// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // See the following specification for details on the ETC1 format: // https://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt #include "cc/raster/texture_compressor_etc1.h" #include #include #include "base/logging.h" // Defining the following macro will cause the error metric function to weigh // each color channel differently depending on how the human eye can perceive // them. This can give a slight improvement in image quality at the cost of a // performance hit. // #define USE_PERCEIVED_ERROR_METRIC namespace cc { namespace { // Constructs a color from a given base color and luminance value. inline Color MakeColor(const Color& base, int16_t lum) { int b = static_cast(base.channels.b) + lum; int g = static_cast(base.channels.g) + lum; int r = static_cast(base.channels.r) + lum; Color color; color.channels.b = static_cast(clamp(b, 0, 255)); color.channels.g = static_cast(clamp(g, 0, 255)); color.channels.r = static_cast(clamp(r, 0, 255)); return color; } // Calculates the error metric for two colors. A small error signals that the // colors are similar to each other, a large error the signals the opposite. inline uint32_t GetColorError(const Color& u, const Color& v) { #ifdef USE_PERCEIVED_ERROR_METRIC float delta_b = static_cast(u.channels.b) - v.channels.b; float delta_g = static_cast(u.channels.g) - v.channels.g; float delta_r = static_cast(u.channels.r) - v.channels.r; return static_cast(0.299f * delta_b * delta_b + 0.587f * delta_g * delta_g + 0.114f * delta_r * delta_r); #else int delta_b = static_cast(u.channels.b) - v.channels.b; int delta_g = static_cast(u.channels.g) - v.channels.g; int delta_r = static_cast(u.channels.r) - v.channels.r; return delta_b * delta_b + delta_g * delta_g + delta_r * delta_r; #endif } void GetAverageColor(const Color* src, float* avg_color) { uint32_t sum_b = 0, sum_g = 0, sum_r = 0; for (unsigned int i = 0; i < 8; ++i) { sum_b += src[i].channels.b; sum_g += src[i].channels.g; sum_r += src[i].channels.r; } const float kInv8 = 1.0f / 8.0f; avg_color[0] = static_cast(sum_b) * kInv8; avg_color[1] = static_cast(sum_g) * kInv8; avg_color[2] = static_cast(sum_r) * kInv8; } void ComputeLuminance(uint8_t* block, const Color* src, const Color& base, int sub_block_id, const uint8_t* idx_to_num_tab) { uint32_t best_tbl_err = std::numeric_limits::max(); uint8_t best_tbl_idx = 0; uint8_t best_mod_idx[8][8]; // [table][texel] // Try all codeword tables to find the one giving the best results for this // block. for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) { // Pre-compute all the candidate colors; combinations of the base color and // all available luminance values. Color candidate_color[4]; // [modifier] for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) { int16_t lum = g_codeword_tables[tbl_idx][mod_idx]; candidate_color[mod_idx] = MakeColor(base, lum); } uint32_t tbl_err = 0; for (unsigned int i = 0; i < 8; ++i) { // Try all modifiers in the current table to find which one gives the // smallest error. uint32_t best_mod_err = std::numeric_limits::max(); for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) { const Color& color = candidate_color[mod_idx]; uint32_t mod_err = GetColorError(src[i], color); if (mod_err < best_mod_err) { best_mod_idx[tbl_idx][i] = mod_idx; best_mod_err = mod_err; if (mod_err == 0) break; // We cannot do any better than this. } } tbl_err += best_mod_err; if (tbl_err > best_tbl_err) break; // We're already doing worse than the best table so skip. } if (tbl_err < best_tbl_err) { best_tbl_err = tbl_err; best_tbl_idx = tbl_idx; if (tbl_err == 0) break; // We cannot do any better than this. } } WriteCodewordTable(block, sub_block_id, best_tbl_idx); uint32_t pix_data = 0; for (unsigned int i = 0; i < 8; ++i) { uint8_t mod_idx = best_mod_idx[best_tbl_idx][i]; uint8_t pix_idx = g_mod_to_pix[mod_idx]; uint32_t lsb = pix_idx & 0x1; uint32_t msb = pix_idx >> 1; // Obtain the texel number as specified in the standard. int texel_num = idx_to_num_tab[i]; pix_data |= msb << (texel_num + 16); pix_data |= lsb << (texel_num); } WritePixelData(block, pix_data); } /** * Tries to compress the block under the assumption that it's a single color * block. If it's not the function will bail out without writing anything to * the destination buffer. */ bool TryCompressSolidBlock(uint8_t* dst, const Color* src) { for (unsigned int i = 1; i < 16; ++i) { if (src[i].bits != src[0].bits) return false; } // Clear destination buffer so that we can "or" in the results. memset(dst, 0, 8); float src_color_float[3] = {static_cast(src->channels.b), static_cast(src->channels.g), static_cast(src->channels.r)}; Color base = MakeColor555(src_color_float); WriteDiff(dst, true); WriteFlip(dst, false); WriteColors555(dst, base, base); uint8_t best_tbl_idx = 0; uint8_t best_mod_idx = 0; uint32_t best_mod_err = std::numeric_limits::max(); // Try all codeword tables to find the one giving the best results for this // block. for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) { // Try all modifiers in the current table to find which one gives the // smallest error. for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) { int16_t lum = g_codeword_tables[tbl_idx][mod_idx]; const Color& color = MakeColor(base, lum); uint32_t mod_err = GetColorError(*src, color); if (mod_err < best_mod_err) { best_tbl_idx = tbl_idx; best_mod_idx = mod_idx; best_mod_err = mod_err; if (mod_err == 0) break; // We cannot do any better than this. } } if (best_mod_err == 0) break; } WriteCodewordTable(dst, 0, best_tbl_idx); WriteCodewordTable(dst, 1, best_tbl_idx); uint8_t pix_idx = g_mod_to_pix[best_mod_idx]; uint32_t lsb = pix_idx & 0x1; uint32_t msb = pix_idx >> 1; uint32_t pix_data = 0; for (unsigned int i = 0; i < 2; ++i) { for (unsigned int j = 0; j < 8; ++j) { // Obtain the texel number as specified in the standard. int texel_num = g_idx_to_num[i][j]; pix_data |= msb << (texel_num + 16); pix_data |= lsb << (texel_num); } } WritePixelData(dst, pix_data); return true; } void CompressBlock(uint8_t* dst, const Color* ver_src, const Color* hor_src) { if (TryCompressSolidBlock(dst, ver_src)) return; const Color* sub_block_src[4] = {ver_src, ver_src + 8, hor_src, hor_src + 8}; Color sub_block_avg[4]; bool use_differential[2] = {true, true}; // Compute the average color for each sub block and determine if differential // coding can be used. for (unsigned int i = 0, j = 1; i < 4; i += 2, j += 2) { float avg_color_0[3]; GetAverageColor(sub_block_src[i], avg_color_0); Color avg_color_555_0 = MakeColor555(avg_color_0); float avg_color_1[3]; GetAverageColor(sub_block_src[j], avg_color_1); Color avg_color_555_1 = MakeColor555(avg_color_1); for (unsigned int light_idx = 0; light_idx < 3; ++light_idx) { int u = avg_color_555_0.components[light_idx] >> 3; int v = avg_color_555_1.components[light_idx] >> 3; int component_diff = v - u; if (component_diff < -4 || component_diff > 3) { use_differential[i / 2] = false; sub_block_avg[i] = MakeColor444(avg_color_0); sub_block_avg[j] = MakeColor444(avg_color_1); } else { sub_block_avg[i] = avg_color_555_0; sub_block_avg[j] = avg_color_555_1; } } } // Compute the error of each sub block before adjusting for luminance. These // error values are later used for determining if we should flip the sub // block or not. uint32_t sub_block_err[4] = {0}; for (unsigned int i = 0; i < 4; ++i) { for (unsigned int j = 0; j < 8; ++j) { sub_block_err[i] += GetColorError(sub_block_avg[i], sub_block_src[i][j]); } } bool flip = sub_block_err[2] + sub_block_err[3] < sub_block_err[0] + sub_block_err[1]; // Clear destination buffer so that we can "or" in the results. memset(dst, 0, 8); WriteDiff(dst, use_differential[!!flip]); WriteFlip(dst, flip); uint8_t sub_block_off_0 = flip ? 2 : 0; uint8_t sub_block_off_1 = sub_block_off_0 + 1; if (use_differential[!!flip]) { WriteColors555(dst, sub_block_avg[sub_block_off_0], sub_block_avg[sub_block_off_1]); } else { WriteColors444(dst, sub_block_avg[sub_block_off_0], sub_block_avg[sub_block_off_1]); } // Compute luminance for the first sub block. ComputeLuminance(dst, sub_block_src[sub_block_off_0], sub_block_avg[sub_block_off_0], 0, g_idx_to_num[sub_block_off_0]); // Compute luminance for the second sub block. ComputeLuminance(dst, sub_block_src[sub_block_off_1], sub_block_avg[sub_block_off_1], 1, g_idx_to_num[sub_block_off_1]); } } // namespace void TextureCompressorETC1::Compress(const uint8_t* src, uint8_t* dst, int width, int height, Quality quality) { DCHECK_GE(width, 4); DCHECK_EQ((width & 3), 0); DCHECK_GE(height, 4); DCHECK_EQ((height & 3), 0); Color ver_blocks[16]; Color hor_blocks[16]; for (int y = 0; y < height; y += 4, src += width * 4 * 4) { for (int x = 0; x < width; x += 4, dst += 8) { const Color* row0 = reinterpret_cast(src + x * 4); const Color* row1 = row0 + width; const Color* row2 = row1 + width; const Color* row3 = row2 + width; memcpy(ver_blocks, row0, 8); memcpy(ver_blocks + 2, row1, 8); memcpy(ver_blocks + 4, row2, 8); memcpy(ver_blocks + 6, row3, 8); memcpy(ver_blocks + 8, row0 + 2, 8); memcpy(ver_blocks + 10, row1 + 2, 8); memcpy(ver_blocks + 12, row2 + 2, 8); memcpy(ver_blocks + 14, row3 + 2, 8); memcpy(hor_blocks, row0, 16); memcpy(hor_blocks + 4, row1, 16); memcpy(hor_blocks + 8, row2, 16); memcpy(hor_blocks + 12, row3, 16); CompressBlock(dst, ver_blocks, hor_blocks); } } } } // namespace cc