// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/resources/picture_pile.h" #include #include #include #include "cc/base/region.h" #include "cc/resources/picture_pile_impl.h" #include "cc/resources/tile_task_worker_pool.h" #include "skia/ext/analysis_canvas.h" namespace { // Layout pixel buffer around the visible layer rect to record. Any base // picture that intersects the visible layer rect expanded by this distance // will be recorded. const int kPixelDistanceToRecord = 8000; // We don't perform solid color analysis on images that have more than 10 skia // operations. const int kOpCountThatIsOkToAnalyze = 10; // Dimensions of the tiles in this picture pile as well as the dimensions of // the base picture in each tile. const int kBasePictureSize = 512; // Invalidation frequency settings. kInvalidationFrequencyThreshold is a value // between 0 and 1 meaning invalidation frequency between 0% and 100% that // indicates when to stop invalidating offscreen regions. // kFrequentInvalidationDistanceThreshold defines what it means to be // "offscreen" in terms of distance to visible in css pixels. const float kInvalidationFrequencyThreshold = 0.75f; const int kFrequentInvalidationDistanceThreshold = 512; // TODO(humper): The density threshold here is somewhat arbitrary; need a // way to set // this from the command line so we can write a benchmark // script and find a sweet spot. const float kDensityThreshold = 0.5f; bool rect_sort_y(const gfx::Rect& r1, const gfx::Rect& r2) { return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x()); } bool rect_sort_x(const gfx::Rect& r1, const gfx::Rect& r2) { return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y()); } float PerformClustering(const std::vector& tiles, std::vector* clustered_rects) { // These variables track the record area and invalid area // for the entire clustering int total_record_area = 0; int total_invalid_area = 0; // These variables track the record area and invalid area // for the current cluster being constructed. gfx::Rect cur_record_rect; int cluster_record_area = 0, cluster_invalid_area = 0; for (std::vector::const_iterator it = tiles.begin(); it != tiles.end(); it++) { gfx::Rect invalid_tile = *it; // For each tile, we consider adding the invalid tile to the // current record rectangle. Only add it if the amount of empty // space created is below a density threshold. int tile_area = invalid_tile.width() * invalid_tile.height(); gfx::Rect proposed_union = cur_record_rect; proposed_union.Union(invalid_tile); int proposed_area = proposed_union.width() * proposed_union.height(); float proposed_density = static_cast(cluster_invalid_area + tile_area) / static_cast(proposed_area); if (proposed_density >= kDensityThreshold) { // It's okay to add this invalid tile to the // current recording rectangle. cur_record_rect = proposed_union; cluster_record_area = proposed_area; cluster_invalid_area += tile_area; total_invalid_area += tile_area; } else { // Adding this invalid tile to the current recording rectangle // would exceed our badness threshold, so put the current rectangle // in the list of recording rects, and start a new one. clustered_rects->push_back(cur_record_rect); total_record_area += cluster_record_area; cur_record_rect = invalid_tile; cluster_invalid_area = tile_area; cluster_record_area = tile_area; } } DCHECK(!cur_record_rect.IsEmpty()); clustered_rects->push_back(cur_record_rect); total_record_area += cluster_record_area;; DCHECK_NE(total_record_area, 0); return static_cast(total_invalid_area) / static_cast(total_record_area); } void ClusterTiles(const std::vector& invalid_tiles, std::vector* record_rects) { TRACE_EVENT1("cc", "ClusterTiles", "count", invalid_tiles.size()); if (invalid_tiles.size() <= 1) { // Quickly handle the special case for common // single-invalidation update, and also the less common // case of no tiles passed in. *record_rects = invalid_tiles; return; } // Sort the invalid tiles by y coordinate. std::vector invalid_tiles_vertical = invalid_tiles; std::sort(invalid_tiles_vertical.begin(), invalid_tiles_vertical.end(), rect_sort_y); std::vector vertical_clustering; float vertical_density = PerformClustering(invalid_tiles_vertical, &vertical_clustering); // If vertical density is optimal, then we can return early. if (vertical_density == 1.f) { *record_rects = vertical_clustering; return; } // Now try again with a horizontal sort, see which one is best std::vector invalid_tiles_horizontal = invalid_tiles; std::sort(invalid_tiles_horizontal.begin(), invalid_tiles_horizontal.end(), rect_sort_x); std::vector horizontal_clustering; float horizontal_density = PerformClustering(invalid_tiles_horizontal, &horizontal_clustering); if (vertical_density < horizontal_density) { *record_rects = horizontal_clustering; return; } *record_rects = vertical_clustering; } } // namespace namespace cc { PicturePile::PicturePile(float min_contents_scale, const gfx::Size& tile_grid_size) : min_contents_scale_(0), slow_down_raster_scale_factor_for_debug_(0), can_use_lcd_text_(true), has_any_recordings_(false), is_solid_color_(false), solid_color_(SK_ColorTRANSPARENT), pixel_record_distance_(kPixelDistanceToRecord), is_suitable_for_gpu_rasterization_(true) { tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize)); SetMinContentsScale(min_contents_scale); SetTileGridSize(tile_grid_size); } PicturePile::~PicturePile() { } bool PicturePile::UpdateAndExpandInvalidation( ContentLayerClient* painter, Region* invalidation, bool can_use_lcd_text, const gfx::Size& layer_size, const gfx::Rect& visible_layer_rect, int frame_number, Picture::RecordingMode recording_mode) { bool can_use_lcd_text_changed = can_use_lcd_text_ != can_use_lcd_text; can_use_lcd_text_ = can_use_lcd_text; gfx::Rect interest_rect = visible_layer_rect; interest_rect.Inset(-pixel_record_distance_, -pixel_record_distance_); recorded_viewport_ = interest_rect; recorded_viewport_.Intersect(gfx::Rect(layer_size)); bool updated = ApplyInvalidationAndResize(interest_rect, invalidation, layer_size, frame_number, can_use_lcd_text_changed); std::vector invalid_tiles; GetInvalidTileRects(interest_rect, invalidation, visible_layer_rect, frame_number, &invalid_tiles); std::vector record_rects; ClusterTiles(invalid_tiles, &record_rects); if (record_rects.empty()) return updated; CreatePictures(painter, recording_mode, record_rects); DetermineIfSolidColor(); has_any_recordings_ = true; DCHECK(CanRasterSlowTileCheck(recorded_viewport_)); return true; } bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect& interest_rect, Region* invalidation, const gfx::Size& layer_size, int frame_number, bool can_use_lcd_text_changed) { bool updated = false; Region synthetic_invalidation; gfx::Size old_tiling_size = GetSize(); if (old_tiling_size != layer_size) { tiling_.SetTilingSize(layer_size); updated = true; } if (can_use_lcd_text_changed) { // When LCD text is enabled/disabled, we must drop any raster tiles for // the pile, so they can be recreated in a manner consistent with the new // setting. We do this with |synthetic_invalidation| since we don't need to // do a new recording, just invalidate rastered content. synthetic_invalidation.Union(gfx::Rect(GetSize())); updated = true; } gfx::Rect interest_rect_over_tiles = tiling_.ExpandRectToTileBounds(interest_rect); if (old_tiling_size != layer_size) { gfx::Size min_tiling_size( std::min(GetSize().width(), old_tiling_size.width()), std::min(GetSize().height(), old_tiling_size.height())); gfx::Size max_tiling_size( std::max(GetSize().width(), old_tiling_size.width()), std::max(GetSize().height(), old_tiling_size.height())); has_any_recordings_ = false; // Drop recordings that are outside the new or old layer bounds or that // changed size. Newly exposed areas are considered invalidated. // Previously exposed areas that are now outside of bounds also need to // be invalidated, as they may become part of raster when scale < 1. std::vector to_erase; int min_toss_x = tiling_.num_tiles_x(); if (max_tiling_size.width() > min_tiling_size.width()) { min_toss_x = tiling_.FirstBorderTileXIndexFromSrcCoord(min_tiling_size.width()); } int min_toss_y = tiling_.num_tiles_y(); if (max_tiling_size.height() > min_tiling_size.height()) { min_toss_y = tiling_.FirstBorderTileYIndexFromSrcCoord(min_tiling_size.height()); } for (const auto& key_picture_pair : picture_map_) { const PictureMapKey& key = key_picture_pair.first; if (key.first < min_toss_x && key.second < min_toss_y) { has_any_recordings_ |= !!key_picture_pair.second.GetPicture(); continue; } to_erase.push_back(key); } for (size_t i = 0; i < to_erase.size(); ++i) picture_map_.erase(to_erase[i]); // If