// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/resources/picture_layer_tiling.h" #include #include #include "base/debug/trace_event.h" #include "cc/base/math_util.h" #include "ui/gfx/point_conversions.h" #include "ui/gfx/rect_conversions.h" #include "ui/gfx/safe_integer_conversions.h" #include "ui/gfx/size_conversions.h" namespace cc { scoped_ptr PictureLayerTiling::Create( float contents_scale) { return make_scoped_ptr(new PictureLayerTiling(contents_scale)); } scoped_ptr PictureLayerTiling::Clone() const { return make_scoped_ptr(new PictureLayerTiling(*this)); } PictureLayerTiling::PictureLayerTiling(float contents_scale) : client_(NULL), contents_scale_(contents_scale), tiling_data_(gfx::Size(), gfx::Size(), true), resolution_(NON_IDEAL_RESOLUTION), last_source_frame_number_(0), last_impl_frame_time_(0) { } PictureLayerTiling::~PictureLayerTiling() { } void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) { client_ = client; } gfx::Rect PictureLayerTiling::ContentRect() const { return gfx::Rect(tiling_data_.total_size()); } gfx::SizeF PictureLayerTiling::ContentSizeF() const { return gfx::ScaleSize(layer_bounds_, contents_scale_); } Tile* PictureLayerTiling::TileAt(int i, int j) const { TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j)); if (iter == tiles_.end()) return NULL; return iter->second.get(); } void PictureLayerTiling::CreateTile(int i, int j) { gfx::Rect tile_rect = tiling_data_.TileBoundsWithBorder(i, j); tile_rect.set_size(tiling_data_.max_texture_size()); TileMapKey key(i, j); DCHECK(tiles_.find(key) == tiles_.end()); scoped_refptr tile = client_->CreateTile(this, tile_rect); if (tile) tiles_[key] = tile; } Region PictureLayerTiling::OpaqueRegionInContentRect( const gfx::Rect& content_rect) const { Region opaque_region; // TODO(enne): implement me return opaque_region; } void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) { if (layer_bounds_ == layer_bounds) return; gfx::Size old_layer_bounds = layer_bounds_; layer_bounds_ = layer_bounds; gfx::Size old_content_bounds = tiling_data_.total_size(); gfx::Size content_bounds = gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_)); tiling_data_.SetTotalSize(content_bounds); if (layer_bounds_.IsEmpty()) { tiles_.clear(); return; } gfx::Size tile_size = client_->CalculateTileSize( tiling_data_.max_texture_size(), content_bounds); if (tile_size != tiling_data_.max_texture_size()) { tiling_data_.SetMaxTextureSize(tile_size); tiles_.clear(); CreateTilesFromLayerRect(gfx::Rect(layer_bounds_)); return; } // Any tiles outside our new bounds are invalid and should be dropped. if (old_content_bounds.width() > content_bounds.width() || old_content_bounds.height() > content_bounds.height()) { int right = tiling_data_.TileXIndexFromSrcCoord(content_bounds.width() - 1); int bottom = tiling_data_.TileYIndexFromSrcCoord(content_bounds.height() - 1); std::vector invalid_tile_keys; for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { if (it->first.first > right || it->first.second > bottom) invalid_tile_keys.push_back(it->first); } for (size_t i = 0; i < invalid_tile_keys.size(); ++i) tiles_.erase(invalid_tile_keys[i]); } // Create tiles for newly exposed areas. Region layer_region((gfx::Rect(layer_bounds_))); layer_region.Subtract(gfx::Rect(old_layer_bounds)); for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) { Invalidate(iter.rect()); CreateTilesFromLayerRect(iter.rect()); } } void PictureLayerTiling::Invalidate(const Region& layer_invalidation) { std::vector new_tiles; for (Region::Iterator region_iter(layer_invalidation); region_iter.has_rect(); region_iter.next()) { gfx::Rect layer_invalidation = region_iter.rect(); layer_invalidation.Intersect(gfx::Rect(layer_bounds_)); gfx::Rect rect = gfx::ToEnclosingRect(ScaleRect(layer_invalidation, contents_scale_)); for (PictureLayerTiling::Iterator tile_iter(this, contents_scale_, rect); tile_iter; ++tile_iter) { TileMapKey key(tile_iter.tile_i_, tile_iter.tile_j_); TileMap::iterator found = tiles_.find(key); if (found == tiles_.end()) continue; tiles_.erase(found); new_tiles.push_back(key); } } for (size_t i = 0; i < new_tiles.size(); ++i) CreateTile(new_tiles[i].first, new_tiles[i].second); } void PictureLayerTiling::CreateTilesFromLayerRect(gfx::Rect layer_rect) { gfx::Rect content_rect = gfx::ToEnclosingRect(ScaleRect(layer_rect, contents_scale_)); CreateTilesFromContentRect(content_rect); } void