in destination space on the // edges. gfx::Rect last_geometry_rect = current_geometry_rect_; gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_); current_geometry_rect_ = gfx::ToEnclosingRect( gfx::ScaleRect(content_rect, 1 / dest_to_content_scale_, 1 / dest_to_content_scale_)); current_geometry_rect_.Intersect(dest_rect_); if (first_time) return *this; // Iteration happens left->right, top->bottom. Running off the bottom-right // edge is handled by the intersection above with dest_rect_. Here we make // sure that the new current geometry rect doesn't overlap with the last. int min_left; int min_top; if (new_row) { min_left = dest_rect_.x(); min_top = last_geometry_rect.bottom(); } else { min_left = last_geometry_rect.right(); min_top = last_geometry_rect.y(); } int inset_left = std::max(0, min_left - current_geometry_rect_.x()); int inset_top = std::max(0, min_top - current_geometry_rect_.y()); current_geometry_rect_.Inset(inset_left, inset_top, 0, 0); if (!new_row) { DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x()); DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom()); DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y()); } return *this; } gfx::Rect PictureLayerTiling::Iterator::geometry_rect() const { return current_geometry_rect_; } gfx::Rect PictureLayerTiling::Iterator::full_tile_geometry_rect() const { gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_); rect.set_size(tiling_->tiling_data_.max_texture_size()); return rect; } gfx::RectF PictureLayerTiling::Iterator::texture_rect() const { gfx::PointF tex_origin = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin(); // Convert from dest space => content space => texture space. gfx::RectF texture_rect(current_geometry_rect_); texture_rect.Scale(dest_to_content_scale_, dest_to_content_scale_); texture_rect.Offset(-tex_origin.OffsetFromOrigin()); texture_rect.Intersect(tiling_->ContentRect()); return texture_rect; } gfx::Size PictureLayerTiling::Iterator::texture_size() const { return tiling_->tiling_data_.max_texture_size(); } void PictureLayerTiling::UpdateTilePriorities( WhichTree tree, gfx::Size device_viewport, const gfx::RectF& viewport_in_layer_space, gfx::Size last_layer_bounds, gfx::Size current_layer_bounds, float last_layer_contents_scale, float current_layer_contents_scale, const gfx::Transform& last_screen_transform, const gfx::Transform& current_screen_transform, int current_source_frame_number, double current_frame_time, bool store_screen_space_quads_on_tiles) { if (ContentRect().IsEmpty()) return; bool first_update_in_new_source_frame = current_source_frame_number != last_source_frame_number_; bool first_update_in_new_impl_frame = current_frame_time != last_impl_frame_time_; // In pending tree, this is always called. We update priorities: // - Immediately after a commit (first_update_in_new_source_frame). // - On animation ticks after the first frame in the tree // (first_update_in_new_impl_frame). // In active tree, this is only called during draw. We update priorities: // - On draw if properties were not already computed by the pending tree // and activated for the frame (first_update_in_new_impl_frame). if (!first_update_in_new_impl_frame && !first_update_in_new_source_frame) return; double time_delta = 0; if (last_impl_frame_time_ != 0 && last_layer_bounds == current_layer_bounds) time_delta = current_frame_time - last_impl_frame_time_; gfx::Rect viewport_in_content_space = gfx::ToEnclosingRect(gfx::ScaleRect(viewport_in_layer_space, contents_scale_)); gfx::Size tile_size = tiling_data_.max_texture_size(); int64 prioritized_rect_area = TilePriority::kNumTilesToCoverWithInflatedViewportRectForPrioritization * tile_size.width() * tile_size.height(); gfx::Rect prioritized_rect = ExpandRectEquallyToAreaBoundedBy( viewport_in_content_space, prioritized_rect_area, ContentRect()); DCHECK(ContentRect().Contains(prioritized_rect)); // Iterate through all of the tiles that were live last frame but will // not be live this frame, and mark them as being dead. for (TilingData::DifferenceIterator iter(&tiling_data_, last_prioritized_rect_, prioritized_rect); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; TilePriority priority; DCHECK(!priority.is_live); Tile* tile = find->second.get(); tile->SetPriority(tree, priority); } last_prioritized_rect_ = prioritized_rect; gfx::Rect view_rect(device_viewport); float current_scale = current_layer_contents_scale / contents_scale_; float last_scale = last_layer_contents_scale / contents_scale_; // Fast path tile priority calculation when both transforms are translations. if (last_screen_transform.IsIdentityOrTranslation() && current_screen_transform.IsIdentityOrTranslation()) { gfx::Vector2dF current_offset( current_screen_transform.matrix().get(0, 3), current_screen_transform.matrix().get(1, 3)); gfx::Vector2dF