a recording is dropped and not re-recorded below, invalidate that // full recording to cause any raster tiles that would use it to be // dropped. // If the recording will be replaced below, invalidate newly exposed // areas and previously exposed areas to force raster tiles that include the // old recording to know there is new recording to display. gfx::Rect min_tiling_rect_over_tiles = tiling_.ExpandRectToTileBounds(gfx::Rect(min_tiling_size)); if (min_toss_x < tiling_.num_tiles_x()) { // The bounds which we want to invalidate are the tiles along the old // edge of the pile when expanding, or the new edge of the pile when // shrinking. In either case, it's the difference of the two, so we'll // call this bounding box the DELTA EDGE RECT. // // In the picture below, the delta edge rect would be the bounding box of // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of // the same tiles. // // min pile edge-v max pile edge-v // ---------------+ - - - - - - - -+ // mmppssvvyybbeeh|h . // mmppssvvyybbeeh|h . // nnqqttwwzzccffi|i . // nnqqttwwzzccffi|i . // oorruuxxaaddggj|j . // oorruuxxaaddggj|j . // ---------------+ - - - - - - - -+ <- min pile edge // . // - - - - - - - - - - - - - - - -+ <- max pile edge // // If you were to slide a vertical beam from the left edge of the // delta edge rect toward the right, it would either hit the right edge // of the delta edge rect, or the interest rect (expanded to the bounds // of the tiles it touches). The same is true for a beam parallel to // any of the four edges, sliding across the delta edge rect. We use // the union of these four rectangles generated by these beams to // determine which part of the delta edge rect is outside of the expanded // interest rect. // // Case 1: Intersect rect is outside the delta edge rect. It can be // either on the left or the right. The |left_rect| and |right_rect|, // cover this case, one will be empty and one will cover the full // delta edge rect. In the picture below, |left_rect| would cover the // delta edge rect, and |right_rect| would be empty. // +----------------------+ |^^^^^^^^^^^^^^^| // |===> DELTA EDGE RECT | | | // |===> | | INTEREST RECT | // |===> | | | // |===> | | | // +----------------------+ |vvvvvvvvvvvvvvv| // // Case 2: Interest rect is inside the delta edge rect. It will always // fill the entire delta edge rect horizontally since the old edge rect // is a single tile wide, and the interest rect has been expanded to the // bounds of the tiles it touches. In this case the |left_rect| and // |right_rect| will be empty, but the case is handled by the |top_rect| // and |bottom_rect|. In the picture below, neither the |top_rect| nor // |bottom_rect| would empty, they would each cover the area of the old // edge rect outside the expanded interest rect. // +-----------------+ // |:::::::::::::::::| // |:::::::::::::::::| // |vvvvvvvvvvvvvvvvv| // | | // +-----------------+ // | INTEREST RECT | // | | // +-----------------+ // | | // | DELTA EDGE RECT | // +-----------------+ // // Lastly, we need to consider tiles inside the expanded interest rect. // For those tiles, we want to invalidate exactly the newly exposed // pixels. In the picture below the tiles in the delta edge rect have // been resized and the area covered by periods must be invalidated. The // |exposed_rect| will cover exactly that area. // v-min pile edge // +---------+-------+ // | ........| // | ........| // | DELTA EDGE.RECT.| // | ........| // | ........| // | ........| // | ........| // | ........| // | ........| // +---------+-------+ int left = tiling_.TilePositionX(min_toss_x); int right = left + tiling_.TileSizeX(min_toss_x); int top = min_tiling_rect_over_tiles.y(); int bottom = min_tiling_rect_over_tiles.bottom(); int left_until = std::min(interest_rect_over_tiles.x(), right); int right_until = std::max(interest_rect_over_tiles.right(), left); int top_until = std::min(interest_rect_over_tiles.y(), bottom); int bottom_until = std::max(interest_rect_over_tiles.bottom(), top); int exposed_left = min_tiling_size.width(); int exposed_left_until = max_tiling_size.width(); int exposed_top = top; int exposed_bottom = max_tiling_size.height(); DCHECK_GE(exposed_left, left); gfx::Rect left_rect(left, top, left_until - left, bottom - top); gfx::Rect right_rect(right_until, top, right - right_until, bottom - top); gfx::Rect top_rect(left, top, right - left, top_until - top); gfx::Rect bottom_rect( left, bottom_until, right - left, bottom - bottom_until); gfx::Rect exposed_rect(exposed_left, exposed_top, exposed_left_until - exposed_left, exposed_bottom - exposed_top); synthetic_invalidation.Union(left_rect); synthetic_invalidation.Union(right_rect); synthetic_invalidation.Union(top_rect); synthetic_invalidation.Union(bottom_rect); synthetic_invalidation.Union(exposed_rect); } if (min_toss_y < tiling_.num_tiles_y()) { // The same thing occurs here as in the case above, but the invalidation // rect is the bounding box around the bottom row of tiles in the min // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture. int top = tiling_.TilePositionY(min_toss_y); int bottom = top + tiling_.TileSizeY(min_toss_y); int left = min_tiling_rect_over_tiles.x(); int right = min_tiling_rect_over_tiles.right(); int top_until = std::min(interest_rect_over_tiles.y(), bottom); int bottom_until = std::max(interest_rect_over_tiles.bottom(), top); int left_until = std::min(interest_rect_over_tiles.x(), right); int right_until = std::max(interest_rect_over_tiles.right(), left); int exposed_top = min_tiling_size.height(); int exposed_top_until = max_tiling_size.height(); int exposed_left = left; int exposed_right = max_tiling_size.width(); DCHECK_GE(exposed_top, top); gfx::Rect left_rect(left, top, left_until - left, bottom - top); gfx::Rect right_rect(right_until, top, right - right_until, bottom - top); gfx::Rect top_rect(left, top, right - left, top_until - top); gfx::Rect bottom_rect( left, bottom_until, right - left, bottom - bottom_until); gfx::Rect exposed_rect(exposed_left, exposed_top, exposed_right - exposed_left, exposed_top_until - exposed_top); synthetic_invalidation.Union(left_rect); synthetic_invalidation.Union(right_rect); synthetic_invalidation.Union(top_rect); synthetic_invalidation.Union(bottom_rect); synthetic_invalidation.Union(exposed_rect); } } // Detect cases where the full pile is invalidated, in this situation we // can just drop/invalidate everything. if (invalidation->Contains(gfx::Rect(old_tiling_size)) || invalidation->Contains(gfx::Rect(GetSize()))) { for (auto& it : picture_map_) updated = it.second.Invalidate(frame_number) || updated; } else { // Expand invalidation that is on tiles that aren't in the interest rect and // will not be re-recorded below. These tiles are no longer valid and should // be considerered fully invalid, so we can know to not keep around raster // tiles that intersect with these recording tiles. Region invalidation_expanded_to_full_tiles; for (Region::Iterator i(*invalidation); i.has_rect(); i.next()) { gfx::Rect invalid_rect = i.rect(); // This rect covers the bounds (excluding borders) of all tiles whose // bounds (including borders) touch the |interest_rect|. This matches // the iteration of the |invalid_rect| below which includes borders when // calling Invalidate() on pictures. gfx::Rect invalid_rect_outside_interest_rect_tiles = tiling_.ExpandRectToTileBounds(invalid_rect); // We subtract the |interest_rect_over_tiles| which represents the bounds // of tiles that will be re-recorded below. This matches the iteration of // |interest_rect| below which includes borders. // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator // instead of using Rect::Subtract which gives you the bounding box of the // subtraction. invalid_rect_outside_interest_rect_tiles.Subtract( interest_rect_over_tiles); invalidation_expanded_to_full_tiles.Union( invalid_rect_outside_interest_rect_tiles); // Split this inflated invalidation across tile boundaries and apply it // to all tiles that it touches. bool include_borders = true; for (TilingData::Iterator iter(&tiling_, invalid_rect, include_borders); iter; ++iter) { const PictureMapKey& key = iter.index(); PictureMap::iterator picture_it = picture_map_.find(key); if (picture_it == picture_map_.end()) continue; // Inform the grid cell that it has been invalidated in this frame. updated = picture_it->second.Invalidate(frame_number) || updated; // Invalidate drops the picture so the whole tile better be invalidated // if it won't be re-recorded