PictureLayerTiling::CreateTilesFromContentRect(gfx::Rect content_rect) { for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) { TileMap::iterator found = tiles_.find(TileMapKey(iter.index_x(), iter.index_y())); // Ignore any tiles that already exist. if (found != tiles_.end()) continue; CreateTile(iter.index_x(), iter.index_y()); } } PictureLayerTiling::Iterator::Iterator() : tiling_(NULL), current_tile_(NULL), tile_i_(0), tile_j_(0), left_(0), top_(0), right_(-1), bottom_(-1) { } PictureLayerTiling::Iterator::Iterator(const PictureLayerTiling* tiling, float dest_scale, gfx::Rect dest_rect) : tiling_(tiling), dest_rect_(dest_rect), dest_to_content_scale_(0), current_tile_(NULL), tile_i_(0), tile_j_(0), left_(0), top_(0), right_(-1), bottom_(-1) { DCHECK(tiling_); if (dest_rect_.IsEmpty()) return; dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale; // This is the maximum size that the dest rect can be, given the content size. gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize( tiling_->ContentRect().size(), 1 / dest_to_content_scale_, 1 / dest_to_content_scale_)); gfx::Rect content_rect = gfx::ToEnclosingRect(gfx::ScaleRect(dest_rect_, dest_to_content_scale_, dest_to_content_scale_)); // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to // check for non-intersection first. content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size())); if (content_rect.IsEmpty()) return; left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x()); top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y()); right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord( content_rect.right() - 1); bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord( content_rect.bottom() - 1); tile_i_ = left_ - 1; tile_j_ = top_; ++(*this); } PictureLayerTiling::Iterator::~Iterator() { } PictureLayerTiling::Iterator& PictureLayerTiling::Iterator::operator++() { if (tile_j_ > bottom_) return *this; bool first_time = tile_i_ < left_; bool new_row = false; tile_i_++; if (tile_i_ > right_) { tile_i_ = left_; tile_j_++; new_row = true; if (tile_j_ > bottom_) { current_tile_ = NULL; return *this; } } current_tile_ = tiling_->TileAt(tile_i_, tile_j_); // Calculate the current geometry rect. Due to floating point rounding // and ToEnclosingRect, tiles might overlap in destination space on the // edges. gfx::Rect last_geometry_rect = current_geometry_rect_; gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_); current_geometry_rect_ = gfx::ToEnclosingRect( gfx::ScaleRect(content_rect, 1 / dest_to_content_scale_, 1 / dest_to_content_scale_)); current_geometry_rect_.Intersect(dest_rect_); if (first_time) return *this; // Iteration happens left->right, top->bottom. Running off the bottom-right // edge is handled by the intersection above with dest_rect_. Here we make // sure that the new current geometry rect doesn't overlap with the last. int min_left; int min_top; if (new_row) { min_left = dest_rect_.x(); min_top = last_geometry_rect.bottom(); } else { min_left = last_geometry_rect.right(); min_top = last_geometry_rect.y(); } int inset_left = std::max(0, min_left - current_geometry_rect_.x()); int inset_top = std::max(0, min_top - current_geometry_rect_.y()); current_geometry_rect_.Inset(inset_left, inset_top, 0, 0); if (!new_row) { DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x()); DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom()); DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y()); } return *this; } gfx::Rect PictureLayerTiling::Iterator::geometry_rect() const { return current_geometry_rect_; } gfx::Rect PictureLayerTiling::Iterator::full_tile_geometry_rect() const { gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_); rect.set_size(tiling_->tiling_data_.max_texture_size()); return rect; } gfx::RectF PictureLayerTiling::Iterator::texture_rect() const { gfx::PointF tex_origin = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin(); // Convert from dest space => content space => texture space. gfx::RectF texture_rect(current_geometry_rect_); texture_rect.Scale(dest_to_content_scale_, dest_to_content_scale_); texture_rect.Offset(-tex_origin.OffsetFromOrigin()); texture_rect.Intersect(tiling_->ContentRect()); return texture_rect; } gfx::Size PictureLayerTiling::Iterator::texture_size() const { return tiling_->tiling_data_.max_texture_size(); } void PictureLayerTiling::UpdateTilePriorities( WhichTree tree, gfx::Size