last_offset( last_screen_transform.matrix().get(0, 3), last_screen_transform.matrix().get(1, 3)); for (TilingData::Iterator iter(&tiling_data_, prioritized_rect); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; Tile* tile = find->second.get(); gfx::Rect tile_bounds = tiling_data_.TileBounds(iter.index_x(), iter.index_y()); gfx::RectF current_screen_rect = gfx::ScaleRect( tile_bounds, current_scale, current_scale) + current_offset; gfx::RectF last_screen_rect = gfx::ScaleRect( tile_bounds, last_scale, last_scale) + last_offset; float distance_to_visible_in_pixels = TilePriority::manhattanDistance(current_screen_rect, view_rect); float time_to_visible_in_seconds = TilePriority::TimeForBoundsToIntersect( last_screen_rect, current_screen_rect, time_delta, view_rect); TilePriority priority( resolution_, time_to_visible_in_seconds, distance_to_visible_in_pixels); if (store_screen_space_quads_on_tiles) priority.set_current_screen_quad(gfx::QuadF(current_screen_rect)); tile->SetPriority(tree, priority); } } else { for (TilingData::Iterator iter(&tiling_data_, prioritized_rect); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; Tile* tile = find->second.get(); gfx::Rect tile_bounds = tiling_data_.TileBounds(iter.index_x(), iter.index_y()); gfx::RectF current_layer_content_rect = gfx::ScaleRect( tile_bounds, current_scale, current_scale); gfx::RectF current_screen_rect = MathUtil::mapClippedRect( current_screen_transform, current_layer_content_rect); gfx::RectF last_layer_content_rect = gfx::ScaleRect( tile_bounds, last_scale, last_scale); gfx::RectF last_screen_rect = MathUtil::mapClippedRect( last_screen_transform, last_layer_content_rect); float distance_to_visible_in_pixels = TilePriority::manhattanDistance(current_screen_rect, view_rect); float time_to_visible_in_seconds = TilePriority::TimeForBoundsToIntersect( last_screen_rect, current_screen_rect, time_delta, view_rect); TilePriority priority( resolution_, time_to_visible_in_seconds, distance_to_visible_in_pixels); if (store_screen_space_quads_on_tiles) { bool clipped; priority.set_current_screen_quad( MathUtil::mapQuad(current_screen_transform, gfx::QuadF(current_layer_content_rect), clipped)); } tile->SetPriority(tree, priority); } } last_source_frame_number_ = current_source_frame_number; last_impl_frame_time_ = current_frame_time; } void PictureLayerTiling::DidBecomeActive() { for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE)); it->second->SetPriority(PENDING_TREE, TilePriority()); // Tile holds a ref onto a picture pile. If the tile never gets invalidated // and recreated, then that picture pile ref could exist indefinitely. To // prevent this, ask the client to update the pile to its own ref. This // will cause PicturePileImpls and their clones to get deleted once the // corresponding PictureLayerImpl and any in flight raster jobs go out of // scope. client_->UpdatePile(it->second); } } scoped_ptr PictureLayerTiling::AsValue() const { scoped_ptr state(new base::DictionaryValue()); state->SetInteger("num_tiles", tiles_.size()); state->SetDouble("content_scale", contents_scale_); state->Set("content_bounds", MathUtil::asValue(ContentRect().size()).release()); return state.PassAs(); } namespace { int ComputeOffsetToExpand4EdgesEqually(int old_width, int old_height, int64 target_area) { // We need to expand the rect in 4 directions, we can compute the // amount to expand along each axis with a quadratic equation: // (old_w + add) * (old_h + add) = target_area // old_w * old_h + old_w * add + add * old_h + add * add = target_area // add^2 + add * (old_w + old_h) - target_area + old_w * old_h = 0 // Therefore, we solve the quadratic equation with: // a = 1 // b = old_w + old_h // c = -target_area + old_w * old_h int a = 1; int64 b = old_width + old_height; int64 c = -target_area + old_width * old_height; int sqrt_part = std::sqrt(b * b - 4.0 * a * c); int add_each_axis = (-b + sqrt_part) / 2 / a; return add_each_axis / 2; } int ComputeOffsetToExpand3EdgesEqually(int old_width, int old_height, int64 target_area, bool left_complete, bool top_complete, bool right_complete, bool bottom_complete) { // We need to expand the rect in three directions, so we will have to // expand along one axis twice as much as the other. Otherwise, this // is very similar to the case where we expand in all 4 directions. if (left_complete || right_complete) { // Expanding twice as much vertically as horizontally. // (old_w + add) * (old_h + add*2) = target_area // old_w * old_h + old_w * add*2 + add * old_h + add * add*2 = target_area // (add^2)*2 + add * (old_w*2 + old_h) - target_area + old_w * old_h = 0 // Therefore, we solve the quadratic equation with: // a = 2 // b = old_w*2 + old_h // c = -target_area + old_w * old_h int a = 2; int64 b = old_width * 2 + old_height; int64 c = -target_area + old_width * old_height; int sqrt_part = std::sqrt(b * b - 4.0 * a * c); int add_each_direction = (-b + sqrt_part) / 2 / a; return add_each_direction; } else { // Expanding twice as much horizontally as vertically. // (old_w + add*2) * (old_h + add) = target_area // old_w * old_h + old_w * add + add*2 * old_h + add*2 * add = target_area // (add^2)*2 + add * (old_w + old_h*2) - target_area + old_w * old_h = 0 // Therefore, we solve the quadratic equation with: // a = 2 // b = old_w + old_h*2 // c = -target_area + old_w * old_h int a = 2; int64 b = old_width + old_height * 2; int64 c = -target_area + old_width * old_height; int sqrt_part = std::sqrt(b * b - 4.0 * a * c); int add_each_direction = (-b + sqrt_part) / 2 / a; return add_each_direction; } } int ComputeOffsetToExpand2EdgesEqually(int old_width, int old_height, int64 target_area, bool left_complete, bool top_complete, bool right_complete, bool bottom_complete) { // We need to expand the rect along two directions. If the two directions // are opposite from each other then we only need to compute a distance // along a single axis. if (left_complete && right_complete) { // Expanding along the vertical axis only: // old_w * (old_h + add) = target_area // old_w * old_h + old_w * add = target_area // add_vertically = (target_area - old_w * old_h) / old_w int add_vertically = target_area / old_width - old_height; return add_vertically / 2; } else if (top_complete && bottom_complete) { // Expanding along the horizontal axis only: // (old_w + add) * old_h = target_area // old_w * old_h + add * old_h = target_area // add_horizontally = (target_area - old_w * old_h) / old_h int add_horizontally = target_area / old_height - old_width; return add_horizontally / 2; } else { // If we need to expand along both horizontal and vertical axes, we can use // the same result as if we were expanding all four edges. But we apply the // offset computed for opposing edges to a single edge. int add_each_direction = ComputeOffsetToExpand4EdgesEqually( old_width, old_height, target_area); return add_each_direction * 2; } } int ComputeOffsetToExpand1Edge(int old_width, int old_height, int64 target_area, bool left_complete, bool top_complete, bool right_complete, bool bottom_complete) { // We need to expand the rect in a single direction, so we are either // moving just a verical edge, or just a horizontal edge. if (!top_complete || !bottom_complete) { // Moving a vertical edge: // old_w * (old_h + add) = target_area // old_w * old_h + old_w * add = target_area // add_vertically = (target_area - old_w * old_h) / old_w int add_vertically = target_area / old_width - old_height; return add_vertically; } else { // Moving a horizontal edge: // (old_w + add) * old_h = target_area // old_w * old_h + add * old_h = target_area // add_horizontally = (target_area - old_w * old_h) / old_h int add_horizontally = target_area / old_height - old_width; return add_horizontally; } } } // namespace // static gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy( gfx::Rect starting_rect, int64 target_area, gfx::Rect bounding_rect) { bool left_complete = false; bool top_complete = false; bool right_complete = false; bool bottom_complete = false; int num_edges_complete = 0; gfx::Rect working_rect = starting_rect; for (int i = 0; i < 4; ++i) { if (num_edges_complete != i) continue; int offset_for_each_edge = 0; switch (num_edges_complete) { case 0: offset_for_each_edge = ComputeOffsetToExpand4EdgesEqually( working_rect.width(), working_rect.height(), target_area); break; case 1: offset_for_each_edge = ComputeOffsetToExpand3EdgesEqually( working_rect.width(), working_rect.height(), target_area, left_complete, top_complete, right_complete, bottom_complete); break; case 2: offset_for_each_edge = ComputeOffsetToExpand2EdgesEqually( working_rect.width(), working_rect.height(), target_area, left_complete, top_complete, right_complete, bottom_complete); break; case 3: offset_for_each_edge = ComputeOffsetToExpand1Edge( working_rect.width(), working_rect.height(), target_area, left_complete, top_complete, right_complete, bottom_complete); } working_rect.Inset((left_complete ? 0 : -offset_for_each_edge), (top_complete ? 0 : -offset_for_each_edge), (right_complete ? 0 : -offset_for_each_edge), (bottom_complete ? 0 : -offset_for_each_edge)); if (bounding_rect.Contains(working_rect)) return working_rect; working_rect.Intersect(bounding_rect); if (working_rect.x() == bounding_rect.x()) left_complete = true; if (working_rect.y() == bounding_rect.y()) top_complete = true; if (working_rect.right() == bounding_rect.right()) right_complete = true; if (working_rect.bottom() == bounding_rect.bottom()) bottom_complete = true; num_edges_complete = (left_complete ? 1 : 0) + (top_complete ? 1 : 0) + (right_complete ? 1 : 0) + (bottom_complete ? 1 : 0); if (num_edges_complete == 4) return working_rect; } NOTREACHED(); return starting_rect; } } // namespace cc