below. DCHECK_IMPLIES(!tiling_.TileBounds(key.first, key.second) .Intersects(interest_rect_over_tiles), invalidation_expanded_to_full_tiles.Contains( tiling_.TileBounds(key.first, key.second))); } } invalidation->Union(invalidation_expanded_to_full_tiles); } invalidation->Union(synthetic_invalidation); return updated; } void PicturePile::GetInvalidTileRects(const gfx::Rect& interest_rect, Region* invalidation, const gfx::Rect& visible_layer_rect, int frame_number, std::vector* invalid_tiles) { // Make a list of all invalid tiles; we will attempt to // cluster these into multiple invalidation regions. bool include_borders = true; for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it; ++it) { const PictureMapKey& key = it.index(); PictureInfo& info = picture_map_[key]; gfx::Rect rect = PaddedRect(key); int distance_to_visible = rect.ManhattanInternalDistance(visible_layer_rect); if (info.NeedsRecording(frame_number, distance_to_visible)) { gfx::Rect tile = tiling_.TileBounds(key.first, key.second); invalid_tiles->push_back(tile); } else if (!info.GetPicture()) { if (recorded_viewport_.Intersects(rect)) { // Recorded viewport is just an optimization for a fully recorded // interest rect. In this case, a tile in that rect has declined // to be recorded (probably due to frequent invalidations). // TODO(enne): Shrink the recorded_viewport_ rather than clearing. recorded_viewport_ = gfx::Rect(); } // If a tile in the interest rect is not recorded, the entire tile needs // to be considered invalid, so that we know not to keep around raster // tiles that intersect this recording tile. invalidation->Union(tiling_.TileBounds(it.index_x(), it.index_y())); } } } void PicturePile::CreatePictures(ContentLayerClient* painter, Picture::RecordingMode recording_mode, const std::vector& record_rects) { for (const auto& record_rect : record_rects) { gfx::Rect padded_record_rect = PadRect(record_rect); int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_); scoped_refptr picture; // Note: Currently, gathering of pixel refs when using a single // raster thread doesn't provide any benefit. This might change // in the future but we avoid it for now to reduce the cost of // Picture::Create. bool gather_pixel_refs = TileTaskWorkerPool::GetNumWorkerThreads() > 1; for (int i = 0; i < repeat_count; i++) { picture = Picture::Create(padded_record_rect, painter, tile_grid_size_, gather_pixel_refs, recording_mode); // Note the '&&' with previous is-suitable state. // This means that once a picture-pile becomes unsuitable for gpu // rasterization due to some content, it will continue to be unsuitable // even if that content is replaced by gpu-friendly content. // This is an optimization to avoid iterating though all pictures in // the pile after each invalidation. if (is_suitable_for_gpu_rasterization_) { const char* reason = nullptr; is_suitable_for_gpu_rasterization_ &= picture->IsSuitableForGpuRasterization(&reason); if (!is_suitable_for_gpu_rasterization_) { TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto", TRACE_EVENT_SCOPE_THREAD, "reason", reason); } } } bool found_tile_for_recorded_picture = false; bool include_borders = true; for (TilingData::Iterator it(&tiling_, padded_record_rect, include_borders); it; ++it) { const PictureMapKey& key = it.index(); gfx::Rect tile = PaddedRect(key); if (padded_record_rect.Contains(tile)) { PictureInfo& info = picture_map_[key]; info.SetPicture(picture); found_tile_for_recorded_picture = true; } } DCHECK(found_tile_for_recorded_picture); } } scoped_refptr PicturePile::CreateRasterSource() const { return scoped_refptr( PicturePileImpl::CreateFromPicturePile(this)); } gfx::Size PicturePile::GetSize() const { return tiling_.tiling_size(); } void PicturePile::SetEmptyBounds() { tiling_.SetTilingSize(gfx::Size()); Clear(); } void PicturePile::SetMinContentsScale(float min_contents_scale) { DCHECK(min_contents_scale); if (min_contents_scale_ == min_contents_scale) return; // Picture contents are played back scaled. When the final contents scale is // less than 1 (i.e. low res), then multiple recorded pixels will be used // to raster one final pixel. To avoid splitting a final pixel across // pictures (which would result in incorrect rasterization due to blending), a // buffer margin is added so that any picture can be snapped to integral // final pixels. // // For example, if a 1/4 contents scale is used, then that would be 3 buffer // pixels, since that's the minimum