device_viewport, const gfx::RectF& viewport_in_layer_space, gfx::Size last_layer_bounds, gfx::Size current_layer_bounds, float last_layer_contents_scale, float current_layer_contents_scale, const gfx::Transform& last_screen_transform, const gfx::Transform& current_screen_transform, int current_source_frame_number, double current_frame_time, bool store_screen_space_quads_on_tiles) { if (ContentRect().IsEmpty()) return; bool first_update_in_new_source_frame = current_source_frame_number != last_source_frame_number_; bool first_update_in_new_impl_frame = current_frame_time != last_impl_frame_time_; // In pending tree, this is always called. We update priorities: // - Immediately after a commit (first_update_in_new_source_frame). // - On animation ticks after the first frame in the tree // (first_update_in_new_impl_frame). // In active tree, this is only called during draw. We update priorities: // - On draw if properties were not already computed by the pending tree // and activated for the frame (first_update_in_new_impl_frame). if (!first_update_in_new_impl_frame && !first_update_in_new_source_frame) return; double time_delta = 0; if (last_impl_frame_time_ != 0 && last_layer_bounds == current_layer_bounds) time_delta = current_frame_time - last_impl_frame_time_; gfx::Rect viewport_in_content_space = gfx::ToEnclosingRect(gfx::ScaleRect(viewport_in_layer_space, contents_scale_)); gfx::Size tile_size = tiling_data_.max_texture_size(); int64 prioritized_rect_area = TilePriority::kNumTilesToCoverWithInflatedViewportRectForPrioritization * tile_size.width() * tile_size.height(); gfx::Rect prioritized_rect = ExpandRectEquallyToAreaBoundedBy( viewport_in_content_space, prioritized_rect_area, ContentRect()); DCHECK(ContentRect().Contains(prioritized_rect)); // Iterate through all of the tiles that were live last frame but will // not be live this frame, and mark them as being dead. for (TilingData::DifferenceIterator iter(&tiling_data_, last_prioritized_rect_, prioritized_rect); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; TilePriority priority; DCHECK(!priority.is_live); Tile* tile = find->second.get(); tile->SetPriority(tree, priority); } last_prioritized_rect_ = prioritized_rect; gfx::Rect view_rect(device_viewport); float current_scale = current_layer_contents_scale / contents_scale_; float last_scale = last_layer_contents_scale / contents_scale_; // Fast path tile priority calculation when both transforms are translations. if (last_screen_transform.IsIdentityOrTranslation() && current_screen_transform.IsIdentityOrTranslation()) { gfx::Vector2dF current_offset( current_screen_transform.matrix().get(0, 3), current_screen_transform.matrix().get(1, 3)); gfx::Vector2dF last_offset( last_screen_transform.matrix().get(0, 3), last_screen_transform.matrix().get(1, 3)); for (TilingData::Iterator iter(&tiling_data_, prioritized_rect); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; Tile* tile = find->second.get(); gfx::Rect tile_bounds = tiling_data_.TileBounds(iter.index_x(), iter.index_y()); gfx::RectF current_screen_rect = gfx::ScaleRect( tile_bounds, current_scale, current_scale) + current_offset; gfx::RectF last_screen_rect = gfx::ScaleRect( tile_bounds, last_scale, last_scale) + last_offset; float distance_to_visible_in_pixels = TilePriority::manhattanDistance(current_screen_rect, view_rect); float time_to_visible_in_seconds = TilePriority::TimeForBoundsToIntersect( last_screen_rect, current_screen_rect, time_delta, view_rect); TilePriority priority( resolution_, time_to_visible_in_seconds, distance_to_visible_in_pixels); if (store_screen_space_quads_on_tiles) priority.set_current_screen_quad(gfx::QuadF(current_screen_rect)); tile->SetPriority(tree, priority); } } else { for (TilingData::Iterator iter(&tiling_data_, prioritized_rect); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; Tile* tile = find->second.get(); gfx::Rect tile_bounds = tiling_data_.TileBounds(iter.index_x(), iter.index_y()); gfx::RectF current_layer_content_rect = gfx::ScaleRect( tile_bounds, current_scale, current_scale); gfx::RectF current_screen_rect = MathUtil::MapClippedRect( current_screen_transform, current_layer_content_rect); gfx::RectF last_layer_content_rect = gfx::ScaleRect( tile_bounds, last_scale, last_scale); gfx::RectF last_screen_rect = MathUtil::MapClippedRect( last_screen_transform, last_layer_content_rect); float distance_to_visible_in_pixels = TilePriority::manhattanDistance(current_screen_rect, view_rect); float time_to_visible_in_seconds = TilePriority::TimeForBoundsToIntersect( last_screen_rect, current_screen_rect, time_delta, view_rect); TilePriority priority( resolution_, time_to_visible_in_seconds, distance_to_visible_in_pixels); if (store_screen_space_quads_on_tiles) { bool clipped; priority.set_current_screen_quad( MathUtil::MapQuad(current_screen_transform, gfx::QuadF(current_layer_content_rect), &clipped)); } tile->SetPriority(tree, priority); } } last_source_frame_number_ = current_source_frame_number; last_impl_frame_time_ = current_frame_time; } void PictureLayerTiling::DidBecomeActive() { for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE)); it->second->SetPriority(PENDING_TREE, TilePriority()); // Tile holds a ref onto a picture pile. If the tile never gets invalidated // and recreated, then that picture pile ref could exist indefinitely. To // prevent this, ask the client to update the pile to its own ref. This // will cause PicturePileImpls and their clones to get deleted once the // corresponding PictureLayerImpl and any in flight raster jobs go out of // scope. client_->UpdatePile(it->second); } } scoped_ptr PictureLayerTiling::AsValue() const { scoped_ptr state(new base::DictionaryValue()); state->SetInteger("num_tiles", tiles_.size()); state->SetDouble("content_scale", contents_scale_); state->Set("content_bounds", MathUtil::AsValue(ContentRect().size()).release()); return state.PassAs(); } // This struct represents an event at which the expending rect intersects // one of its boundaries. 4 intersection events will occur during expansion. struct EdgeEvent { enum { BOTTOM, TOP, LEFT, RIGHT } edge; int* num_edges; int distance; }; gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy( gfx::Rect starting_rect, int64 target_area, gfx::Rect bounding_rect) { DCHECK(!starting_rect.IsEmpty()); DCHECK(!bounding_rect.IsEmpty()); DCHECK_GT(target_area, 0); gfx::Rect rect = IntersectRects(starting_rect, bounding_rect); if (rect.IsEmpty()) return rect; // These values will be updated by the loop and uses as the output. int origin_x = rect.x(); int origin_y = rect.y(); int width = rect.width(); int height = rect.height(); // In the beginning we will consider 2 edges in each dimension. int num_y_edges = 2; int num_x_edges = 2; // Create an event list. EdgeEvent events[] = { { EdgeEvent::BOTTOM, &num_y_edges, rect.y() - bounding_rect.y() }, { EdgeEvent::TOP, &num_y_edges, bounding_rect.bottom() - rect.bottom() }, { EdgeEvent::LEFT, &num_x_edges, rect.x() - bounding_rect.x() }, { EdgeEvent::RIGHT, &num_x_edges, bounding_rect.right() - rect.right() } }; // Sort the events by distance (closest first). if (events[0].distance > events[1].distance) std::swap(events[0], events[1]); if (events[2].distance > events[3].distance) std::swap(events[2], events[3]); if (events[0].distance > events[2].distance) std::swap(events[0], events[2]); if (events[1].distance > events[3].distance) std::swap(events[1], events[3]); if (events[1].distance > events[2].distance) std::swap(events[1], events[2]); for (int event_index = 0; event_index < 4; event_index++) { const EdgeEvent& event = events[event_index]; // Early out if our distance to event is 0. // This optimization is not required for correctness. if (event.distance == 0) { --*event.num_edges; continue; } // Compute coefficients for the quadraic equation. int a = num_y_edges * num_x_edges; int b = num_y_edges * width + num_x_edges * height; int c = width * height - target_area; // Compute the delta for our edges using the quadratic equation. int delta = a == 0 ? -c / b : (-b + static_cast(std::sqrt(b * b - 4.0 * a * c))) / (2 * a); // Clamp delta to our event distance. if (delta > event.distance) delta = event.distance; // Adjust the edge count for this kind of edge. --*event.num_edges; // Apply the delta to the edges and edge events. for (int i = event_index; i < 4; i++) { switch (events[i].edge) { case EdgeEvent::BOTTOM: origin_y -= delta; height += delta; break; case EdgeEvent::TOP: height += delta; break; case EdgeEvent::LEFT: origin_x -= delta; width += delta; break; case EdgeEvent::RIGHT: width += delta; break; } events[i].distance -= delta; } // If our delta is less then our event distance, we're done. if (delta < event.distance) break; } return gfx::Rect(origin_x, origin_y, width, height); } } // namespace cc