number of pixels to add so that resulting // content can be snapped to a four pixel aligned grid. int buffer_pixels = static_cast(ceil(1 / min_contents_scale) - 1); buffer_pixels = std::max(0, buffer_pixels); SetBufferPixels(buffer_pixels); min_contents_scale_ = min_contents_scale; } void PicturePile::SetSlowdownRasterScaleFactor(int factor) { slow_down_raster_scale_factor_for_debug_ = factor; } bool PicturePile::IsSuitableForGpuRasterization() const { return is_suitable_for_gpu_rasterization_; } void PicturePile::SetTileGridSize(const gfx::Size& tile_grid_size) { DCHECK_GT(tile_grid_size.width(), 0); DCHECK_GT(tile_grid_size.height(), 0); tile_grid_size_ = tile_grid_size; } void PicturePile::SetUnsuitableForGpuRasterizationForTesting() { is_suitable_for_gpu_rasterization_ = false; } gfx::Size PicturePile::GetTileGridSizeForTesting() const { return tile_grid_size_; } bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect& layer_rect) const { bool include_borders = false; for (TilingData::Iterator tile_iter(&tiling_, layer_rect, include_borders); tile_iter; ++tile_iter) { PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index()); if (map_iter == picture_map_.end()) return false; if (!map_iter->second.GetPicture()) return false; } return true; } void PicturePile::DetermineIfSolidColor() { is_solid_color_ = false; solid_color_ = SK_ColorTRANSPARENT; if (picture_map_.empty()) { return; } PictureMap::const_iterator it = picture_map_.begin(); const Picture* picture = it->second.GetPicture(); // Missing recordings due to frequent invalidations or being too far away // from the interest rect will cause the a null picture to exist. if (!picture) return; // Don't bother doing more work if the first image is too complicated. if (picture->ApproximateOpCount() > kOpCountThatIsOkToAnalyze) return; // Make sure all of the mapped images point to the same picture. for (++it; it != picture_map_.end(); ++it) { if (it->second.GetPicture() != picture) return; } gfx::Size layer_size = GetSize(); skia::AnalysisCanvas canvas(layer_size.width(), layer_size.height()); picture->Raster(&canvas, nullptr, Region(), 1.0f); is_solid_color_ = canvas.GetColorIfSolid(&solid_color_); } gfx::Rect PicturePile::PaddedRect(const PictureMapKey& key) const { gfx::Rect tile = tiling_.TileBounds(key.first, key.second); return PadRect(tile); } gfx::Rect PicturePile::PadRect(const gfx::Rect& rect) const { gfx::Rect padded_rect = rect; padded_rect.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(), -buffer_pixels()); return padded_rect; } void PicturePile::Clear() { picture_map_.clear(); recorded_viewport_ = gfx::Rect(); has_any_recordings_ = false; is_solid_color_ = false; } PicturePile::PictureInfo::PictureInfo() : last_frame_number_(0) { } PicturePile::PictureInfo::~PictureInfo() { } void PicturePile::PictureInfo::AdvanceInvalidationHistory(int frame_number) { DCHECK_GE(frame_number, last_frame_number_); if (frame_number == last_frame_number_) return; invalidation_history_ <<= (frame_number - last_frame_number_); last_frame_number_ = frame_number; } bool PicturePile::PictureInfo::Invalidate(int frame_number) { AdvanceInvalidationHistory(frame_number); invalidation_history_.set(0); bool did_invalidate = !!picture_.get(); picture_ = NULL; return did_invalidate; } bool PicturePile::PictureInfo::NeedsRecording(int frame_number, int distance_to_visible) { AdvanceInvalidationHistory(frame_number); // We only need recording if we don't have a picture. Furthermore, we only // need a recording if we're within frequent invalidation distance threshold // or the invalidation is not frequent enough (below invalidation frequency // threshold). return !picture_.get() && ((distance_to_visible <= kFrequentInvalidationDistanceThreshold) || (GetInvalidationFrequency() < kInvalidationFrequencyThreshold)); } void PicturePile::SetBufferPixels(int new_buffer_pixels) { if (new_buffer_pixels == buffer_pixels()) return; Clear(); tiling_.SetBorderTexels(new_buffer_pixels); } void PicturePile::PictureInfo::SetPicture(scoped_refptr picture) { picture_ = picture; } const Picture* PicturePile::PictureInfo::GetPicture() const { return picture_.get(); } float PicturePile::PictureInfo::GetInvalidationFrequency() const { return invalidation_history_.count() / static_cast(INVALIDATION_FRAMES_TRACKED); } } // namespace cc